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@ Problem definition

@ Surrogate solutions

e Surrogate solution methods
@ Spectral Galerkin methods
@ Multigrid for Galerkin methods

@ Spectral collocation methods
@ Reduced-order models

o Combined approaches and low-rank methods

@ Combined collocation and reduced-basis
@ Low-rank methods

o Reduced-order methods for nonlinear problems
@ Discrete empirical interpolation methods
@ Computational results
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0 Concluding remarks
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Parameter-Dependent Partial Differential Equations

Examples:
e Diffusion equation: —V - (a(x,&)Vu)=f
o Navier-Stokes equations: —V - (a(x,£€) Vi) + (- V)i+Vp=f

V.-d=0
o Posed on D ¢ R? with suitable boundary conditions

@ Sources: models of diffusion in media with uncertain permeabilities
multiphase flows

Want solution u = u(-, £€) for many values of £. Why?

@ Want to perform simulation for multiple design parameters

@ Properties of a are not fully understood. Treat them as random
a = a(x, &) is a random field: for each fixed x € D, a(x,£) is a
random variable depending on m random parameters &1, ..., Ein

@ In this study: a(x, &) = ag(x) + Z:nzl a-(x) &,
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a(x,€) = a0(x) + X"y 2 (x) €, mean a(x) = E(a(x,))

Possible sources:

Karhunen-Loeve or Piecewise constant
expansion coefficients on D

One approach for solution: Monte Carlo simulation

o Sample £
@ Solve PDE L¢u = f. (Sample the solution u(-,£))
@ Repeat

Obtain statistical properties by averaging or counting

Issues: Convergence is slow, costs of sampling (of u(-,£&)) are high
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Problem defir !

Surrogate solutions

Alternative approach: Use surrogate solutions
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Goal: Generate solutions u(-, £) for many &

Alternative approach:

e Generate surrogate solutions u*(-, &) = u(-, &) that are

e not too expensive to find, and
e Inexpensive to evaluate

@ Use surrogates to perform simulation

Strategies:
@ Stochastic Galerkin method
@ Stochastic collocation method
@ Reduced-order models

@ Combinations of some of these

Many interesting linear algebra issues
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Surrogate solution methods

e Surrogate solution methods
@ Spectral Galerkin methods
@ Multigrid for Galerkin methods
@ Spectral collocation methods
@ Reduced-order models
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Spectral Galerkin methods
Multigrid for Galerkin methods
Specrral collocation methods
Reduced-order models

Swrrogate solution methods

The Stochastic Galerkin Method

Standard weak diffusion problem: find u € HE(D) s.t.

a(¢1,v)=/ aVu-Vvdx=/ fvdx VYveHD)
D D

Extended (stochastic) weak formulation: find u € HE(D) ® L2(Q) s.t.

//aVu Vv dx dP( Q) / / fvdxdP(Q) VYveH;(D)® ()

/I_/Da(X.E)Vu.VVCIXp(é)dé /F/vadxp(g)d,g (I = £(Q))

e Discretization in physical space: S,(:—h) C HE(D), basis {9 },N=1
Example: piecewise linear “hat functions”

o Discretization in space of random variables: 7P C [?(I), basis {#¢}M,
Example: m-variate polynomials in & of total degree p
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Surrogate solution methods

Specrtral Galerkin methods
M grid for Galerkir <

1 met

Floce spantty sinctre med ped

Discrete surrogate solution:
N M . ,
uhp(X, &) = 2_j—1 2 =1 Uje®j(X)Ve(&)

Requires solution of large coupled system

Matrix (right): Go® Ag+ >, G, ® A,

8

s

“Stochastic dimension”: M = (m : p>

M = 210

Ghanem, Spanos, Babuska, Deb, Oden, Matthies, Keese, Karniadakis,
Xue, Schwab, Todor
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Specural Galerkin methods
Multigrid for Galerkin methods
Spectral collo 1 methods

Surrogate solution methods

P pCation methods
Reduced-order models

Multigrid for Galerkin systems

I. Apply multigrid across spatial component (E. & Furnival)
Solving Au=f, A=G A +¥™. G @ A"
[Arlik = Jpar(x)Vor(x)-Véj(x)dx, [Grlig= Jr(q)sra(€)vi(€)p(€)d

