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Challenges in MSO

> Key technologies require Modeling, Simulation, and
Optimization (MSQO) of complex dynamical systems.

> Modeling, analysis, numerics, control and optimization
techniques should go hand in hand.

> The quantification of errors and uncertainties is lagging
behind.

> Are we able to solve problems in industrial practice?
> Do we have a rigorous mathematical background?

> Can we analyze errors, uncertainties?

> Can we put this into mathematical software?

Numerical Linear Algebra is a key factor in this.




Model based approach

Interdisciplinary project with car manufacturers + SMEs
Supported by German Minist. of Economics via AlF foundation.
University: N. Grabner, U. von Wagner, TU Berlin, Mechanics,
N. Hoffmann, TU Hamburg-Harburg, Mechanics,

S. Quraishi, C. Schroder, TU Berlin Mathematics.

Goals:

> Develop model of brake system with all effects that may cause
squeal. (Friction, circulatory, gyroscopic effects, etc).

> Simulate brake behavior for many different parameters (disk
speed, material and geometry parameters).

> Lin. Alg. tasks: Detection of instability, model reduction,
solution of large scale parametric eigenvalue problems.

> Passive (optimization) and active (control) remedies.
> Future: Stabllity/bifurcation analysis for a parameter region.




Brake pad

Figure: View of the brake model
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Experiment

10

(mm/s)

Gitter der Messpunkte Betriebsschwingform (1750 Hz) 2

> Experiments indicate nonlinear behavior (subcritical Hopf
bifurcation) — film.
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Modeling in industrial practice

Multi-body system based on Finite Element Modeling (FEM)

> Write displacements of structure z(x. t) as linear combination
of basis functions (e.g. piecewise polynomials),

N

z(x.t) =) q(t)oi(x.1).

i=1
> Integrate against test functions (Petrov Galerkin) —

discretized model for the vibrations in weak form.

> Add friction and damping as macroscopic surrogate model
fitted from experimental data.

> Simplifications: Remove some nonlinearities, asymptotic
analysis for small parameters, eftc.




Mathematical model details

Large differential-algebraic equation (DAE) system and evp
depend. on parameters (here only disk speed displayed).

MG + (Ci + —Cr + —Cg)q + (Ki + Ka + (—)?Ks)q = f.

wr Ar

> M symmetric, pos. semidef., singular matrix (constraints),

> (C; symmetric matrix, material damping,

> Cg skew-symmetric matrix, gyroscopic effects,

> Cpg symmetric mat., friction induced damping, (phenomenological)
> Kj symmetric stiffness matrix,

> Kgr nonsymmetric matrix, circulatory effects,

> Kg symmetric geometric stiffness matrix.

> w rotational speed of disk with reference velocity w.

> Other parameters, material, geometry, etc.




Nature of FE matrices

Industrial model

C=0C+2Cr+ 2Cg

K = Ki + Kn + (£)?Ks .

n = 842.638, W,_5w_17x2_ E
matrix | structure | 2-norm | rank nz=1ce+07 nz:éem
M symm | 5e-2 | 842,623 o Cr
Ci  |symm [1e-19 [ 160 il (I
Ca skew 1.5e-1 | 217500 2=32+05 nzzzm
Cr symm 7e-2 2120 E ,
K1 it . L nzz4e+107 nz=1e+05
Kp |- 3e4 | 2110 .
Ke |symm |40 842,623 3

nz=1e+07




Model evaluation, challenges

This is really a hierarchy and mixture of models.

> FE Model hierarchy: grid hierarchy, type of ansatz functions,
component and domain decomposition.

> Coupled with surrogate model for friction and damping?
Challenges

> Are the simplifications nonlinear/linear, expansions justified?
> We do not have a PDE, error estimates, adaptivity?

> How can we get a reduced model for optimization.

> How can we solve the parametric eigenvalue problem.

Can we analyze the model and quantify the errors?




Outline

O Numerical Linear algebra, Model reduction.




Complex eigenvalue analysis

> Ansatz q(t) = e'“)y(w) gives quadratic evp (QEP):
PLOAV(w) = (N(w)2M + A(@)C(w) + K(w))V(w) = 0.

> Want evs with positive real part and corresponding evecs.
These are few, ideally one, since squeal is mono-frequent.

> Want problem to be robustly away from instability for all disk
speeds. (Distance to instability.)

