Constraint Preconditioning for the coupled Stokes-Darcy System

Scott Ladenheim

University of Manchester scott.ladenheim@manchester.ac.uk

SIAM Conference on Applied Linear Algebra 2015

Joint work with:

Prince Chidyagwai (Loyola University, Maryland) and

Daniel B. Szyld (Temple University)

Support: NSF DMS-1115520, DMS-1418882, and DMS-111526

Physical setting

Describe two coupled flows

- freely flowing fluid
- porous media flow

Stokes-Darcy Flow

In this talk we consider coupled Stokes-Darcy flow in the domain $\Omega=\Omega_1\cup\Omega_2$

Boundary

$$\partial\Omega = \Gamma_1 \cup \Gamma_2$$

$$\Gamma_1 = \partial\Omega_1 \setminus \Gamma_{12}$$

$$\Gamma_2 = \Gamma_{2N} \cup \Gamma_{2D}$$

The p.d.e.s are coupled together by conditions across the interface

Weak Problem Statement

Find $\mathbf{u}_1 \in \mathbf{X}_1, p_1 \in Q_1, p_2 = \varphi_2 + p_D$, with $\varphi_2 \in Q_2$ such that

$$\forall \mathbf{v}_1 \in \mathbf{X}_1, \forall q_2 \in \mathbf{Q}_2$$

$$\begin{aligned} 2\nu \big(\mathbf{D}(\mathbf{u}_1), \mathbf{D}(\mathbf{v}_1) \big)_{\Omega_1} - \big(\rho_1, \nabla \cdot \mathbf{v}_1 \big)_{\Omega_1} \\ + & (\varphi_2, \mathbf{v}_1 \cdot \mathbf{n}_{12})_{\Gamma_{12}} + \frac{1}{G} \big(\mathbf{u}_1 \cdot \boldsymbol{\tau}_{12}, \mathbf{v}_1 \cdot \boldsymbol{\tau}_{12} \big)_{\Gamma_{12}} - \big(\mathbf{u}_1 \cdot \mathbf{n}_{12}, q_2 \big)_{\Gamma_{12}} \\ & + \big(\mathbf{K} \nabla \varphi_2, \nabla q_2 \big)_{\Omega_2} \\ & = \big(\mathbf{f}_1, \mathbf{v}_1 \big)_{\Omega_1} + \big(f_2, q_2 \big)_{\Omega_2} - \big(\mathbf{K} \nabla \rho_D, \nabla q_2 \big)_{\Omega_2} + \big(g_N, q_2 \big)_{\Gamma_{2N}} \end{aligned}$$

$$\forall q_1 \in Q_1 \qquad (\nabla \cdot \boldsymbol{u}_1, q_1)_{\Omega_1} = 0$$

$$p_D \in H^1(\Omega_2)$$
 such that $p_D|_{\Gamma_{2D}} = g_D$

FE Discretization

- Partition the domain Ω into finite elements (triangles, squares) with mesh width h.
- ▶ Choose finite-dimensional spaces X_1^h , Q_1^h , Q_2^h satisfying the discrete inf-sup condition
- The discrete Darcy pressure and the discrete Stokes velocity and pressure are expressed as linear combinations of the basis functions of the discrete spaces
- Assemble the system matrix and right hand side
- Solve the linear system

Linear System

Following standard finite element techniques we obtain the linear system for discretized coupled Stokes-Darcy problem

$$\mathcal{A}\mathbf{x} = \begin{bmatrix} A_{\Omega_2} & A_{\Gamma_{12}}^T & 0 \\ -A_{\Gamma_{12}} & A_{\Omega_1} & B^T \\ 0 & B & 0 \end{bmatrix} \begin{bmatrix} p_2 \\ \mathbf{u}_1 \\ p_1 \end{bmatrix} = \begin{bmatrix} f_{2,h} \\ \mathbf{f}_{1,h} \\ g_h \end{bmatrix} = \mathbf{b}$$

