Linear Algebra Computations for Parameterized Partial Differential Equations

Howard C. Elman

Department of Computer Science University of Maryland at College Park

> SIAM Applied Linear Algebra October 2015

Collaborators:

Darran Furnival
Catherine Powell
Chris Miller
Eric Phipps
Ray Tuminaro

Qifeng Liao

Virginia Forstall

UMD / Université de Bretagne

University of Manchester

UMD / Mitre Corporation

Sandia National Laboratories

Sandia National Laboratories

Shanghai Tech University

UMD / Leidos

Work supported by: NSF, DOE

- Introduction
 - Problem definition
 - Surrogate solutions
- Surrogate solution methods
 - Spectral Galerkin methods
 - Multigrid for Galerkin methods
 - Spectral collocation methods
 - Reduced-order models
- Combined approaches and low-rank methods
 - Combined collocation and reduced-basis
 - Low-rank methods
- Reduced-order methods for nonlinear problems
 - Discrete empirical interpolation methods
 - Computational results
 - Preconditioning
- Concluding remarks

Parameter-Dependent Partial Differential Equations

Examples:

- Diffusion equation: $-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi})\nabla u) = f$
- Navier-Stokes equations: $-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi}) \nabla \vec{u}) + (\vec{u} \cdot \nabla)\vec{u} + \nabla p = \vec{f}$ $\nabla \cdot \vec{u} = 0$
- ullet Posed on $\mathcal{D} \subset \mathbb{R}^d$ with suitable boundary conditions
- Sources: models of diffusion in media with uncertain permeabilities multiphase flows

Want solution $\mathbf{u} = \mathbf{u}(\cdot, \boldsymbol{\xi})$ for many values of $\boldsymbol{\xi}$. Why?

- Want to perform simulation for multiple design parameters
- Properties of a are not fully understood. Treat them as random $a = a(\mathbf{x}, \boldsymbol{\xi})$ is a random field: for each fixed $x \in \mathcal{D}$, $a(\mathbf{x}, \boldsymbol{\xi})$ is a random variable depending on m random parameters ξ_1, \ldots, ξ_m
- In this study: $a(\mathbf{x}, \boldsymbol{\xi}) = a_0(\mathbf{x}) + \sum_{r=1}^m a_r(\mathbf{x}) \boldsymbol{\xi}_r$

Surrogate solution methods Combined approaches and low-rank methods Reduced-order methods for nonlinear problems Concluding remarks

$$a(x, \xi) = a_0(x) + \sum_{r=1}^m a_r(x) \xi_r$$

mean
$$\bar{a}(\mathbf{x}) \equiv E(a(\mathbf{x},\cdot))$$

Possible sources:

Karhunen-Loève or expansion

Piecewise constant coefficients on \mathcal{D}

One approach for solution: Monte Carlo simulation

- Sample ξ
- Solve PDE $\mathcal{L}_{\xi}u = f$. (Sample the solution $u(\cdot, \xi)$)
- Repeat

Obtain statistical properties by averaging or counting

Issues: Convergence is slow, costs of sampling (of $u(\cdot, \xi)$) are high

Alternative approach: Use surrogate solutions

Goal: Generate solutions $u(\cdot, \xi)$ for many ξ

Alternative approach:

- Generate surrogate solutions $u^s(\cdot,\xi) \approx u(\cdot,\xi)$ that are
 - not too expensive to find, and
 - inexpensive to evaluate
- Use surrogates to perform simulation

Strategies:

- Stochastic Galerkin method
- Stochastic collocation method
- Reduced-order models
- Combinations of some of these

Many interesting linear algebra issues

Concluding remarks

- Introduction
- 2 Surrogate solution methods
 - Spectral Galerkin methods
 - Multigrid for Galerkin methods
 - Spectral collocation methods
 - Reduced-order models
- Combined approaches and low-rank methods
- Reduced-order methods for nonlinear problems
- Concluding remarks

Reduced-order models

The Stochastic Galerkin Method

Standard weak diffusion problem: find $u \in H_E^1(\mathcal{D})$ s.t.

$$a(u,v) = \int_{\mathcal{D}} a\nabla u \cdot \nabla v dx = \int_{\mathcal{D}} f v dx \quad \forall v \in H_0^1(\mathcal{D})$$