> Want efficient method to compute evs/ pseudospectra in right
half plane for many parameter values.

> Want subspace associated with all the unstable evs for model
reduction.

Is there anything to do? Why did the companies ask for help?
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Projection approach

> Project QEP:P_(\)v(w) = (\2M + \C(w) + K(w))v(w) = 0 into
small subspace spanned by columns of Q independent of w.
> Projected QEP

~

P.(\) = Q"P,(\)Q = X2Q"MQ+ \Q"C(w)Q+ Q" K(w)Q

>~ How to choose Q7?

» to get sufficiently good approximation of evs with pos. real part;

» ideally Q should contain good approximations to the desired
evecs for all parameter values;

» be able to construct Q in a reasonable amount of computing time.




Traditional approach

Traditional (heuristic) approach: Qrgap:=dominant evecs (ass.
with smallest evs) of generalized eigenvalue problem (GEVP)
L(p) = (uM — Kg) (1 = —)?)

Advantage:

> One only has to solve a large, sparse, symmetric, definite
GEVP.

Disadvantages:

> Subspace does not take into account damping and parameter
dependence.

> Often poor approximation of evs/evecs of the full model.




Solution of full Problem

Spectral transformation Consider full problem P_(\)v(w) = 0.

A
> Set A\ (w) = AMw) — 7, where 7 Is such that det(P_(7)) # 0.
> New parametric QEP

P (A(@))X(w) = (Ar()2M, + A ()G () + Ko () V() = O.

where M. =M, C.=2M+-Cand K. ==M+-7C+Kis
nonsingular.

> Shift point 7 is chosen in the right half plane, ideally near the
expected eigenvalue location.

> Consider reverse polynomial, then evs near = become large in
modulus, while evs far away from 7 become small.




Linearization, first order form.

We use classical companion linearization (first order form)

A ()V(w) = 1B () V()

with

4 sl 4%

Structured linearizations. Mackey/Mackey/Mehl/M. 2006,
Dopico, de Teran, Mackey 2011-2015

] |




Shift and invert Arnoldi

> Compute ev and evec approximations near shift = via
shift-and-invert Arnoldi method ARPACK
Lehouqg/Sorensen/yang

> Given vp € C" and W € C™", the Krylov subspace of C” of
order k associated with W is

Ki(W. vo) = span{vy. Wvp. Wovy.... W5y}
> Arnoldi obtains orthonormal basis Vj of this space and
WVk — Vka -+ fe;

> Columns of Vj approx. k-dim. invariant subspace of W.
> Evs of Hy approximate evs of W associated to V.

Apply with shift 7 and frequency wto W = B, (w) A (w). Per
step we multiply with A_(.v) and solve system with B_(.).

18/56
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Parametric Projection (POD)

New proper orthogonal decomposition (POD) approach

> Construct a measurement matrix V € R™ ™ containing
‘unstable’ evecs for a set of w;,

V = [V(w), V(w2), V(ws), ... V(wi)]
>~ Perform (partial) SVD V = UrZ"

Okm

with U. Z unitary.




Compression

by deleting 04.1.04.5. ...0xy, that are small. (Actually these are
not even computed).

> Choose Q = [Uy. Us. . . .. Uq4] to project P_(u).




>~ SVD reduction for uniformly spaced wj =2 +1.j=0.1.2....
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> |Increasing dimension does not improve traditional approach
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Algorithm for choosing shifts

> Use ARPACK/eigs to
compute evs with shift at
center of rectangle.

| > Compute covered area A.
A\ . while (A: < 1)
B4 i, - ¥ % | » select a large number (e.g.
N F [ A 500) of circles with random
| radius, outside covered area
» choose center which gives

s = s maximum A
end




Mismaich of evs from different shifts

> Mismatch from
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&y Mismatch of evs in different approaches
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Problem in industrial models

>~ Shifted matrix 7°M + 7 C + K which has to be inverted at every
step has condition number ~ 10'* for a large range of shift
points 7.

> Optimal scaling of three matrices and also diagonal scaling of
system matrix has still condition number ~ 10'° for a range of
shift points.

> This is still too large to trust the results!




