

Numerical Solution of Eigenvalue Problems Arising in the Analysis of Disc Brake Squeal

Volker Mehrmann Institut für Mathematik Technische Universität Berlin

Research Center MATHEON

Mathematics for key technologies

Outline

Numerical Linear algebra, Model reduction.

Adaptive Finite Elements for evp

Conclusions

Challenges in MSO

- Key technologies require Modeling, Simulation, and Optimization (MSO) of complex dynamical systems.
- Modeling, analysis, numerics, control and optimization techniques should go hand in hand.
- The quantification of errors and uncertainties is lagging behind.
- Are we able to solve problems in industrial practice?
- Do we have a rigorous mathematical background?
- Can we analyze errors, uncertainties?
- Can we put this into mathematical software?

Numerical Linear Algebra is a key factor in this.

Model based approach

Interdisciplinary project with car manufacturers + SMEs

Supported by German Minist. of Economics via AIF foundation.

University: N. Gräbner, U. von Wagner, TU Berlin, Mechanics,

- N. Hoffmann, TU Hamburg-Harburg, Mechanics,
- S. Quraishi, C. Schröder, TU Berlin Mathematics.

Goals:

- Develop model of brake system with all effects that may cause squeal. (Friction, circulatory, gyroscopic effects, etc).
- Simulate brake behavior for many different parameters (disk speed, material and geometry parameters).
- Lin. Alg. tasks: Detection of instability, model reduction, solution of large scale parametric eigenvalue problems.
- Passive (optimization) and active (control) remedies.
- Future: Stability/bifurcation analysis for a parameter region.

Brake pad

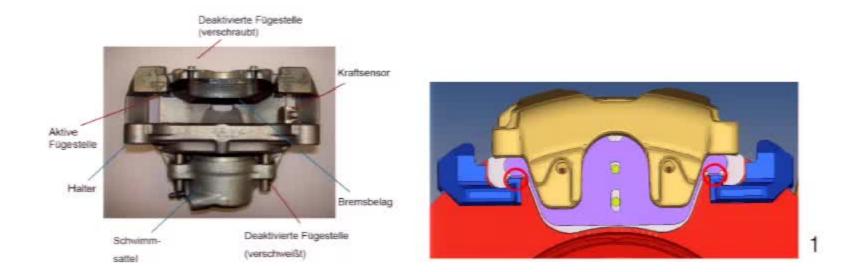
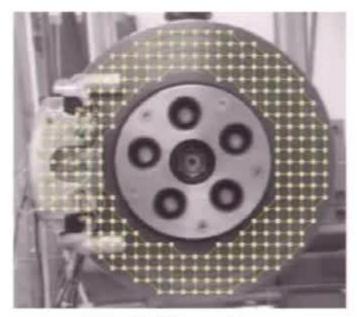
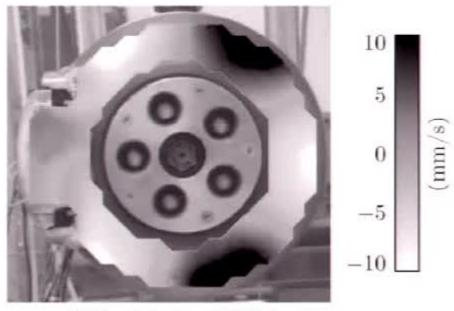


Figure: View of the brake model

Experiment



Gitter der Messpunkte



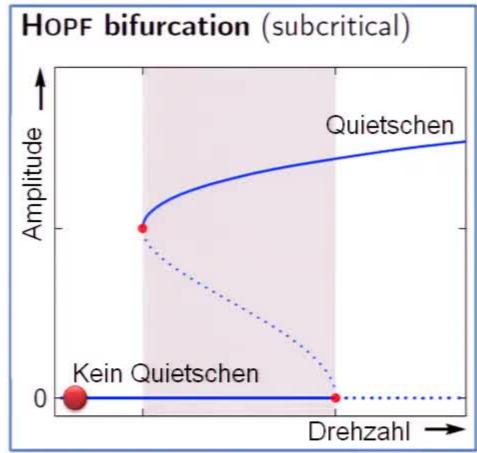
Betriebsschwingform (1750 Hz)

2

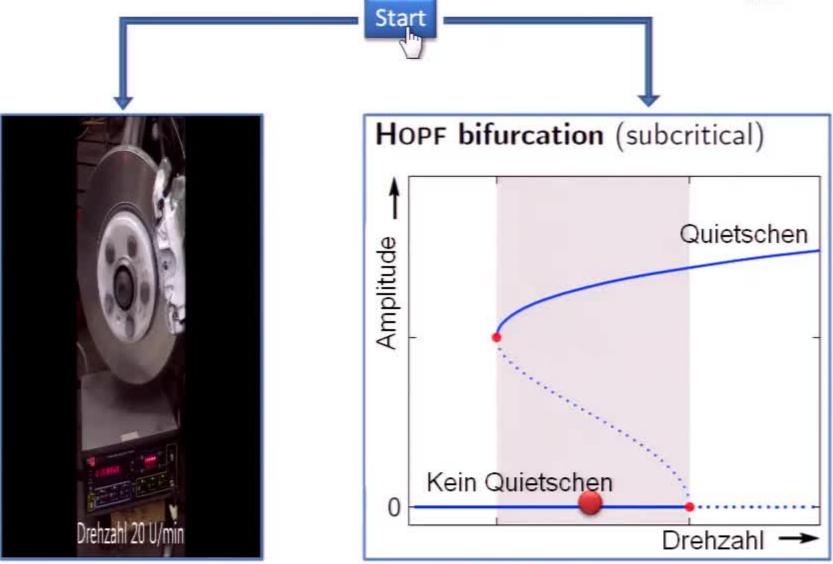
Experiments indicate nonlinear behavior (subcritical Hopf bifurcation) → film.