This is sparse, nonsymmetric saddle point problem and the dimension increases as $h \rightarrow 0$

$$\mathcal{A} = \begin{bmatrix} A & C^T \\ C & 0 \end{bmatrix}, \quad \text{where } A = \begin{bmatrix} A_{\Omega_2} & A_{\Gamma_{12}}^T \\ -A_{\Gamma_{12}} & A_{\Omega_1} \end{bmatrix}, \quad C = \begin{bmatrix} 0 & B \end{bmatrix}$$

Solve iteratively with preconditioned GMRES

Preconditioning Saddle Point Problems

What preconditioners to consider?

$$\mathcal{P}_{bd} = \begin{bmatrix} P_1 & 0 \\ 0 & P_2 \end{bmatrix}, \quad \mathcal{P}_{lt} = \begin{bmatrix} P_1 & 0 \\ C & P_2 \end{bmatrix}$$

Murphy, Golub, Wathen (2000)

Let
$$\mathcal{A} = \begin{bmatrix} A & C^T \\ C & 0 \end{bmatrix}$$
 be nonsingular and set $P_1 = A$, $P_2 = S = -CA^{-1}C^T$, then $\mathcal{P}_{bd}^{-1}\mathcal{A}$ and $\mathcal{P}_{lt}^{-1}\mathcal{A}$ have three and two non-zero eigenvalues, respectively.

- Krylov subspace methods converge in exact arithmetic in 3 and 2 iterations, respectively
- ▶ in practice approximations \tilde{A}^{-1} , \tilde{S}^{-1} are used

Preconditioners

$$\mathcal{P}_{\pm} = \begin{bmatrix} A_{\Omega_2} & 0 & 0 \\ 0 & A_{\Omega_1} & 0 \\ 0 & 0 & \pm M_p \end{bmatrix} \qquad \mathcal{P}_{T_1}(\rho) = \begin{bmatrix} A_{\Omega_2} & 0 & 0 \\ 0 & A_{\Omega_1} & 0 \\ 0 & B & -\rho M_p \end{bmatrix}$$

$$\mathcal{P}_{T_2}(\rho) = \begin{bmatrix} A_{\Omega_2} & 0 & 0 \\ -A_{\Gamma_{12}} & A_{\Omega_1} & 0 \\ 0 & B & -\rho M_p \end{bmatrix} \quad \mathcal{P}_C(\rho) = \begin{bmatrix} A_{\Omega_2} & A_{\Gamma_{12}}^T & 0 \\ -A_{\Gamma_{12}} & A_{\Omega_1} & 0 \\ 0 & B & -\rho M_p \end{bmatrix}$$

- $ightharpoonup M_p$ is the Stokes pressure mass matrix.
- ▶ M_p is spectrally equivalent to the Schur complement of the Stokes matrix matrix $S = -BA_{\Omega_1}B^T$, i.e., there exist α, β independent of h such that for all $\mathbf{x} \neq 0$, $\alpha < \frac{(\mathbf{x}, S\mathbf{x})}{(\mathbf{x}, M_p\mathbf{x})} < \beta$

[M. Cai, M. Mu, and J. Xu, 2009]

Constraint Preconditioning

A constraint preconditioner has the form

$$\mathcal{P}_{con} = \begin{bmatrix} P & C^T \\ C & 0 \end{bmatrix}$$

where P is chosen to approximate the A block of the system matrix

Two Constraint Preconditioners

$$\mathcal{P}_{con_D} = \begin{bmatrix} A_{\Omega_2} & 0 & 0 \\ 0 & A_{\Omega_1} & B^T \\ 0 & B & 0 \end{bmatrix} \qquad \mathcal{P}_{con_T} = \begin{bmatrix} A_{\Omega_2} & 0 & 0 \\ -A_{\Gamma 12} & A_{\Omega_1} & B^T \\ 0 & B & 0 \end{bmatrix}$$

e.g., [C. Keller, N. Gould, and A. Wathen, 2000]

Norm- and FOV- Equivalence

Two Useful Equivalences

- 1. Norm equivalence, $M \sim_H N \iff \exists \ \alpha, \beta \text{ such that } \alpha < \frac{\|M\mathbf{x}\|_H}{\|N\mathbf{x}\|_H} < \beta \ \forall \mathbf{x} \neq \mathbf{0}$
- 2. Field-of-Values (FOV) equivalence, $M \approx_H N \iff \exists \ \alpha, \beta \text{ such that } \alpha \leq \frac{(\mathbf{x}, MN^{-1}\mathbf{x})_H}{(\mathbf{x}, \mathbf{x})_H} \text{ and } \|MN^{-1}\|_H \leq \beta \ \forall \mathbf{x} \neq \mathbf{0}$

 α, β are independent of h.