Extended (stochastic) weak formulation: find $u \in H_E^1(\mathcal{D}) \otimes L_2(\Omega)$ s.t.

$$\int_{\Omega} \int_{\mathcal{D}} a \nabla u \cdot \nabla v \, dx \, dP(\Omega) = \int_{\Omega} \int_{\mathcal{D}} f \, v \, dx \, dP(\Omega) \quad \forall \, v \in H_0^1(\mathcal{D}) \otimes L_2(\Omega)$$

$$\int_{\Gamma} \int_{\mathcal{D}} a(\mathbf{x}, \boldsymbol{\xi}) \nabla u \cdot \nabla v \, d\mathbf{x} \, \rho(\boldsymbol{\xi}) \, d\boldsymbol{\xi} \qquad \int_{\Gamma} \int_{\mathcal{D}} f \, v \, d\mathbf{x} \, \rho(\boldsymbol{\xi}) \, d\boldsymbol{\xi} \qquad (\Gamma = \boldsymbol{\xi}(\Omega))$$

- Discretization in physical space: $S_E^{(h)} \subset H_E^1(\mathcal{D})$, basis $\{\phi_j\}_{j=1}^N$ Example: piecewise linear "hat functions"
- Discretization in space of random variables: $\mathcal{T}^{(p)} \subset L^2(\Gamma)$, basis $\{\psi_\ell\}_{\ell=1}^M$ Example: m-variate polynomials in ξ of total degree p

Reduced-order models

Discrete surrogate solution:

$$u_{hp}(\mathbf{x}, \boldsymbol{\xi}) = \sum_{j=1}^{N} \sum_{\ell=1}^{M} u_{j\ell} \phi_j(\mathbf{x}) \psi_{\ell}(\boldsymbol{\xi})$$

Requires solution of large coupled system

Matrix (right):
$$G_0 \otimes A_0 + \sum_{r=1}^m G_r \otimes A_r$$

"Stochastic dimension":
$$M = \binom{m+p}{p}$$

Ghanem, Spanos, Babuška, Deb, Oden, Matthies, Keese, Karniadakis, Xue, Schwab, Todor

Multigrid for Galerkin systems

I. Apply multigrid across spatial component (E. & Furnival)

Solving
$$A\mathbf{u} = \mathbf{f}$$
, $A = G_0 \otimes A_0^{(h)} + \sum_{r=1}^m G_r \otimes A_r^{(h)}$
 $[A_r]_{jk} = \int_{\mathcal{D}} a_r(x) \nabla \phi_k(x) \cdot \nabla \phi_j(x) dx$, $[G_r]_{lq} = \int_{\Gamma(\Omega)} \xi_r \psi_q(\xi) \psi_l(\xi) \rho(\xi) d\xi$

Fine grid operators: $A^{(h)}$, $A_r^{(h)}$ spatial discretization parameter h Course grid operators: $A^{(2h)}$, $A_r^{(2h)}$ spatial discretization parameter 2h

One multigrid (two-grid) step:

for
$$j=1:k$$

$$u^{(h)} \leftarrow u^{(h)} + Q^{-1}(f^{(h)} - A^{(h)}u^{(h)}) \qquad k \text{ smoothing steps}$$
end
$$r^{(2h)} = \mathcal{R}(f^{(h)} - A^{(h)}u^{(h)}) \qquad \text{Restriction}$$
Solve $A^{(2h)}c^{(2h)} = r^{(2h)} \qquad \text{Coarse grid correction } \mathcal{R} = I \otimes R$

$$u^{(h)} \leftarrow u^{(h)} + \mathcal{P}c^{(2h)} \qquad \text{Prolongation } \mathcal{P} = I \otimes P$$

Reduced-order models

Combined approaches and low-rank methods Reduced-order methods for nonlinear problems Concluding remarks

Sketch of convergence analysis: Use "standard" approach

$$e^{(i+1)} = [(A^{(h)})^{-1} - \mathcal{P}(A^{(2h)})^{-1}\mathcal{R}][A^{(h)}(I - Q^{-1}A^{(h)})^k]e^{(i)}$$