²Institute f. Mechanics, TU Berlin

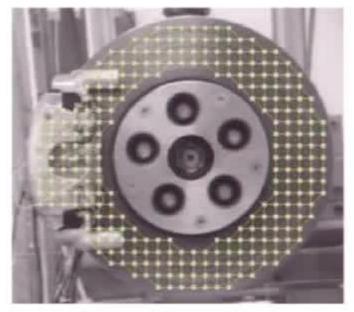
Einfluss von Nichtlinearitäten



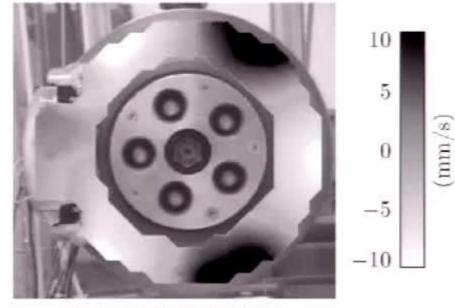
Einfluss von Nichtlinearitäten



Experiment



Gitter der Messpunkte



Betriebsschwingform (1750 Hz)

2

Experiments indicate nonlinear behavior (subcritical Hopf bifurcation) → film.

²Institute f. Mechanics, TU Berlin

Modeling in industrial practice

Multi-body system based on Finite Element Modeling (FEM)

Write displacements of structure z(x, t) as linear combination of basis functions (e.g. piecewise polynomials),

$$z(x,t) \approx \sum_{i=1}^{N} q_i(t)\phi_i(x,t).$$

- ▷ Integrate against test functions (Petrov Galerkin) → discretized model for the vibrations in weak form.
- Add friction and damping as macroscopic surrogate model fitted from experimental data.
- Simplifications: Remove some nonlinearities, asymptotic analysis for small parameters, etc.

Mathematical model details

Large differential-algebraic equation (DAE) system and evp depend. on parameters (here only disk speed displayed).

$$M\ddot{q} + (C_1 + \frac{\omega_r}{\omega}C_R + \frac{\omega}{\omega_r}C_G)\dot{q} + (K_1 + K_R + (\frac{\omega}{\omega_r})^2K_G)q = f,$$

- M symmetric, pos. semidef., singular matrix (constraints),
- \triangleright C_1 symmetric matrix, material damping,
- \triangleright C_G skew-symmetric matrix, gyroscopic effects,
- \triangleright C_R symmetric mat., friction induced damping, (phenomenological)
- \triangleright K_1 symmetric stiffness matrix,
- \triangleright K_R nonsymmetric matrix, circulatory effects,
- \triangleright K_G symmetric geometric stiffness matrix.
- $\triangleright \omega$ rotational speed of disk with reference velocity ω_r .
- Other parameters, material, geometry, etc.

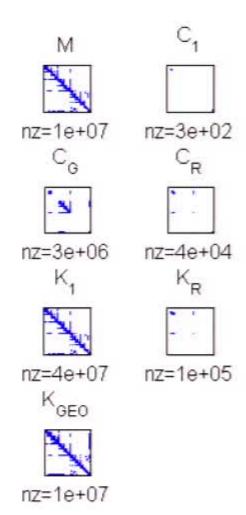
Nature of FE matrices

Industrial model

$$C = C_1 + \frac{\omega_r}{\omega} C_R + \frac{\omega}{\omega_r} C_G,$$

 $K = K_1 + K_R + (\frac{\omega}{\omega_r})^2 K_G$
 $n = 842, 638, \omega_r = 5, \omega = 17 \times 2\pi$

matrix	structure	2-norm	rank
Μ	symm	5e-2	842,623
C ₁	symm	1e-19	160
C_G	skew	1.5e-1	217500
C_R	symm	7e-2	2120
K_1	symm	2e13	full
K_R	·=	3e4	2110
K_G	symm	40	842,623



Model evaluation, challenges

This is really a hierarchy and mixture of models.

- FE Model hierarchy: grid hierarchy, type of ansatz functions, component and domain decomposition.
- Coupled with surrogate model for friction and damping?

Challenges

- Are the simplifications nonlinear/linear, expansions justified?
- We do not have a PDE, error estimates, adaptivity?
- How can we get a reduced model for optimization.
- How can we solve the parametric eigenvalue problem.

Can we analyze the model and quantify the errors?

Outline

Introduction

Numerical Linear algebra, Model reduction.

Adaptive Finite Elements for evp

Conclusions

Complex eigenvalue analysis

▶ Ansatz $q(t) = e^{\lambda(\omega)t}v(\omega)$ gives quadratic evp (QEP):

$$P_{\omega}(\lambda)v(\omega) = (\lambda(\omega)^2M + \lambda(\omega)C(\omega) + K(\omega))v(\omega) = 0.$$

- Want evs with positive real part and corresponding evecs.
 These are few, ideally one, since squeal is mono-frequent.
- Want problem to be robustly away from instability for all disk speeds. (Distance to instability.)
- Want efficient method to compute evs/ pseudospectra in right half plane for many parameter values.
- Want subspace associated with all the unstable evs for model reduction.
- Is there anything to do? Why did the companies ask for help?