Norm equivalence $\Longrightarrow \alpha < |\Lambda(MN^{-1})| < \beta$ FOV equivalence $\Longrightarrow H$ -field-of-values, $\mathcal{W}_H(MN^{-1}) \subset \mathbb{C}^+$

MINRES/GMRES Convergence

Implications of Norm/FOV-Equivalence

Norm Equivalence

- A ~_H P
- ▶ \mathcal{AP}^{-1} symmetric w.r.t. $(\cdot, \cdot)_H$

The residual bound for MINRES is independent of h

[D. Loghin and A. Wathen, 2004]

FOV Equivalence

 $ightharpoons \mathcal{A} \approx_{\mathcal{H}} \mathcal{P}$

The residual bound for GMRES is independent of h

Mesh-Independent Spectra and Field of Values

Block Diagonal/Lower Triangular

In [M. Cai, M. Mu, and J. Xu, 2009], the authors proved that for

$$\mathcal{P} \in \{\mathcal{P}_+, \mathcal{P}_-, \mathcal{P}_{T_1}, \mathcal{P}_{T_2}, \mathcal{P}_C\}$$
 then $\mathcal{A} \sim_H \mathcal{P}$

 $\implies \Lambda(\mathcal{AP}^{-1})$ bounded independent of h

Constraint

We have shown that for exact versions

$$\mathcal{P} \in \{\mathcal{P}_{con_D}, \mathcal{P}_{con_T}\}$$
 then $\mathcal{A} \sim_H \mathcal{P}$ and $\mathcal{A} \approx_H \mathcal{P}$

- $\implies \Lambda(\mathcal{AP}^{-1})$ bounded independent of h
- $\implies \mathcal{W}_H(\mathcal{AP}^{-1}) \subset \mathbb{C}^+$ bounded independent of h

2D rectangular domain

We consider a coupled Stokes-Darcy problem with $\kappa=\nu=1$ and boundary conditions chosen to match the exact solution

$$\mathbf{u}(x,y) = \left[y^2 - 2y + 1 + \nu(2x - 1), \ x^2 - x - (y - 1)2\nu \right]^T$$

$$p_1(x,y) = 2\nu(x + y - 1) + \frac{1}{3\kappa} - 4\nu^2$$

$$p_2(x,y) = \frac{1}{\kappa} \left(x(1-x)(y-1) + \frac{y^3}{3} - y^2 + y \right) + 2\nu x$$

- $\rightarrow X_1^h, Q_1^h$ MINI-elements
- Q₂^h linear elements
- solve the linear system with GMRES
- exact preconditioners, i.e., direct solves

 Γ_{2D}

2D: GMRES convergence

dofs = 524545

2D: GMRES convergence (cont)

h	DOF	\mathcal{P}_+	$\mathcal{P}_{T_2}(0.6)$	$P_{C}(0.6)$	\mathcal{P}_{con_D}	\mathcal{P}_{con_T}
2^{-3}	521	80 (0.12)	46 (0.04)	37 (0.03)	7 (0.01)	4 (0.01)
2^{-4}	2065	89 (0.27)	53 (0.13)	39 (0.09)	7 (0.02)	3 (0.02)
2^{-5}	8225	104 (1.26)	54 (0.64)	36 (0.42)	7 (0.16)	3 (0.12)
2^{-6}	32833	113 (7.81)	57 (3.70)	31 (2.02)	7 (0.93)	3 (0.71)
2^{-7}	131201	119 (40.3)	61 (19.9)	26 (8.70)	7 (4.63)	3 (4.04)
2^{-8}	524545	121 (288)	60 (126)	18 (36.2)	7 (28.2)	3 (26.0)

Inexact Preconditioners

For large-scale 3D problems, exact preconditioners based on factorizations are not economical How to replace the exact block solves?