Fine grid operators: A, Alh) spatial discretization parameter h
Course grid operators: A(2h) Al2h) spatial discretization parameter 2h

One multigrid (two-grid) step:

forj=1:k

ulh) — P Q-1(F(M) — AMyh))  k smoothing steps
end
r(2h) — R(F(h) — A(R)(h)) Restriction
Solve A(2h) (2h) — ,(2h) Coarse grid correction R =1® R
ulh) — y(h) 1 Pc2h) Prolongation P=1® P
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Surrogate solution methods

Multigrid for Galerkin methods
spectral collocation methods

Reduced-order models

Sketch of convergence analysis: Use “standard” approach
eli+1) — [(A()—1 _ P(ACY-1R] [AB) (] — QL AM))] &)
Establish for all y
Approximation property ||[(A")=1 — P(AC)=IR]y|| ., < l¥l2
Smoothing property  [[A®) (1 — Q7T AM ¥y ||, < [|y||ac

For approximation property: Introduce semi-discrete space H&(”D) R TP)

T(P) = discrete stochastic space
Weak formulation: a(u(P),v(P)) = (f,v(P)) for all v(P) € H}(D)® TP

Then: ~[[[(A®)~t — P(ACH)IRYy]||, = [lul®?) — u@o)|,
S ”U(hp) — U(p)”a —+ ”U(p) — U(2h'p)Ha
< clly || am

Last step: from standard arguments based on approximability,
regularity for every realization in the semi-discrete space
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Surrogate solution methods

Mean-Based Multigrid

Il. Apply multigrid to mean as preconditioner
Solving Au = f

Preconditioner for use with CG (Kruger, Pellisetti, Ghanem):
Mean Q = Gy ® Ag
Ag ~ f’D V(Dk( ) V@j(x)dx. Go =1

Further refinement (Le Maitre, et al.)

Use multigrid to approximate action of Q1

-1 _ o A1
QMG =1® AO,MG
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Surrogate solution methods Multigrid for Galerkin methods

i1 Metinoas

Reduced-order models

Convergence analysis (E. & Powell):

Coefficient: a(x,€)=a0+0 > 1 VA a(x)€,
Coefficient matrix: A=GRA+> G RA
Mean-based preconditioner: Q = Gy ® Ap

Multigrid preconditioner: Qumc = Gy ® Ao mc

Theorem: For 3y = p constant,

where r = (0/1) c(P) Xy VA llar oo

If in addition the MG approximation satisfies 3; < —29) _ < 3, then
(w,Qumcw)

(WwAwW) _ (wAw) (w,Qw) (14,_7) (&)
(w,Qmcw) (w,Qw) (w,Qucw) — \ 1—7 B1
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Specrral Galerkin methods
Surrogate solution methods ~ iy ki o

Spectral col

!‘\'. gquced-order 1

T he Stochastic Collocation Method

Monte-Carlo (sampling) method: find u € HE(D) s.t.

/ a(x, €% \WVu-Vvdx forall v € Hg, (D)
D
for a collection of samples {£%)} € [2(T)

Collocation (Xiu, Hesthaven, Babuska, Nobile, Tempone, Webster)

Choose {£'¥)} in a special way (sparse grids), then construct
construct discrete solution up,(x, &) to interpolate {up(x, €¥))}

Surrogate (collocation) solution:

Uhp(xa §) = Z&“‘)eep uc (X, €(k))l‘£“"(€)

Features:

@ Decouples algebraic system (like MC)
@ Applies in a straightforward way to nonlinear random terms

o Coefficients {u.(x,£'"))} obtained from large-scale PDE solve
@ Expensive when number of points |©,| is large

. o
- ¥ -
' »
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Aultigrid for Galerkin n

Spectral collocadon methods

Surrogate solution methods

Properties of These Methods

For both Galerkin and collocation
o Each computes a discrete function up,
@ Moments of u estimated using moments of up, (cheap)

o Convergence: ||E(u) — E(unp)||byp) £ cth+cr?, r<1
Exponential in polynomial degree