Projection approach

- Project QEP: $P_{\omega}(\lambda)v(\omega) = (\lambda^2 M + \lambda C(\omega) + K(\omega))v(\omega) = 0$ into small subspace spanned by columns of Q independent of ω .
- Projected QEP

$$\tilde{P}_{\omega}(\lambda) = Q^T P_{\omega}(\lambda) Q = \lambda^2 Q^T M Q + \lambda Q^T C(\omega) Q + Q^T K(\omega) Q$$

- ▶ How to choose Q?
 - to get sufficiently good approximation of evs with pos. real part;
 - ideally Q should contain good approximations to the desired evecs for all parameter values;
 - be able to construct Q in a reasonable amount of computing time.

Traditional approach

Traditional (heuristic) approach: Q_{TRAD} :=dominant evecs (ass. with smallest evs) of generalized eigenvalue problem (GEVP) $L(\mu) = (\mu M - K_E) \ (\mu = -\lambda^2)$ Advantage:

One only has to solve a large, sparse, symmetric, definite GEVP.

Disadvantages:

- Subspace does not take into account damping and parameter dependence.
- Often poor approximation of evs/evecs of the full model.

Solution of full Problem

Spectral transformation Consider full problem $P_{\omega}(\lambda)v(\omega) = 0$.

- ▷ Set $\lambda_{\tau}(\omega) = \lambda(\omega) \tau$, where τ is such that $\det(P_{\omega}(\tau)) \neq 0$.
- New parametric QEP

$$P_{\omega,\tau}(\lambda(\omega))x(\omega) = (\lambda_{\tau}(\omega)^2 M_{\tau} + \lambda_{\tau}(\omega)C_{\tau}(\omega) + K_{\tau}(\omega))v(\omega) = 0,$$

where $M_{\tau} = M$, $C_{\tau} = 2\tau M + C$ and $K_{\tau} = \tau^2 M + \tau C + K$ is nonsingular.

- Shift point τ is chosen in the right half plane, ideally near the expected eigenvalue location.
- Consider reverse polynomial, then evs near τ become large in modulus, while evs far away from τ become small.

Linearization, first order form.

We use classical companion linearization (first order form)

$$A_{\tau}(\omega)v(\omega) = \mu_{\tau}B_{\tau}(\omega)v(\omega)$$

with

$$\begin{bmatrix} K_{\tau}(\omega) & 0 \\ 0 & I_n \end{bmatrix} \begin{bmatrix} v(\omega) \\ \mu_{\tau}(\omega)v(\omega) \end{bmatrix} = \mu_{\tau}(\omega) \begin{bmatrix} -C_{\tau}(\omega) & -M_{\tau} \\ I_n & 0 \end{bmatrix} \begin{bmatrix} v(\omega) \\ \mu_{\tau}v(\omega) \end{bmatrix}.$$

Structured linearizations. Mackey/Mackey/Mehl/M. 2006, Dopico, de Teran, Mackey 2011-2015

Shift and invert Arnoldi

- Compute ev and evec approximations near shift τ via shift-and-invert Arnoldi method ARPACK Lehouq/Sorensen/yang
- ▷ Given $v_0 \in \mathbb{C}^n$ and $W \in \mathbb{C}^{n \times n}$, the Krylov subspace of \mathbb{C}^n of order k associated with W is

$$\mathcal{K}_k(W, V_0) = span\{v_0, Wv_0, W^2v_0..., W^{k-1}v_0\}.$$

 \triangleright Arnoldi obtains orthonormal basis V_k of this space and

$$WV_k = V_k H_k + fe_k^*$$

- \triangleright Columns of V_k approx. k-dim. invariant subspace of W.
- \triangleright Evs of H_k approximate evs of W associated to V_k .
- ⊳ Apply with shift τ and frequency ω to $W = B_{\tau}(\omega)^{-1}A_{\tau}(\omega)$. Per step we multiply with $A_{\tau}(\omega)$ and solve system with $B_{\tau}(\omega)$.

Parametric Projection (POD)

New proper orthogonal decomposition (POD) approach

▷ Construct a measurement matrix $V \in \mathbb{R}^{n,km}$ containing 'unstable' evecs for a set of ω_i ,

$$V = [V(\omega_1), V(\omega_2), V(\omega_3), ... V(\omega_k)]$$

▷ Perform (partial) SVD $V = U\Sigma Z^H$

$$V = [\tilde{u}_1, \tilde{u}_2, \dots, \tilde{u}_{km}]$$

$$\sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \sigma_{km}$$

$$[\tilde{z}_1, \tilde{z}_2, \dots, \tilde{z}_{km}]^H$$

with *U*, *Z* unitary.

Compression

Use approximation

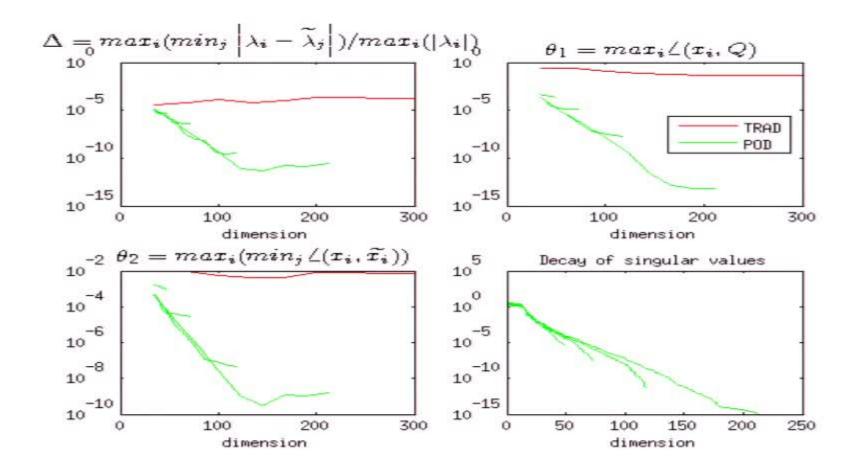
$$ilde{V} pprox [ilde{u}_1, ilde{u}_2, \dots, ilde{u}_d] egin{bmatrix} \sigma_1 & & & & & \\ & \sigma_2 & & & & \\ & & \sigma_3 & & & \\ & & & \ddots & & \\ & & & \sigma_d & & \end{bmatrix} [ilde{z}_1, ilde{z}_2, \dots, ilde{z}_d]^H$$

by deleting $\sigma_{d+1}, \sigma_{d+2}, ... \sigma_{km}$ that are small. (Actually these are not even computed).