Establish for all y

Approximation property $\|[(A^{(h)})^{-1} - \mathcal{P}(A^{(2h)})^{-1}\mathcal{R}]y\|_{A^{(h)}} \le \|y\|_2$ **Smoothing property** $\|A^{(h)}(I - Q^{-1}A^{(h)})^ky\|_2 \le \|y\|_{A^{(h)}}$

For approximation property: Introduce semi-discrete space $H_0^1(\mathcal{D}) \otimes \mathcal{T}^{(p)}$ $\mathcal{T}^{(p)} = \text{discrete stochastic space}$ Weak formulation: $a(u^{(p)}, v^{(p)}) = (f, v^{(p)})$ for all $v^{(p)} \in H_0^1(\mathcal{D}) \otimes \mathcal{T}^{(p)}$

Then:
$$\left\| \left[(A^{(h)})^{-1} - \mathcal{P}(A^{(2h)})^{-1} \mathcal{R} \right] y \right\|_{A^{(h)}} = \left\| u^{(hp)} - u^{(2h,p)} \right\|_{a}$$

$$\leq \left\| u^{(hp)} - u^{(p)} \right\|_{a} + \left\| u^{(p)} - u^{(2h,p)} \right\|_{a}$$

$$\leq c \|y\|_{A^{(h)}}$$

Last step: from standard arguments based on approximability, regularity for every realization in the semi-discrete space

Mean-Based Multigrid

II. Apply multigrid to mean as preconditioner

Solving
$$A\mathbf{u} = \mathbf{f}$$

Preconditioner for use with CG (Kruger, Pellisetti, Ghanem):

Mean
$$Q = G_0 \otimes A_0$$

$$A_0 \sim \int_{\mathcal{D}} \bar{a}(x,\cdot) \nabla \phi_k(x) \cdot \nabla \phi_j(x) dx, \quad G_0 = I$$

Further refinement (Le Maître, et al.)

Use multigrid to approximate action of Q^{-1} :

$$Q_{MG}^{-1} \equiv I \otimes A_{0,MG}^{-1}$$

Convergence analysis (E. & Powell):

Coefficient: $a(\mathbf{x}, \boldsymbol{\xi}) = a_0 + \sigma \sum_{r=1}^{m} \sqrt{\lambda_r} a_r(\mathbf{x}) \boldsymbol{\xi}_r$

Coefficient matrix: $A = G_0 \otimes A_0 + \sum_{r=1}^m G_r \otimes A_r$

Mean-based preconditioner: $Q = G_0 \otimes A_0$

Multigrid preconditioner: $Q_{MG} = G_0 \otimes A_{0,MG}$

Theorem: For $a_0 = \mu$ constant,

$$1 - \tau \le \frac{(w, Aw)}{(w, Qw)} \le 1 + \tau$$

where

$$\tau = (\sigma/\mu) c(p) \sum_{r=1}^{m} \sqrt{\lambda_r} \|a_r\|_{\infty}.$$

If in addition the MG approximation satisfies $\beta_1 \leq \frac{(w,Qw)}{(w,Q_{MG}w)} \leq \beta_2$, then

$$\frac{(w,Aw)}{(w,Q_{MG}w)} = \frac{(w,Aw)}{(w,Qw)} \frac{(w,Qw)}{(w,Q_{MG}w)} \le \left(\frac{1+\tau}{1-\tau}\right) \left(\frac{\beta_2}{\beta_1}\right)$$

The Stochastic Collocation Method

Monte-Carlo (sampling) method: find $u \in H_F^1(\mathcal{D})$ s.t.

$$\int_{\mathcal{D}} a(\mathbf{x}, \boldsymbol{\xi}^{(k)}) \nabla u \cdot \nabla v dx \quad \text{for all } v \in H^1_{E_0}(\mathcal{D})$$

for a collection of samples $\{\xi^{(k)}\}\in L^2(\Gamma)$

Collocation (Xiu, Hesthaven, Babuška, Nobile, Tempone, Webster)

Choose $\{\xi^{(k)}\}\$ in a special way (sparse grids), then construct construct discrete solution $u_{hp}(\mathbf{x}, \boldsymbol{\xi})$ to interpolate $\{u_h(\mathbf{x}, \boldsymbol{\xi}^{(k)})\}$

Surrogate (collocation) solution:

$$u_{hp}(\mathbf{x}, \xi) := \sum_{\xi^{(k)} \in \Theta_p} u_c(\mathbf{x}, \xi^{(k)}) L_{\xi^{(k)}}(\xi)$$