Consider

$$\mathcal{P}_{+}^{-1} = \begin{bmatrix} A_{\Omega_{2}}^{-1} & 0 & 0 \\ 0 & A_{\Omega_{1}}^{-1} & 0 \\ 0 & 0 & M_{p}^{-1} \end{bmatrix}$$

- ▶ Replace the operators $A_{\Omega_i}^{-1}$ with fast, spectrally equivalent multigrid methods (AMG).
- ▶ Replace M_p with diag (M_p) .

3D Coupled Flow Problems

Consider 2 coupled flow problems

- channel driven flow
- flow with an impermeable enclosure

For these problems

- use the finite element library deal.
- \triangleright X_1^h, Q_1^h discretized with Taylor-Hood elements
- \triangleright Q_2^h discretized with quadratic elements
- use inexact versions of the preconditioners (calls to AMG)
- solve the linear system with GMRES

Inexact Preconditioners

For large-scale 3D problems, exact preconditioners based on factorizations are not economical How to replace the exact block solves?

Consider

$$\mathcal{P}_{+}^{-1} = \begin{bmatrix} A_{\Omega_{2}}^{-1} & 0 & 0 \\ 0 & A_{\Omega_{1}}^{-1} & 0 \\ 0 & 0 & M_{p}^{-1} \end{bmatrix}$$

- ▶ Replace the operators $A_{\Omega_i}^{-1}$ with fast, spectrally equivalent multigrid methods (AMG).
- ▶ Replace M_p with diag (M_p) .

Inexact Constraint Preconditioner

Block Factorized Preconditioner

$$\mathcal{P}_{con_{D}}^{-1} = \begin{pmatrix} \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & BA_{\Omega_{1}}^{-1} & I \end{bmatrix} \begin{bmatrix} A_{\Omega_{2}} & 0 & 0 \\ 0 & A_{\Omega_{1}} & 0 \\ 0 & 0 & S \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ 0 & I & A_{\Omega_{1}}^{-1}B^{T} \\ 0 & 0 & I \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} I & 0 & 0 \\ 0 & I & -A_{\Omega_{1}}^{-1}B^{T} \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} A_{\Omega_{2}}^{-1} & 0 & 0 \\ 0 & A_{\Omega_{1}}^{-1} & 0 \\ 0 & 0 & S^{-1} \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & -BA_{\Omega_{1}}^{-1} & I \end{bmatrix}$$

Inexact Inner Solves

Replace

- $\blacktriangleright A_{\Omega_2}^{-1}, A_{\Omega_1}^{-1}$ with an AMG method
- $S = -BA_{\Omega_1}B^T$ with spectrally equivalent diag $(-M_p)$

[H. Elman, D. Silvester, and A. Wathen, 2005]

3D: Channel driven flow

Figure: Computational domain

Computational setup

- $Ω_1 = [0, 0.05]^2 \times [0.1, 0.25],$ $Ω_2 = [0, 0.05]^2 \times [0, 0.1], and$ $Γ_{12} \text{ is the plane } z = 0.10$
- -- → $\mathbf{u}_1 = (0,0,0)^T$ on $\Gamma_{1,0}$
 - ▶ $\mathbf{u}_1 = (0, 0, -0.1)^T$ on $\Gamma_{1,in}$
 - $partial g_{\rm D} = g_{\rm N} = 0$
 - $\mathbf{f}_1 = 0$, $f_2 = 0$ and $\nu = 1.0$
 - κ is varied over the range $\{10^{-2}, 10^{-4}, 10^{-6}\}$

Channel driven flow (cont)

Figure: Slice of the numerical solution along x=0.025 with $\kappa=10^{-6}$, h=0.00025, dofs = 773625

Channel driven flow (cont)

Figure: Cross section of channel flow along z = 0.02, h = 0.00025, DOFs = 773625

Channel driven flow (cont)

h	elements	DOF	\mathcal{P}_{+}	\mathcal{P}_{T_1}	\mathcal{P}_{cond}	
0.01	625	14370	154 (6.679)	58 (2.500)	47 (3.527)	
0.005	5000	102535	227 (81.66)	83 (29.51)	69 (42.65)	
0.00025	40000	773265	442 (1389)	139 (408.9)	117 (595.8)	