▷ Choose $Q = [\tilde{u}_1, \tilde{u}_2, \dots, \tilde{u}_d]$ to project $P_{\omega}(\mu)$.

Results for toy problem $n \approx 5000$

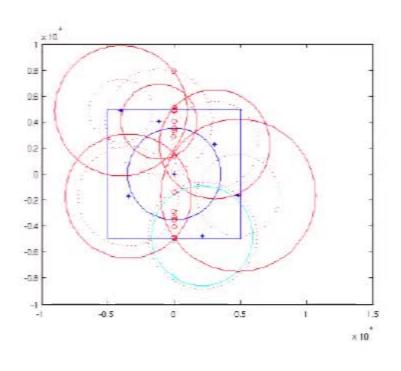
 \triangleright SVD reduction for uniformly spaced $\omega_j = 2^j + 1, j = 0, 1, 2, ...$



Increasing dimension does not improve traditional approach

21 / 56

Algorithm for choosing shifts

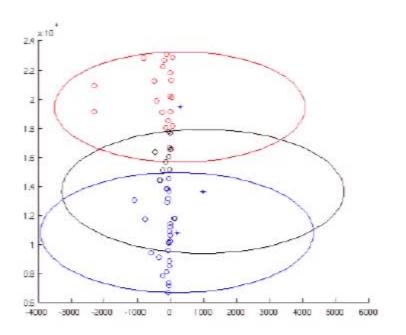


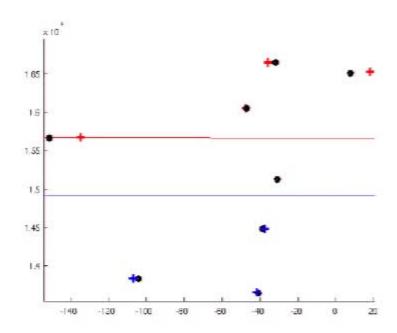
- Use ARPACK/eigs to compute evs with shift at center of rectangle.
- Compute covered area A_c
 while (A_c < 1)
 - select a large number (e.g. 500) of circles with random radius, outside covered area
 - choose center which gives maximum A_c

end

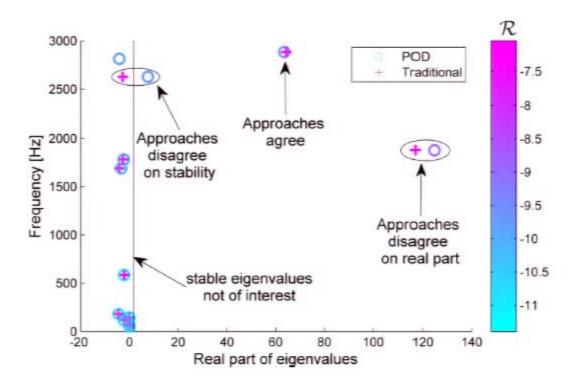
Mismatch of evs from different shifts

 Mismatch from different shifts o and + should agree





Mismatch of evs in different approaches



Problem in industrial models

- Shifted matrix $\tau^2 M + \tau C + K$ which has to be inverted at every step has condition number $\sim 10^{14}$ for a large range of shift points τ .
- Optimal scaling of three matrices and also diagonal scaling of system matrix has still condition number ~ 10¹⁰ for a range of shift points.
- This is still too large to trust the results!

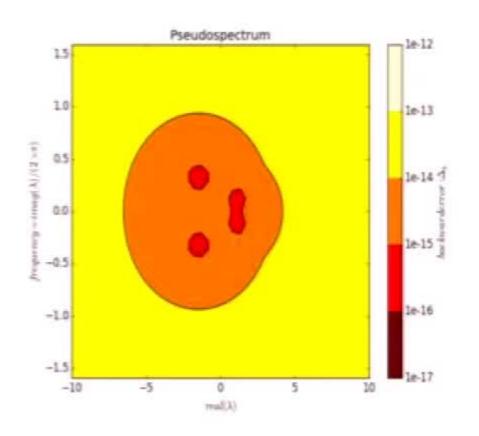
Assessing 'accuracy of evs'

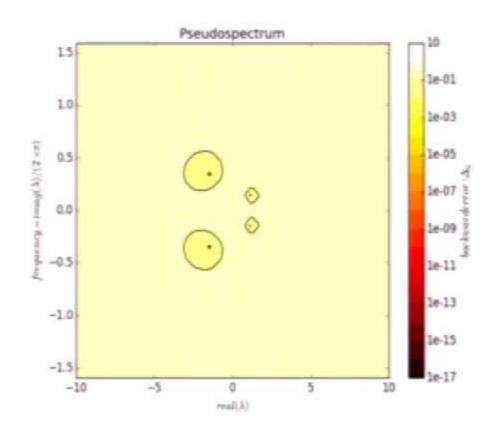
- \triangleright Forward error: $\Delta_f = |\lambda_{exact} \lambda_{computed}|$
- Backward error: smallest in norm perturbation Δ_b to M, C, K such that \tilde{v} , $\tilde{\lambda}$ satisfies QEVP defined by perturbed matrices \tilde{M} , \tilde{C} , \tilde{K}
- ▷ Computation of backward error: $\Delta_b(\lambda) = \frac{\|(\lambda^2 M + \lambda C + K)\|}{\|\lambda\|^2 \|M\| + \|\lambda\| \|C\| + \|K\|}$
- ▶ The pseudospectrum gives the level curves of $\Delta_b(\lambda)$).