Features:

- Decouples algebraic system (like MC)
- Applies in a straightforward way to nonlinear random terms Coefficients $\{u_c(\mathbf{x}, \boldsymbol{\xi}^{(k)})\}$ obtained from large-scale PDE solve
- Expensive when number of points $|\Theta_p|$ is large

Concluding remarks

Properties of These Methods

For both Galerkin and collocation

- Each computes a discrete function u_{hp}
- Moments of u estimated using moments of u_{hp} (cheap)
- Convergence: $||E(u) E(u_{hp})||_{H_1(\mathcal{D})} \le c_1 h + c_2 r^p, r < 1$ Exponential in polynomial degree
- Contrast with Monte Carlo: Perform N_{MC} (discrete) PDE solves to obtain samples $\{u_h^{(s)}\}_{s=1}^{N_{MC}}$ Moments from averaging, e.g., $\hat{E}(u_h) = \frac{1}{N_{MC}} \sum_{s=1}^{N_{MC}} u_h^{(s)}$ Error $\sim 1/\sqrt{N_{MC}}$

One other thing: "p" has different meaning for Galerkin and collocation

 Disadvantage of collocation: For comparable accuracy # stochastic dof (collocation) $\approx 2^p$ (# stochastic dof (Galerkin))

Representative Comparison for Diffusion Equation

Concluding remarks

Representative comparative performance (E., Miller, Phipps, Tuminaro)

Using mean-based preconditioner for Galerkin system Kruger, Pellisetti, Ghanem Le Maître, et al., E. & Powell

Question: Can costs of collocation be reduced?

Reduced Basis Methods

Starting point: Parameter-dependent PDE $\mathcal{L}_{\xi}u = f$

Concluding remarks

In examples given: $\mathcal{L}_{\xi} = -\nabla \cdot (a_0 + \sigma \sum_{r=1}^m \sqrt{\lambda_r} a_r(\mathbf{x}) \xi_r) \nabla$

Discretize: Discrete system $\mathcal{L}_{h,\xi}(u_h) = f$

Algebraic system $\mathcal{F}_{\xi}(\mathbf{u}_h) = 0$ $(A_{\xi}\mathbf{u}_h = \mathbf{f})$ of order N

Complication:

Expensive if many realizations (samples of ξ) are required

Idea (Patera, Boyaval, Bris, Lelièvre, Maday, Nguyen, . . .): Solve the problem on a *reduced space*

That is: by some means, choose $\xi^{(1)}, \xi^{(2)}, \dots, \xi^{(n)}, n \ll N$ Solve $\mathcal{F}_{\xi^{(i)}}(u_h^{(i)}) = 0$, $u_h^{(i)} = u_h(\cdot, \xi^{(i)})$, $i = 1, \dots, n$

For other ξ , approximate $u_h(\cdot, \xi)$ by $\tilde{u}_h(\cdot, \xi) \in span\{u_h^{(1)}, \dots, u_h^{(n)}\}$

Terminology: $\{u_h^{(1)}, \dots, u_h^{(n)}\}\$ called snapshots

Offline Computations

```
Strategy for generating a basis / choosing snapshots (Patera, et al.):
         For \tilde{u}_h(\cdot,\xi) \approx u_h(\cdot,\xi) (equivalently, \tilde{\mathbf{u}}_{\boldsymbol{\xi}} \approx \mathbf{u}_{\boldsymbol{\xi}}), use an
         error indicator \eta(\tilde{u}_h) \approx ||e_h||, e_h = u_h - \tilde{u}_h
         Given: a set of candidate parameters \mathcal{X} = \{\xi\},
                      an initial choice \xi^{(1)} \in \mathcal{X}, and u^{(1)} = u(\cdot, \xi^{(1)})
         Set Q = \mathbf{u}^{(1)}
         while \max_{\boldsymbol{\xi} \in \mathcal{X}} (\eta(\tilde{u}_h(\cdot,\boldsymbol{\xi}))) > \tau
               compute \tilde{u}_h(\cdot,\xi), \eta(\tilde{u}_h(\cdot,\xi)), \forall \xi \in \mathcal{X}
                                                                                        % use current reduced
               let \xi^* = \operatorname{argmax}_{\xi \in \mathcal{X}} (\eta(\tilde{u}_h(\cdot, \xi)))
                                                                                         % basis
               if \eta(\tilde{u}_h(\cdot, \boldsymbol{\xi}^*)) > \tau then
                     augment basis with u_h(\cdot, \xi^*), update Q with \mathbf{u}_{\xi^*}
               endif
         end
```