@ Contrast with Monte Carlo:

Perform Npc (discrete) PDE solves to obtain samples {uf,‘)}fgf
Moments from averaging, e.g., E(Uh) Nllu ZQIMf uff)

Error ~ 1/v/ Ny

One other thing: “p" has different meaning for Galerkin and collocation

e Disadvantage of collocation: For comparable accuracy
# stochastic dof (collocation) =~ 2P (# stochastic dof (Galerkin))
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Spectral Galerkin methods
Surrogate solution methods AP N T I

Multigrid Tor Galerkin methods
Specrral collocation methods

equUCed-orger moaels

Representative Comparison for Diffusion Equation

Representative comparative performance (E., Miller, Phipps, Tuminaro)

; 4 - Gakrn i
|~ ' 4 IT'__'!ULQJF
. l R Sakrun Model
10 ' dion: NMod
: - : i la
fot p=F >\, ] Using mean-based preconditioner
£ | - ] :
=4 > : for Galerkin system
m—§ : B ’2, Kruger, Pellisetti, Ghanem
SEna : P25 Le Maitre, et al., E. & Powell
ensity ' i p=1 Y {
1 1 " L 10 )

Question: Can costs of collocation be reduced?
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Swurrogate solution methods

Reduced Basis Methods
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Starting point: Parameter-dependent PDE Leu=f
In examples given: Lg = —V (a0 + 0>, VAra(x)&é)V
Discretize: Discrete system L, ¢(up) = f

Algebraic system F¢(up) =0 (Agup = f) of order N

Complication:
Expensive if many realizations (samples of &) are required

|dea (Patera, Boyaval, Bris, Lelievre, Maday, Nguyen, ...):
Solve the problem on a reduced space

That is: by some means, choose ¢ @ e p« N
Solve .7:5(.-)(11;,")) =0, uf,i) = up(-, €V, i=1,...,n
For other &, approximate uy(-,&) by d,(-, &) € span{uf,l) ..... uf,")}
Terminology: {u\", ..., ui"} called snapshots
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Swrrogate solution methods

specral Colocation metnoas
Reduced-order models

Offline Computations

Strategy for generating a basis / choosing snapshots (Patera, et al.):
For iip(-,&) = up(-. &) (equivalently, i ~ ug), use an
error indicator n(i,) ~ |leyll, e, = up — 0y

Given: a set of candidate parameters X = {£},
an initial choice S(l) c X. and V) = u(-,f(l))
Set Q=ul)
while maxecy (1(7n(-£))) >
compute iy(-, &), n(dp(-,€)), V€€ X % use current reduced
let £ = argmaxgcx (9(Gn(-,&)) % basis
if n(dp(-,€7)) > 7 then
augment basis with up(-,€7), update Q with ug-
endif
end

Potentially expensive, but viewed as “offline” preprocessing

Online" simulation done using reduced basis
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spec perkin metnods
Multigrid for Galerkin methods

Swrrogate solution methods

Spectral collocation methods
Reduced-order models

Reduced Problem
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For linear problems, matrix form:

Coefficient matrix Ag, nodal coefficients up, i, u) .yl
() = orthogonal matrix whose columns span space spanned by {u(i)}

Galerkin condition: make residual orthogonal to spanning space
r=1Ff — Agug = f — Ag¢Qyge orthogonal to Q

Result is reduced problem: Galerkin system of order n < N:
[QTAQ]ye = Q'f, 1ig = Qye

Goals: Reduced solution should
e be available at significantly lower cost

@ capture features of the model
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Surrogate solution methods

Multigrid for Galerkin method

ITION Methoads

Spectral colloc:
Reduced-order models

How are costs reduced?

@ Matrix A of order N
@ Reduced matrix QTAQ of order n < N
@ Solving reduced problem is cheap for small n
@ Note: making assumption that L¢ is affinely dependent on &
Le =311 0i(8)L;
= Ag = Zle ?i(§)A

= QTA:Q = Y01, 6i(8) [QTAQ)
N,
part of offline computation

True for example seen so far, KL-expansion

@ Consequence: constructing reduced matrix for new £ is cheap

@ Analogue for nonlinear problems is more complex
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Galerkin methods

speciral Ge
"J!HTT';‘H(: or Galerxin methods

Surrogate solution methods

Spectral collocation methods
Reduced-order models

Reduced Problem: Capturing Features of Model

Consider benchmark problems:
Diffusion equation —V - (a(x, £)Vu) = f in R?