Stiff springs are the reason for high sensitivity, see also Kannan/Hendry/Higham/Tisseur '14

Pseudospectrum of toy brake model

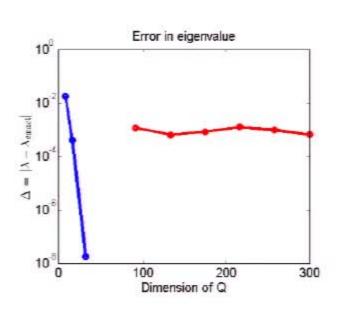
Brake model with 5000 dof, with stiff springs and with stiff springs replaced by rigid connections.

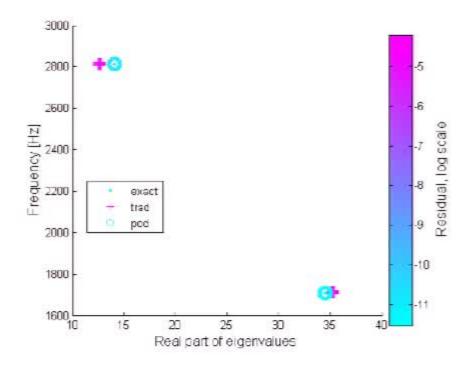




Results with new POD method

Industrial model 1 million dof





- ightharpoonup Solution for every ω
 - Solution with 300 dimensional TRAD subspace \sim 30 sec
 - ▶ Solution with 100 dimensional POD subspace ~ 10 sec

Intermediate Conclusions

- Modeling with very stiff springs is not advisable.
- New POD approach better than traditional one but not satisfactory.
- Discrete FE and quasi-uniform grids followed by expensive model reduction is really a waste.
- Can we get error estimates and adaptivity? (AFEM, AMLS)
- Can we do better than uniform mesh and brute force linear algebra.

Model problem: Elliptic PDE evp

Consider a model problem like the disk brake without damping, gyroscopic, circulatory terms and reasonable geometry.

$$\Delta u = \lambda u \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

Adapative Finite Element Method

- Adaptive Finite Element methods refine the mesh where necessary, and coarsen it where the solution is well represented.
- They use a priori and a posteriori error estimators to get information about the discretization error.
- They are well established for PDE boundary value problems.
- But here we want to use them for PDE eigenvalue problems, which is much harder.

Solve \rightarrow Estimate \rightarrow Mark \rightarrow Refine

Solve: Weak formulation

Weak formulation:

Determine ev/e.-function pair $(\lambda, u) \in \mathbb{R} \times V := \mathbb{R} \times H^1(\Omega; \mathbb{R})$ with b(u, u) = 1 and

$$a(u, v) = \lambda b(u, v)$$
 for all $v \in V$,

where the bilinear forms $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$ are defined by

$$a(u,v) := \int_{\Omega} \nabla u \cdot \nabla v \, dx, \ b(u,v) := \int_{\Omega} uv \, dx \quad \text{for } u,v \in V.$$

Induced norms $\|\cdot\| := |\cdot|_{H^1(\Omega)}$ on V and $\|\cdot\| := \|\cdot\|_{L^2(\Omega)}$ on $L^2(\Omega)$.

Solve: Discrete Formulation

Discrete evp: Determine ev./e.-function pair $(\lambda_{\ell}, u_{\ell}) \in \mathbb{R} \times V_{\ell}$ with $b(u_{\ell}, u_{\ell}) = 1$

$$a(u_{\ell}, v_{\ell}) = \lambda_{\ell} b(u_{\ell}, v_{\ell})$$
 for all $v_{\ell} \in V_{\ell}$.

Algebraic eigenvalue problem: Use coordinate representation to get finite-dim. generalized evp

$$A_{\ell}x_{\ell} = \lambda_{\ell}B_{\ell}x_{\ell}$$

stiffness matrix $A_{\ell} = [a(\varphi_i, \varphi_j)]_{i,j=1,...,N_{\ell}}$, mass matrix

 $B_{\ell} = [b(\varphi_i, \varphi_i)]_{i,j=1,...,N_{\ell}}$, assoc. with nodal basis

$$V_{\ell} = \{\varphi_1, \ldots, \varphi_{N_{\ell}}\}.$$

Discrete eigenvector: $x_{\ell} =: [x_{\ell,1}, \dots, x_{\ell,N_{\ell}}]^T$.

Approximated eigenfunction:

$$u_{\ell} = \sum_{k=1}^{N_{\ell}} x_{\ell,k} \varphi_k \in V_{\ell}.$$

Error estimation

This approach includes several errors:

- Model error (PDE model vs. Physics)
- Discretization error (finite dim. subspace)
- Error in eigenvalue solver (iterative method)
- Roundoff errors in finite arithmetic.