Potentially expensive, but viewed as "offline" preprocessing "Online" simulation done using reduced basis

Concluding remarks

Reduced Problem

For linear problems, matrix form:

Coefficient matrix A_{ξ} , nodal coefficients \mathbf{u}_h , $\tilde{\mathbf{u}}_h$, $\mathbf{u}^{(1)}$, ... $\mathbf{u}^{(n)}$ $Q = \text{orthogonal matrix whose columns span space spanned by } {<math>\mathbf{u}^{(i)}$ }

Galerkin condition: make residual orthogonal to spanning space

$$r = f - A_{\varepsilon} \tilde{\mathbf{u}}_{\varepsilon} = f - A_{\varepsilon} Q \mathbf{y}_{\varepsilon}$$
 orthogonal to Q

Result is **reduced problem**: Galerkin system of order $n \ll N$:

$$[Q^TAQ]\mathbf{y}_{\boldsymbol{\xi}} = Q^Tf, \quad \tilde{\mathbf{u}}_{\boldsymbol{\xi}} = Q\mathbf{y}_{\boldsymbol{\xi}}$$

Goals: Reduced solution should

- be available at significantly lower cost
- capture features of the model

Combined approaches and low-rank methods Reduced-order methods for nonlinear problems Concluding remarks

How are costs reduced?

- Matrix A of order N
- Reduced matrix Q^TAQ of order $n \ll N$
- Solving reduced problem is cheap for small n
- Note: making assumption that \mathcal{L}_{ξ} is affinely dependent on ξ

$$\mathcal{L}_{\boldsymbol{\xi}} = \sum_{i=1}^{k} \phi_{i}(\boldsymbol{\xi}) \mathcal{L}_{i}$$

$$\Rightarrow A_{\boldsymbol{\xi}} = \sum_{i=1}^{k} \phi_{i}(\boldsymbol{\xi}) A_{i}$$

$$\Rightarrow Q^{T} A_{\boldsymbol{\xi}} Q = \sum_{i=1}^{k} \phi_{i}(\boldsymbol{\xi}) \left[Q^{T} A_{i} Q \right]$$

part of offline computation

True for example seen so far, KL-expansion

- Consequence: constructing reduced matrix for new ξ is cheap
- Analogue for nonlinear problems is more complex

Reduced Problem: Capturing Features of Model

Concluding remarks

Consider benchmark problems:

Diffusion equation $-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi})\nabla u) = f$ in \mathbb{R}^2

Piecewise constant diffusion coefficient parameterized as a random variable $\boldsymbol{\xi} = [\xi_1, \cdots, \xi_{N_D}]^T$ independently and uniformly distributed in $\Gamma = [0.01, 1]^{N_D}$

(a) Case 1: N_D subdomains (b) Case 2: $N_D = \tilde{N} \times \tilde{N}$ subdomains

Does reduced basis capture features of model?

To assess this: consider

Full snapshot set, set of snapshots for all possible parameter values:

$$S_{\Gamma} := \{u_h(\cdot, \xi), \xi \in \Gamma\}$$

Finite snapshot set, for finite $\Theta \subset \Gamma$:

$$S_{\Theta} := \{u_h(\cdot, \xi), \xi \in \Theta\}$$

Question:

How many samples $\{\xi\}$ / $\{u_h(\cdot,\xi)\}$ are needed to accurately represent the features of S_{Γ} ?