Piecewise constant diffusion coefficient parameterized as a random
variable & = [1,--- ,&pn,]" independently and uniformly distributed in
I =[0.01, 1]"e

Dig|  Daw

Diis “ |De,

(a) Case 1: Np subdomains (b) Case 2: Np = N x N subdomains

21 /40 H. C. Elman Reduced Basis Collocatdon for PDEs




22 /40

Surrogate solution methods

Does reduced basis capture features of model?

To assess this: consider
Full snapshot set, set of snapshots for all possible parameter values:
Sr = {un(-€), £ €T}
Finite snapshot set, for finite © C I':
Se :={un(-, &), & € 6}

Question:

How many samples {&} / {un(-,€)} are needed to accurately
represent the features of Sp?

Experiment: to gain insight into this, estimate “rank” of Sr
Generate a large set © of samples of £
Generate the finite snapshot set Sg associated with ©
Construct the matrix Sg of coefficient vectors ug from Sg

Compute the rank of Sg

Results follow. Used 3000 samples
Experiment was repeated ten times with similar results

H. C. Eiman Reduced Basis Collocation for PDEs




Surrogate solution methods

Estimated ranks of Sr for two classes of benchmark problems
Np

Crid 2 3 4 5 6 7 8 9 10
Case 1 332—-1089 |3 12 18 30 40 53 55 76 84

652 =4225 |3 12 18 30 40 48 55 70 87
1202 —=16641 |3 12 18 28 39 48 55 72 81

Np
Case2  Grid 4 9 16 25 36 49 64

s

o 2| 332 =-1089 |27 121 103 257 321 385 449
652 = 4225 |28 148 200 465 621 769 897
1202 = 16641 | 28 153 311 497 746 1016 1298

Trends:

@ Rank is dramatically smaller than problem dimension N

e Rank is independent of problem dimension (~ (mesh size)~?)

@ In most cases, cost of treating reduced problem of given rank is low
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Combined collocation

Combined approaches and low-rank methods

Low-rank methods

e Combined approaches and low-rank methods
@ Combined collocation and reduced-basis

@ Low-rank methods
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Combined collocation and reduced-basis
Low-rank methods

Combined approaches and low-rank methods = . h

Reduced Basis + Sparse Grid Collocation
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Adapt to sparse grid collocation: Recall collocation solution

ug ™ (x,£9) = Yoo, uc(*: €M) Lew (€) (1)

Main ideas:
1. Use sparse grid collocation points as candidate set X,
2. Use reduced solution as coefficient uc(-,£€%)) whenever possible

for each sparse grid level p Algorithm R
for each point £%) at level p ;g’("%f}},; :
compute reduced solution ug(-, €(k)) ™ 2 0% e L

if n(ug(-,£€*))) < 7, then
use ug(-,£€%™)) as coefficient uc(-,£*)) in (1)
else
compute snapshot (-, £%)), use it as u(-,£%)) in (1)
augment reduced basis with u,(-, £%)), update Q with Ug k)

endif
end
end

H. C. Elman Reduced Basis Collocation for PDEs



Combined collocation and reduced-basis
LOW-rank x:’.vv,f;.'-u‘_.‘:

Combined approaches and low-rank methods

Case 1
Number of full system solves
Case 1, 5 x 1 subdomains, 65 x 65 grid, rank=30
p 1 2 3 4 5 6 7§ 8 11
Giod O 11 61 241 801 2433 7K 19K 52K 870K

10~° 10 O 0 0 0 0 0 0 0
__* J1i0o 11 1 0 0O o0 0 0 0

= 10 13 0 0 0 0 0 0 0

Case 1, 9 x 1 subdomains, 65 x 65 grid, rank=70, to/ = 10~*

p T 2 3 4 5 6 7 8
©,] | 19 181 1177 6001 26017 100897 361249 1218049
Neiwie | 18 3§ 2 1 1 0 0 0
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Combined approaches and low-rank methods