Estimate the error a posteriori via

$$|\lambda - \lambda_{\ell}| + ||u - u_{\ell}||^2 \lesssim \eta_{\ell}^2 := ||u_{\ell-1} - u_{\ell}||^2.$$

Here ≤ denotes inequality up to a multiplicative constant. A posteriori error estimators for Laplace eigenvalue problem Grubisic/Ovall 2009, M./Miedlar 2011, Neymeyr 2002

Marking strategy

Employ an edge residual a posteriori error estimator Duran et al 2003, Carstensen/Gedicke 2008.

$$\eta_{\ell}^2 := \sum_{E \in \mathbb{E}_{\ell}(\Omega)} \eta_{\ell}^2(E) \quad \text{with} \quad \eta_{\ell}^2(E) := |E| \| [\nabla u_{\ell}] \cdot \nu_E \|_{L^2(E)}^2,$$

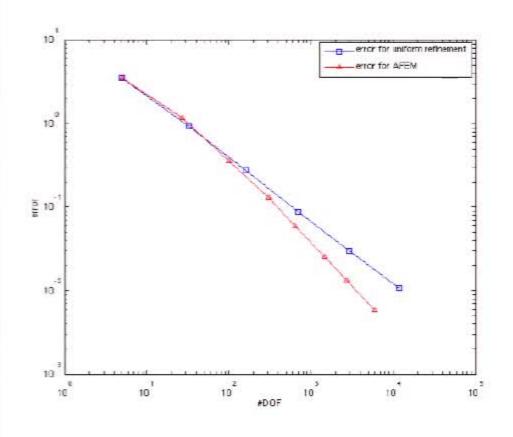
which is reliable and efficient for sufficiently small mesh-size H_0

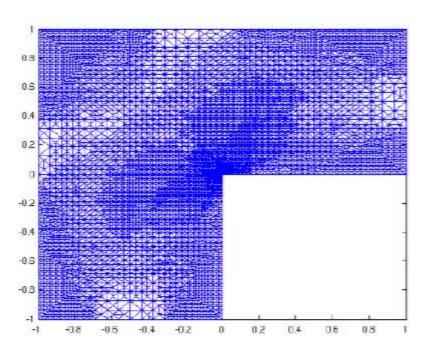
$$\|\mathbf{u} - \mathbf{u}_{\ell}\| \approx \eta_{\ell}.$$

Let $\mathbb{M}_{\ell} \subseteq \mathbb{N}_{\ell}(\Omega)$ be the minimal set of refinement nodes such that for $0 < \theta \le 1$

$$\theta \sum_{z \in \mathbb{N}_{\ell}(\Omega)} \eta_{\ell}^{2}(\mathbb{E}_{\ell}(z)) \leq \sum_{z \in \mathbb{M}_{\ell}} \eta_{\ell}^{2}(\mathbb{E}_{\ell}(z)).$$

Convergence on L-shape domain.





Evaluation of AFEM

- AFEM works nicely for elliptic self-adjoint evps, even with complicated domains.
- For the analysis in most AFEM methods it is assumed that the algebraic evp is solved exactly.
- The high accuracy solution of the algebraic evps requires most of the computing time.
- The solution of the algebraic evp is only used to determine where the grid is refined. This is a complete waste of computational work.
- How can we incorporate the approximate solution of the algebraic evp into the adaptation process?

AFEMLA M./Miedlar 2011

Solve:

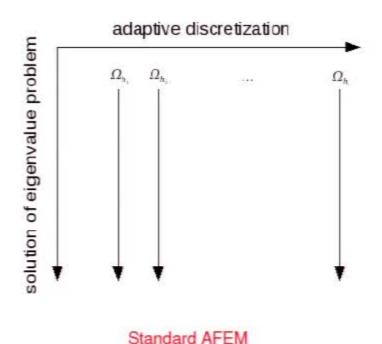
- \triangleright compute approx. eigenpair $(\tilde{\lambda}_H, \tilde{\mathbf{u}}_H)$ on the coarse mesh,
- use iterative solver, i.e. Krylov subspace method,
- but do not solve very accurately, stop after a few steps or when tolerance tol is reached.

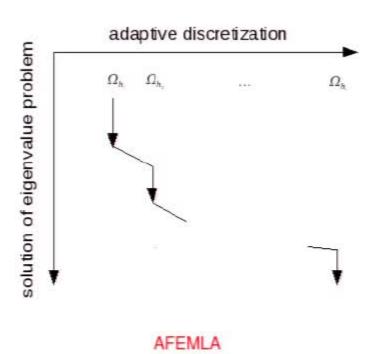
Estimate:

- prolongate $\tilde{\mathbf{u}}_H$ from the coarse mesh \mathcal{T}_H to the uniformly refined mesh \mathcal{T}_h ,
- \triangleright Balance residual vector $\hat{\mathbf{r}}_h$ and error estimate Miedlar 2011.
- Mark and Refine: mark elements and refine the mesh.

Standard AFEM versus AFEMLA

Solve → Estimate → Mark → Refine





Evaluation of AFEMLA

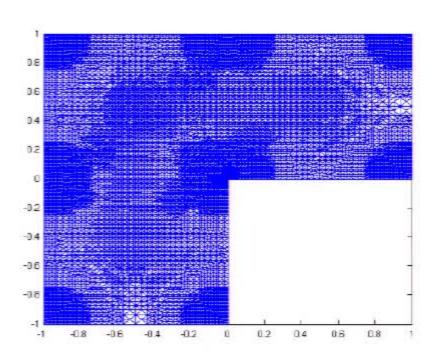
- AFEMLA works nicely for elliptic self-adjoint evps.
- It significantly reduces the computing time.
- Balancing of discretization and LA error, Miedlar 2011.
- Proof of convergence M./Miedlar 2011 if saturation property holds, i.e., there exist $\beta < 1$ such that $|\lambda_h \lambda| \leq \beta |\lambda_H \lambda|$.