Assessing ‘accuracy of evs’

> Forward error: A¢ = |Aexact — Acomputed|

> Backward error: smallest in norm perturbation A, to M. C. K
such that v. A satisfies QEVP defined by perturbed matrices
M.C.K

5 : . _ IO2MACHK)|

> Computation of backward error: Ap(\) = R IMECIAI Gl

> The pseudospectrum gives the level curves of Ap(\)).

Stiff springs are the reason for high sensitivity, see also
Kannan/Hendry/Higham/Tisseur '14




Brake model with 5000 dof, with stiff springs and with stiff
springs replaced by rigid connections.

MMMU&:«“ 1e.12 MW",“«
- - As 1= : - e




Results with new POD method

Industrial model 1 million dof
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Read cart of eigenvalues

> Solution for every w

» Solution with 300 dimensional TRAD subspace ~ 30 sec
» Solution with 100 dimensional POD subspace ~ 10 sec
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Intermediate Conclusions

> Modeling with very stiff springs is not advisable.

> New POD approach better than traditional one but not
satisfactory.

> Discrete FE and quasi-uniform grids followed by expensive
model reduction is really a waste.

> Can we get error estimates and adaptivity? (AFEM, AMLYS)

> Can we do better than uniform mesh and brute force linear
algebra.




Model problem: Elliptic PDE evp

Consider a model problem like the disk brake without damping,
gyroscopic, circulatory terms and reasonable geometry.

Au = \u Inf
u = 0 ondf2




Adapative Finite Element Method

> Adaptive Finite Element methods refine the mesh where
necessary, and coarsen it where the solution is well

represented.

> They use a priori and a posteriori error estimators to get
iInformation about the discretization error.

> They are well established for PDE boundary value problems.

> But here we want to use them for PDE eigenvalue problems,
which is much harder.

Solve — Estimate — Mark — Refine




Solve: Weak formulation

Weak formulation:
Determine ev/e.-function pair (A\.u) e R x V :=R x H'(Q; R)
with b(u.u) =1 and

a(u.v)=\b(u.v) forallveV.

where the bilinear forms a(-. -) and b(-. -) are defined by

a(u.v) ::/Vu-Vvdx. b(u.v) ::/uvdx foru.velV.
Q Q

Induced norms ||-|| := ||y on V and ||| := ||-||;2¢q) on L*(Q).




Solve: Discrete Formulation

Discrete evp: Determine ev./e.-function pair (\;. u;) € R x V,
with b(u,. uy) = 1

a(ug. vi) = \eb(up. vy) forall v, € V,.

Algebraic eigenvalue problem: Use coordinate representation
to get finite-dim. generalized evp

Avxy = \BiX,

stiffness matrix A, = [a(yi. ©j)]i j=1

-----

N,, Mmass matrix

B, = [b(yi. j))ij=1..n,, @ssoc. with nodal basis

e =1{p1,---, 2N, }-
Discrete eigenvector: x; =: [X;1.. ... x(‘Nf]T.

Approximated eigenfunction:

Ne
M:ZE:XUGWEEWA
k=1




Error estimation

This approach includes several errors:

> Model error (PDE model vs. Physics)

> Discretization error (finite dim. subspace)

> Error in eigenvalue solver (iterative method)
> Roundoff errors in finite arithmetic.
Estimate the error a posteriori via

A=Al + lu— wll? S = fluey — ul?.

Here < denotes inequality up to a multiplicative constant.
A posteriori error estimators for Laplace eigenvalue problem
Grubisic/Ovall 2009, M./Miedlar 2011, Neymeyr 2002
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Marking strategy

Employ an edge residual a posteriori error estimator
Duran et al 2003, Carstensen/Gedicke 2008.

#= 3 B(E) with 12(E) = |E||[Vul - velee)
ECE,(Q)

which is reliable and efficient for sufficiently small mesh-size H,
lu — uell = 7.

Let M, C N,(£2) be the minimal set of refinement nodes such that
for0 <# <1

0 Z n (Ee(2)) < Z n; (Ee(2)).

ZcI\\‘[(Q ZEM[
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Convergence on L-shape domain.
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Evaluation of AFEM

> AFEM works nicely for elliptic self-adjoint evps, even with
complicated domains.

> For the analysis in most AFEM methods it is assumed that the
algebraic evp is solved exactly.

> The high accuracy solution of the algebraic evps requires
most of the computing time.

> The solution of the algebraic evp is only used to determine
where the grid is refined. This is a complete waste of
computational work.