Combined collocation and reduced-basis

UW-Tai |

To assess accuracy: Examine error (vs. reference solution) in expected
values of full or reduced collocation solution:

Full collocation €p 1= I E (uf) — E (u*) / E (ufs)
q r 0 r 0
Reduced collocation €g := IIE (uc’fc) — E (uPs) / E (uhs)
0 0
Case 1: vertical subdomains Case 2: square subdomains
W —r—rrrme—rrrem 10°
»‘1'2__.(\ %
107~ 2 :
" = *.L\\ h ._,\:\_“q‘\7 -
107} \\*’ —ae! ; ! R -\ =
i o\ N\ | 0’ e
8 10° "‘-\ Pz E é \ e—e
T \ 3 kg 4
i T " 104 i N
]04 N - \l".
E Q“a\ 3:
+f [~—Mone Caro \ 10} [——Monte Cario et
107} —=—Full collocation !: —=— Full collocation Q'}
—+— Reduced coliocation Q"?\\!E —— Reduced collocation
10‘ - = A L - 0-& 1 L
10' 10° 10° 10° 10° 10° 1 10° 10° 10°
number of sample points numbes of sample points
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Combined approaches and low-rank methods

Interpretation of these results
Collocation points ¢(1) ¢ glne)
Solutions uY) u® . .. u("¢) arrange into matrix U

Results show: U is of low rank n,, spanned by reduced basis

— - -~ -
— -

U = u(l)’u(z)_’. 5 ,u("e) ne = Q y(l)’y(z)’. Y- 'y("e) n,
! B A i il
Ny

Can write collection of collocation equations as A(U) = F

Reduced basis method ~ finding low-rank solution

H. C. Elman Reduced Basis Collocatdon for PDEs




Combined collocation and reduc
Combined approaches and low-rank methods ™ R I

Idea applies to Galerkin formulation

Galerkin system

Equivalently:

Y AUG] =F, up, =vec(V), f = vec(F)
£=0

Kressner & Tobler, Ballani & Grasedyck, Matthies & Zander, Oseledets
& Tyrtyshnikov, Schwab & Gittelson, Khoromskij & Schwab, Benner,

Onwunta & Stoll, Powell, Silvester & Simoncini

New approach: tensor methods
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mbined collocation and reduced-basis

Combined approaches and low-rank methods A

Recapitulating: For linear/affine models

Three + techniques for construction of surrogates:

© Stochastic Galerkin
Offline: solve coupled Galerkin system
Online simulation: evaluate Galerkin solution

@ Stochastic collocation
Offline: solve ng deterministic systems
Online simulation: evaluate interpolant

© Reduced-order model
Offline: compute n, snapshots, use error indicator
Online simulation: solve reduced-order model

+ Combined approaches
Offline: use reduced-order philosophy in combination with
collocation / Galerkin
Online simulation: evaluate solution

30 /40 H. C. Elman Reduced Basis Collocation for PDEs




Discrere empirica

Reduced-order methods for nonlinear problems

o Reduced-order methods for nonlinear problems
@ Discrete empirical interpolation methods
@ Computational results
@ Preconditioning
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Discrete empirical inerpolation methods
Lomputational resiits
Reduced-order methods for nonlinear problems Preconditioning

Reduced-order models for nonlinear systems
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Nonlinear discrete system Fg(ug) =0

Preliminary:
Recall linear form Fe(ug) = Acue — f,  Ae =D, Acde(€)
Reduced basis in columns of Q, span {u(l). u? ... u("')}, n < N

Reduced (surrogate) solution i = Qye ~ ug from Galerkin system

[z"’: (QRTA:Q) @é(f)] ye = Q'f (1)

Precompute

Matrix of order n,

Simulation: New £ — new system (1)

Construct, solve at cost depending on n, < N

H. C. Elman Reduced Basis Collocaton for PDEs




Discrere empirical imerpolaton methods

tion

Reduced-order methods for nonlinear problems Prog onditic ing

Return to nonlinear system Fg(ue) =0

Reduced basis in @

Reduced operator QT F¢(QYe)
N’