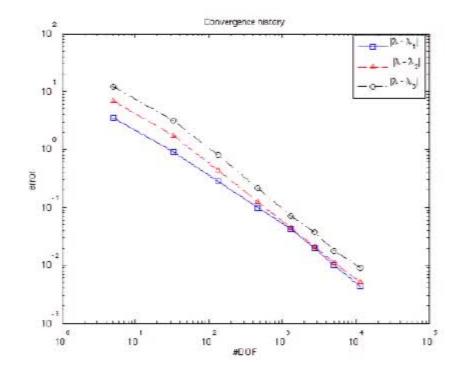
Theorem (Carstensen/Gedicke/M./Miedlar 2013)

Suppose that the initial triangulation \mathcal{T}_0 has sufficiently small maximal mesh-size H_0 . Then there exists $0 \le \varrho < 1$ such that for all $\ell \in \mathbb{N}_0$ the following inequalities hold

$$|||u - u_{\ell+1}|||^2 \leq \varrho |||u - u_{\ell}||^2 + \lambda_{\ell+1}^3 H_{\ell}^4; ||\lambda - \lambda_{\ell+1}|| \leq \varrho ||\lambda - \lambda_{\ell}| + \lambda_{\ell+1}^3 H_{\ell}^4.$$

Conv. first 3 evs, L-shape domain.

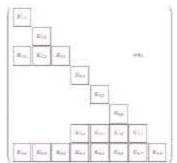




Another approach: AMLS

Compute smallest evs of self-adjoint evp $(\lambda M - K)x = 0$ with M, K pos. def. as in trad. approach. Bennighof-Lehouq 2004

Use symmetric reordering of matrix to block form or use directly domain decomposition partition. $(\lambda \tilde{M} - \tilde{K})x = 0$, with



structure

- Compute block Cholesky factorization of $\tilde{M} = LDL^T$ and form $\hat{K} = L^{-1}\tilde{K}L^{-T}$.
- Compute smallest evs and evecs of 'substructure' evps $(\lambda D_{ii} \hat{K}_{ii})x_i$ and project large problem (modal truncation).
- Solve projected evp.

Analysis of AMLS

- This produces locally global (spectral) ansatz functions in substructure.
- This is a domain decomposition approach, where efunctions are used in substructures.
- Substructure efunctions are sparsely represented in FE basis.
- Analysis only for self-adjoint case and real simple evs.
- Works extremely well for mechanical structures with little damping.
- How can we modify the ideas of AFEM/AMLS to deal with the general problem?

A non-self-adjoint model problem

Carstensen/Gedicke/M./Miedlar 2012

Convection-diffusion eigenvalue problem:

$$-\Delta u + \gamma \cdot \nabla u = \lambda u \text{ in } \Omega$$
 and $u = 0 \text{ on } \partial \Omega$

Discrete weak primal and dual problem:

$$a(u_{\ell}, v_{\ell}) + c(u_{\ell}, v_{\ell}) = \lambda_{\ell} b(u_{\ell}, v_{\ell}) \quad \text{for all } v_{\ell} \in V_{\ell},$$
 $a(w_{\ell}, u_{\ell}^{\star}) + c(w_{\ell}, u_{\ell}^{\star}) = \overline{\lambda_{\ell}^{\star}} b(w_{\ell}, u_{\ell}^{\star}) \quad \text{for all } w_{\ell} \in V_{\ell}.$

Generalized algebraic eigenvalue problem:

$$(A_{\ell} + C_{\ell})\mathbf{u}_{\ell} = \lambda_{\ell}B_{\ell}\mathbf{u}_{\ell}$$
 and $\mathbf{u}_{\ell}^{\star}(A_{\ell} + C_{\ell}) = \lambda_{\ell}^{\star}\mathbf{u}_{\ell}^{\star}B_{\ell}$

Smallest real part ev. is simple and well separated Evans '00.

Homotopy method

Consider

$$\mathcal{H}(t) = (1-t)\mathcal{L}_0 + t\mathcal{L}_1 \quad \text{for } t \in [0,1],$$

where $\mathcal{L}_0 u := -\Delta u$ and $\mathcal{L}_1 u := -\Delta u + \beta \cdot \nabla u$.

Discrete homotopy for the model eigenvalue problem:

$$\mathcal{H}_{\ell}(t)=(A_{\ell}+C_{\ell})(t)=(1-t)A_{\ell}+t(A_{\ell}+C_{\ell})=A_{\ell}+tC_{\ell}.$$

Homotopy error:

$$|\lambda(1) - \lambda(t)| \lesssim (1-t)||\gamma||_{L^{\infty}(\Omega)}||u|| = \nu,$$

Discretization error:

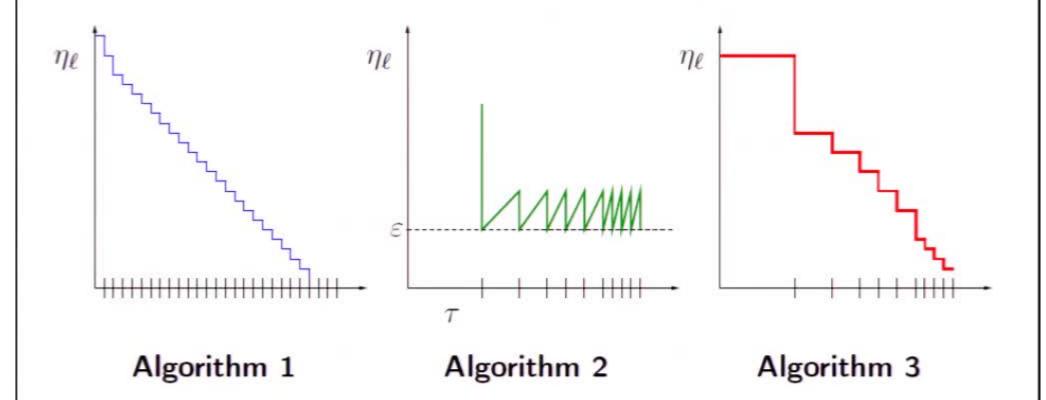
$$\|\lambda(t) - \lambda_{\ell}(t)\| \lesssim \sum_{T \in \mathcal{T}_{\ell}} (\eta_{\ell}^{2}(T) + \eta_{\ell}^{*2}(T)).$$

Approximation error:

$$|\lambda_{\ell}(t) - \tilde{\lambda}_{\ell}(t)| + |\lambda_{\ell}^{\star}(t) - \tilde{\lambda}_{\ell}^{\star}(t)| \leq \mu_{\ell}.$$

A posteriori error estimator: Carstensen/Gedicke/M./Miedlar '12

Error dynamics



Outline

- Introduction
- Numerical Linear algebra, Model reduction.
- Adaptive Finite Elements for evp
- Conclusions

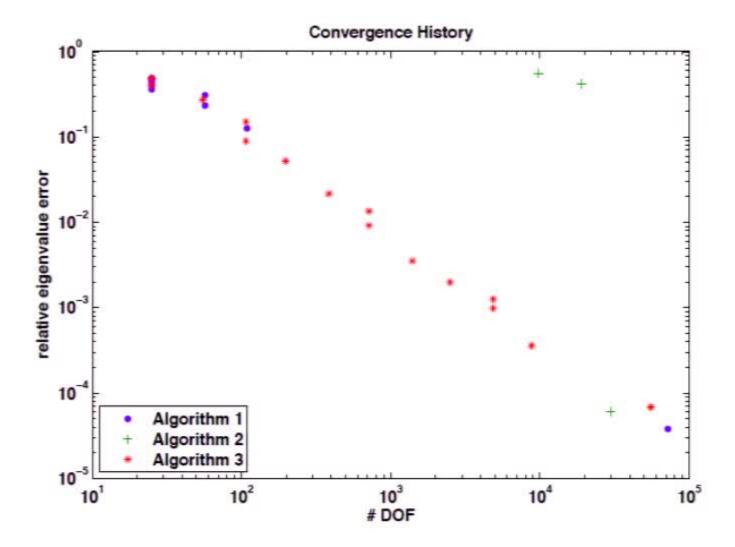


Figure: Conv. history of Algorithm 1, 2 and 3 with respect to #DOF.

Outline

- Introduction
- Numerical Linear algebra, Model reduction.
- Adaptive Finite Elements for evp
- Conclusions

Conclusions

- Eigenvalue methods are important in industrial practice.
- Using fine mesh and model reduction usually works, but hardly any error estimates exist.
- Current numerical linear algebra methods (in particular those in commercially available codes) are not satisfactory. AFEMLA is an alternative, it gives error bounds.
- Extension of backward error analysis to infinite dimensional case Miedlar 2011/2014
- A posteriori error estimates for hp-finite elements for non-self-adjoint PDE evps Giani/Grubisic/Miedlar/Ovall 2014
- Multiple evs self-adjoint case Galistil 2014
- No results on multiple, complex evs, Jordan blocks in non-self-adjoint case.
- Nonlinear effects, bifurcation, computation of limit cycle.

Thank you very much for your attention and my sponsors for their support

- ERC Advanced Grant MODSIMCONMP
- (DFG) Research center MATHEON
- German Ministry of Economics via AIF foundation.
- Industrial funding from several SMEs and car manufacturers.

Details: http://www.math.tu-berlin.de/~mehrmann/

Video from MOR school in Pilsen: http://slideslive.com/t/more

References

- C. Carstensen, J. Gedicke, V. M., and A. Międlar, An adaptive homotopy approach for non-selfadjoint eigenvalue problems Numerische Mathematik, 2012.
- C. Carstensen, J. Gedicke, V. M., and A. Miedlar. An adaptive finite element method with asymptotic saturation for eigenvalue problems NUMERISCHE MATHEMATIK, 2014.
- V. M. and A. Międlar, Adaptive Computation of Smallest Eigenvalues of Elliptic Partial Differential Equations, NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS 2010.
- N. Gräbner, S. Quraishi, C. Schröder, V.M., and U. von Wagner. New numerical methods for the complex eigenvalue analysis of disk brake squeal. In: Proceedings from EuroBrake 2014.
- N. Gräbner, V. M., S. Quraishi, C. Schröder, and U. von Wagner. Numerical methods for parametric model reduction in the simulation of disc brake squeal, Preprint TU 2015.

School and workshop announcement

Technische Universität Berlin

Energy Based Modeling, Simulation, and Control of Complex Physical Systems

Summer School

April 4-6, 2016

www3.math.tu-berlin.de/pHSchool

Workshop

April 7-8, 2016

www3.math.tu-berlin.de/pHWorkshop

Invited Speakers

Arjan van der Schaft (Univ. of Groningen) Peter Breedveld (Univ. of Twente) Carsten Hartmann (FU Berlin) Héctor Ramirez (Univ. of Franche-Compté)