(a) $\kappa = 10^{-2}$, 1 AMG cycle

h	elements	DOF	\mathcal{P}_{+}	\mathcal{P}_{T_1}	\mathcal{P}_{con_D}
0.01	625	14370	178 (7.756)	70 (3.013)	57 (4.260)
0.005	5000	102535	237 (85.59)	94 (33.44)	77 (47.67)
0.00025	40000	773265	443 (1394)	136 (399.7)	112 (570.3)

(b) $\kappa = 10^{-4}$, 1 AMG cycle

h	elements	DOF	\mathcal{P}_{+}	\mathcal{P}_{T_1}	\mathcal{P}_{con_D}
0.01	625	14370	369 (16.97)	171 (7.517)	158 (11.86)
0.005	5000	102535	558 (218.0)	229 (83.56)	189 (117.7)
0.00025	40000	773265	895 (3152)	270 (821.8)	240 (1243)

(c) $\kappa = 10^{-6}$, 1 AMG cycle

Table: GMRES iterations and CPU time (seconds)

3D: Impermeable enclosure

Figure: Computational domain with impermeable enclosure

Computational setup

- $Ω_1 = [0, 2]^2 \times [1, 2],$ $Ω_2 = [0, 2]^2 \times [0, 1], \text{ and } Γ_{12}$ is the plane z = 1
- $\mathbf{u}_1 = (0,0,0)^T$ on $\Gamma_{1,0}$
- ▶ $\mathbf{u}_1 = (0, 0, -1)^T$ on $\Gamma_{1,in}$
- $partial g_{\rm D} = g_{\rm N} = 0$
- $\mathbf{f}_1 = 0$, $f_2 = 0$ and $\nu = 1.0$
- $\kappa_1 = 1$ (outside black cube), $\kappa_2 = 10^{-10}$ (inside)

Impermeable enclosure (cont)

Figure: Numerical solution, $h = 2^{-4}$, DOFs = 576213

Impermeable enclosure (cont)

h	elements	DOF	\mathcal{P}_{+}	$\mathcal{P}_{\mathcal{T}_1}$	\mathcal{P}_{con_D}
2^{-1}	64	1695	59 (0.312)	34 (0.188)	30 (0.276)
2^{-2}	512	10809	153 (4.638)	54 (1.637)	46 (2.386)
2^{-3}	4096	76653	250 (63.54)	64 (15.82)	56 (23.97)
2^{-4}	32768	576213	485 (1083)	116 (239.2)	99 (346.7)

(a)
$$\kappa_1 = 1$$
, $\kappa_2 = 10^{-10}$, 1 AMG cycles

h	elements	DOF	\mathcal{P}_{+}	$\mathcal{P}_{\mathcal{T}_1}$	\mathcal{P}_{con_D}
2^{-1}	64	1695	59 (0.927)	34 (0.548)	30 (0.907)
2^{-2}	512	10809	97 (10.70)	41 (4.526)	37 (7.920)
2^{-3}	4096	76653	144 (133.3)	52 (48.48)	43 (76.80)
2^{-4}	32768	576213	267 (2027)	69 (526.2)	55 (800.7)

(b)
$$\kappa_1 = 1$$
, $\kappa_2 = 10^{-10}$, 4 AMG cycles

h	elements	DOF	\mathcal{P}_{+}	$\mathcal{P}_{\mathcal{T}_1}$	\mathcal{P}_{con_D}
2^{-1}	64	1695	59 (1.763)	34 (1.044)	30 (1.767)
2^{-2}	512	10809	86 (18.82)	40 (8.894)	36 (15.81)
2^{-3}	4096	76653	116 (213.1)	49 (90.91)	38 (137.2)
2^{-4}	32768	576213	200 (3022)	61 (931.8)	44 (1307)

(c)
$$\kappa_1 = 1$$
, $\kappa_2 = 10^{-10}$, 8 AMG cycles

Table: GMRES iterations and CPU time (seconds)