N (scalar) nonlinear function evaluations

Jacobian Jg,(Qy), cost of evaluation also depends on N

Advantages of reduced basis are gone

Example: Navier-Stokes equations
—V - (a(x,&) Vi) + (7-V)i+Vp=Ff, V-i=0
Algebraic system has form Fg(u) = A¢u+ C(u) —b

A¢ = discrete parameter-dependent diffusion operator

C(u) = N(u)u = discrete version of —(u - V)u
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Discrete empirical interpolation methods
Compuational resuits

Reduced-order methods for nonlinear problems Preconditioning

Discrete empirical interpolation

DEIM (Barrault, Maday, Nguyen, & Patera, Chaturantabut & Sorensen)

For F¢(u) = Agu + C(u) — b, reduced model has form
F(0) = QTA¢Qy + QT C(Qy) — Qb
Strategy for approximating nonlinear term:
o Generate matrix of snapshots S = [C(u!)), C(u®?), ..., C(u™)]

o Generate low-rank @ for which range(S) ~ range(®) (via SVD)
ns = rank(®), analogous to n,

o |dentify “index choosing” matrix P = [e;, e,..., €]
e Replace C(Qy) withAapproximation C?(C/?\y) =&(PTP)"1PTC(Qy)
— approximation F¢(Qy) = A¢Qy + C(Qy) —b
@ Galerkin condition: QTﬁg(Qy) =0
Q7A¢Qy + Q'®(PT)"'PTC(Qy) - Q"b=0
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Discrete empirical interpolation methods

} L
Reduced-order methods for nonlinear problems Preconditionis

Comments:

@ Approximation interpolates desired quantity at indices of P:
PT&(PT®)~1PTC(Qy) = PTC(Qy)
@ N.B. Need C to be “sparse”, OK for grid-based discrete PDE

@ Makes evaluation of reduced Jacobian cheap also

H. C. Elman Reduced Basis Collocation for PDEs




Discrere empirical interpolatios

Reduced-order methods for nonlinear problems Preconditioning

Benchmark problem:

Driven cavity flow, piecewise constant viscosity on /m X /m
subdomains

Piecewise constant viscosity

v(x,€) =31 a(x)&,.  ar=xp,

parameterized by random variables & = [£;, - - - ,&m]T independently and
uniformly distributed in ' = [0.01, 1™
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)iscrere empii

Computational results

Reduced-order methods for nonlinear problems Preconditioning

Experiment: Solve three versions of the discrete NS equations using
Picard iteration:
©Q the discrete full system, on 128 x 128 grid
@ the discrete reduced system w/o special treatment of nonlinear term
© the discrete reduced system obtained from DEIM
Report: Average CPU times over 10 simulations

Relative residual norms n = || F¢||2/||b||2
N.B. this error measure is not available at low cost

m 4 16 36 49
k 237 1383 3039 4083
Ndeim 4 14 23 30
time n time n time n time n
Full 135 1.E-8 147 1.E-8 132 1.E-8 148 1.E-8
Reduced | 1.62 1.13E-5 | 238 285E-5| 98.1 5.14E-5| 191 7.16E-5
DEIM 0.09 82/7E-5|1.12 102E-4 | 7.11 155E-4 | 15.7 1.56E-4
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Discrere empirical interpolation mertl

LOomputational resigts
Reduced-order methods for nonlinear problems Preconditioning

Preconditioning
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During nonlinear iteration, have sequence of systems of order n,
A) BT QIC(uR)Q, 0]\ [oy; .
T u u J| _ __ ,deim
(Q [ B 0 @+ 0 ol ) |op;| =
Would like preconditioners whose construction depends on n, < N

Changes the game. Choices:

=
o Stokes (“beginning") preconditioner: M = QT {A(EO) BO ] Q

e 'End” preconditioner:

M—oT [A(éo) BoT] & [QI €(u;;(so))0u 8]

Use entails computing and factoring preconditioners in “offline” stage

H. C. Elman Reduced Basis Collocaton for PDEs





