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The problem

Solve the Lyapunov equation

SY + YST = RHS

efficiently, where

B S=A"1M, where A, M € R™ " |arge and sparse
A: Jacobian matrix, M: mass matrix

B The RHS matrix is real, symmetric and has rank 1 or 2

B Y € R"™™: symmetric, typically has low-rank representation

Y ~ L‘

Krylov subspace methods!

Moduli of the eigenvalues of Y

=

[Penzl; Antoulas, Sorensen, & Zhou; Grasedyck; Kressner & Tobler; ...]




Hierarchy of the solution methods

. We want

the size of the subspace to be
as small as possible

the computation of each basis
vector as cheap as possible




B Motivation: linear stability analysis of large-scale dynamical systems

B cigenvalue problem in the form of a Lyapunov equation
B [yapunov inverse iteration

B Strategies for solving SY + Y ST = RHS:

B Krylov-type Lyapunov solvers and
our modification

B preconditioned GMRES AR
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B Concluding remarks




Linear stability analysis

B The stability (sensitivity to small perturbations) of the dynamical system

Mua= A(a)u

depends on the rightmost eigenvalue jtm of A(a)x = puMx:

B Re(pm) < 0: steady state is stable 7 . -
B Re(im) > 0: unstable ' ;
a1(*) < as(o) < az() < as(d) — ’
B Bifurcation phenomenon occurs as well
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The eigenvalue problem

B Finding the rightmost eigenvalue of Ax = uAlx is difficult

B direct methods (QR, QZ): not feasible for | 3 =T ¢ & i |
large-scale problems ___*________
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B iterative methods (subspace, Arnoldi,
Jacobi-Davidson): not reliable without a rough L. i Shiehes ks
estimate of fim

B New strategy: solve a related, “easier’ problem

Theorem 1 (joint with Elman; also in [Meerbergen & Vandebril])

Assume AX = uMx has a complete set of eigenvectors and all its eigenvalues lie to the
left of the imaginary axis. Then the eigenvalue Asm of

ST ZHE —) (—zszs’-”) .

with smallest modulus is —Re(tm), where S = A~ M.

B the smallest eigenvlaue is easier to find
B Lyapunov inverse iteration [Meerbergen & Spence]




lterative Lyapunov solvers

lterative method for SY - Y ST — BCBT

Y = E 1 @ construct a small subspace span{V,,}
© solve the small Lyapunov equation

(Vo SVim) X4X (Vi 5Vm) = (VaB)cC (v
— = [Bartels & Stewart; Hammarling]
Q@ Y~V , XVI
Choice of the subspace:

B standard Krylov subspace [Saad; Jaimoukha & Kasenally; .. ]
Km(S.B) = span {B. SB.S?B...... S”"_IB}

At each step:

B S=A"'0M = asolve of type Ax=Db
B V,[SV,.: upper-Hessenberg, available at no additional cost

B rational Krylov subspace
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Rational Krylov subspace method

[Ruhe; Druskin & Simoncini]

At each step:
B S=AM = asolve of type (M —sA)x=Db

B VISV, requires Sv,,.; = an extra solve of type Ax =b
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B Ax = Db is much more difficult to solve!

B shifts are real, adaptively chosen based on rough spectral information of S
obtained from VI ST s [Druskin, Lieberman & Zaslavksy; Druskin & Simoncini]
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lterative linear solves

Due to the fact that S = A1\

B standard Krylov subspace requires solves of type Ax =b
Km(S.B) =span{B.SB..S'QB ...... S 'm—lB}

B rational Krylov subspace requires solves of types Ax =band (M —sA)x=Db
m—1

Km(S,B,s) =span{ B.(S —s1I) "B, (S —saI) ' (S—s1I) 'B,..., [](S—sm_)™'B
i=1

B preconditioned GMRES for the linear systems

n = 10,000, incompressible flows
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lteration counts
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Solve SYT + Y ST = BCBT iteratively. Y € R™*™ has low-rank representation.
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Krylov subspace recycling

[Parks, De Sturler, Machey, Johnson, & Maiti]

> S
Y =
~

B [n both Lyapunov solvers, we need to solve a
sequence of linear systems Ax = b;.

G B We construct a sequence of Krylov subspaces
{Ki(AP~!.b;)} for them

| B C; (AP~ b;) may contain spectral info of
TN AP~ that facilitates the solve of Ax = b, ;.

keep the half of Kj(AP~1.b;) corresponding to the smaller eigenvalues of AP~}
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| et's cut more corners!
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Can we get rid of the red (or black) curve completely?




Modified RKSM

The matrix-vector product Sv,,.; (solve Ax = b;) is needed to compute the
small matrix VI SV, .

m

0T B need this matrix to construct Y (no
= need to form it at every step)

) v
~

B produces spectral info about S used to
= generate shifts (explore alternatives)

Theorem 2 (joint with Elman)

Suppose Vi holds an orthonormal basis of the rational Krylov subspace of S = A~' M.
Then (V,E AV " YNV.EMVin) and V,.E SVin only differ by a rank-1 matrix.
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Total costs

v picked a good Lyapunov solver and improved it

v' picked a good preconditioner for the linear systems (problem-specific)

v re-used intermediate computational results

----- standard Kryiov with recycing
— SK.SM with recycing

= == = modified RKSM (k=5) with recyciing |}
------- modified RKSM (k=10) with recyciing
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A few details

B Preconditioner used: the Least-Squares Commutator preconditioner [Elman,
Silvester, & Wathen; Elman & Tuminaro].

an important feature: does not require extra work to build as the shift s varies
techniques for preconditioning a family of shifted linear systems with different
right-hand sides? [Bakhos, Ladenheim, Kitanidis, Saibaba, & Szyld; .. ]

solves with P are approximated by one V-cycle of algebraic multigrid

choice of shifts {.S'j ;":1 [Druskin, Lieberman, & Zaslavksy; Druskin & Simoncini]
first introduced to approximate u(t) = exp(St)u(0)

based on a representation of the error between the true u and its estimate
obtained by RKSM

boils down to the following optimization problem

Sm+1 = arg (Ill{ixsg']: ) ~ where I‘m(S) =

]._.[_;n:]_ (S - Sj )

{6;}7: Ritz values (eigenvalues of VL SV;,)
connection with the Lyapunov equation: the analytic solution to
SYT 1 vST — BCBT is

Y:/ exp(tS)BCBT exp (t.S'T) dt
0




Conclusion

Papers (joint with Elman):

-On the robust computation of the rightmost eigenvalues:

Lyapunov inverse iteration for computing a few rightmost eigenvalues of large generalized
eigenvalues problems, in SIMAX 2013
-On the efficient implementation of this eigenvalue solver: (this talk)

Efficient iterative algorithms for linear stability analysis of incompressible flows, in IMANUM
2015

B Discussed how to solve AY M + MY AT = RHS efficiently
Lyapunov solver + preconditioner + recycling

B Proposed a modified RKSM that achieves significant computational savings
B Other applications besides linear stability analysis?

B Robust eigenvalue solver for finding the rightmost eigenvalues of large,
unstable, complex matrices? (joint with Xue)