> How can we incorporate the approximate solution of the
algebraic evp into the adaptation process?
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AFEMLA

Solve:
~ compute approx. eigenpair (\y. ly) on the coarse mesh,
> use iterative solver, i.e. Krylov subspace method,

> but do not solve very accurately, stop after a few steps or
when tolerance tol is reached.

Estimate:

>~ prolongate Uy from the coarse mesh 7y to the uniformly
refined mesh 7},

~ Balance residual vector r;, and error estimate Miedlar 2011.

Mark and Refine: mark elements and refine the mesh.




Standard AFEM versus AFEMLA

Solve — Estimate — Mark — Refine

adaptive discretization adaptve discretization
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Evaluation of AFEMLA

> AFEMLA works nicely for elliptic self-adjoint evps.
> |t significantly reduces the computing time.
> Balancing of discretization and LA error, Miedlar 2011.

> Proof of convergence M./Miedlar 2011 if saturation property
holds, i.e., there exist 7 < 1 such that |\, — A\| < 3|Ay — A|.

Theorem (Carstensen/Gedicke/M./Miedlar 2013)

Suppose that the initial triangulation To has sufficiently small
maximal mesh-size H,. Then there exists 0 < o < 1 such that for
all ¢ € Ng the following inequalities hold

lu—ueq > < oflu— wll® +
B Rea] <ol — X+

f—|—1H4
H4

t+1
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Conv. first 3 evs, L-shape domain.
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Another approach: AMLS

Compute smallest evs of self-adjoint evp (AM — K')x = 0 with
M. K pos. def. as in trad. approach. Bennighof-Lehouq 2004

- Use symmetric reordering of matrix to block form or use
dlrectly domain decomposition partition. (A\AM — K)x = 0, with

————— —

structure

> Gompute block Cholesky factorization of M = LDL" and form
K=L"KLT.

> Compute smallest evs and evecs of ‘substructure’ evps
(ADji — Kji)x; and project large problem (modal truncation).

> Solve projected evp.




Analysis of AMLS

> This produces locally global (spectral) ansatz functions in
substructure.

> This is a domain decomposition approach, where efunctions
are used in substructures.

> Substructure efunctions are sparsely represented in FE basis.

> Analysis only for self-adjoint case and real simple evs.

> Works extremely well for mechanical structures with little
damping.

> How can we modify the ideas of AFEM/AMLS to deal with the
general problem?




A non-self-adjoint model problem

Carstensen/Gedicke/M./Miedlar 2012
Convection-diffusion eigenvalue problem:

—Au+~-Vu=AUuin 2 and u = 0 on N2
Discrete weak primal and dual problem:

a(u,.vi) +c(ue.vy) = Nb(up.vy) forall v, € V..

aw,. uy) +c(we.u;) = AN;b(w,.up) forallw, € V..
Generalized algebraic eigenvalue problem:

(A( % B C{)u[ — /\('B{‘U( and UI(A( N CI) — /\Z‘u;’B[

Smallest real part ev. is simple and well separated Evans "00.




Homotopy method

Consider
H(t)=(1 -t Ly +1tLy forte [0.1].

where Lou .= —Auvand Liu = —Au -+ 3 - V.
Discrete homotopy for the model eigenvalue problem:

He(t) = (A + Co)(t) = (1 — DA + t(Ar + C) = Ay + tCy.




Homotopy error:

A1) =AM S (T =Dlle=@llull = v.

Discretization error:

Approximation error:

A(t) = Re(8)] + () = X (B)] < e

A posteriori error estimator: Carstensen/Gedicke/M./Miedlar '12




Error dynamics
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Conclusions

> Eigenvalue methods are important in industrial practice.

> Using fine mesh and model reduction usually works, but
hardly any error estimates exist.

Current numerical linear algebra methods (in particular those
In commercially available codes) are not satisfactory.
AFEMLA is an alternative, it gives error bounds.

> Extension of backward error analysis to infinite dimensional
case Miedlar 2011/2014

> A posteriori error estimates for hp-finite elements for
non-self-adjoint PDE evps Giani/Grubisic/Miedlar/Ovall 2014

> Multiple evs self-adjoint case Galistil 2014

> No results on multiple, complex evs, Jordan blocks in
non-self-adjoint case.

> Nonlinear effects, bifurcation, computation of limit cycle.
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