Experiment: to gain insight into this, estimate "rank" of \mathcal{S}_{Γ}

Generate a large set Θ of samples of ξ

Generate the finite snapshot set S_{Θ} associated with Θ

Construct the matrix S_{Θ} of coefficient vectors $\mathbf{u}_{\boldsymbol{\xi}}$ from S_{Θ}

Compute the rank of S_{Θ}

Results follow. Used 3000 samples

Experiment was repeated ten times with similar results

Estimated ranks of S_{Γ} for two classes of benchmark problems

Concluding remarks

	N_D	2	3	4	5	6	7	8	9	10
Case 1	$33^2 = 1089$	3	12	18	30	40	53	55	76	84
	$65^2 = 4225$	3	12	18	30	40	48	55	70	87
	$129^2 = 16641$	3	12	18	28	39	48	55	72	81
Case 2	N_D	4	9		16	25	36	49		64
	$33^2 = 1089$	27	121		193	257	321	385		449
	$65^2 = 4225$	28	148		290	465	621	769)	897
	$129^2 = 16641$	28	153	3	311	497	746	1016	6	1298

Trends:

- Rank is dramatically smaller than problem dimension N
- Rank is independent of problem dimension (\sim (mesh size) $^{-2}$)
- In most cases, cost of treating reduced problem of given rank is low

Concluding remarks

- Introduction
- Surrogate solution methods
- Combined approaches and low-rank methods
 - Combined collocation and reduced-basis
 - Low-rank methods
- Reduced-order methods for nonlinear problems
- Concluding remarks

Reduced Basis + Sparse Grid Collocation

Adapt to sparse grid collocation: Recall collocation solution

$$u_q^{(hp)}(x,\xi^{(k)}) = \sum_{\xi^{(k)} \in \Theta_q} u_c(x,\xi^{(k)}) L_{\xi^{(k)}}(\xi)$$
 (1)

Main ideas:

- 1. Use sparse grid collocation points as candidate set \mathcal{X} ,
- 2. Use reduced solution as coefficient $u_c(\cdot, \xi^{(k)})$ whenever possible

```
for each sparse grid level p
for each point \xi^{(k)} at level p
compute reduced solution u_R(\cdot, \xi^{(k)})
if \eta(u_R(\cdot, \xi^{(k)})) \leq \tau, then
use u_R(\cdot, \xi^{(k)}) as coefficient u_c(\cdot, \xi^{(k)}) in (1)
else
compute snapshot u_h(\cdot, \xi^{(k)}), use it as u_c(\cdot, \xi^{(k)}) in (1)
augment reduced basis with u_h(\cdot, \xi^{(k)}), update Q with \mathbf{u}_{\xi^{(k)}}
endifend
```

Number of full system solves

Case 1, 5×1 subdomains, 65×65 grid, rank=30

p	1	2	3	4	5	6	7	8	11
$ \Theta_q $	11	61	241	801	2433	7K	19K	52K	870K
10^{-3} 10^{-4}	10	9	0	0	0	0	0	0	0
10-4	10	_11_	_ 1 _	_ 0 _	0	0	_ 0 _	_ 0_	_ 0 _
10^{-5}	10	13	0	0	0	0	0	0	0

Case 1, 9×1 subdomains, 65×65 grid, rank=70, $tol = 10^{-4}$

р	1	2	3	4	5	6	7	8
$ \Theta_q $	19	181	1177	6001	26017	100897	361249	1218049
N _{full solve}	18	34	2	1	1	0	0	0

To assess accuracy: Examine error (vs. reference solution) in expected values of full or reduced collocation solution:

Full collocation
$$\epsilon_h := \left\| \tilde{\mathbb{E}} \left(u_q^{hsc} \right) - \tilde{\mathbb{E}} \left(u_r^{hsc} \right) \right\|_0 / \left\| \tilde{\mathbb{E}} \left(u_r^{hsc} \right) \right\|_0$$

Reduced collocation
$$\epsilon_R := \left\| \tilde{\mathbb{E}} \left(u_q^{rsc} \right) - \tilde{\mathbb{E}} \left(u_r^{hsc} \right) \right\|_0 / \left\| \tilde{\mathbb{E}} \left(u_r^{hsc} \right) \right\|_0$$

Case 1: vertical subdomains

Case 2: square subdomains

Interpretation of these results

Collocation points $\boldsymbol{\xi}^{(1)}, \boldsymbol{\xi}^{(2)}, \dots, \boldsymbol{\xi}^{(n_{\boldsymbol{\xi}})}$

Solutions $\mathbf{u}^{(1)}, \mathbf{u}^{(2)}, \dots, \mathbf{u}^{(n_{\xi})}$, arrange into matrix U

Concluding remarks

Results show: U is of low rank n_r , spanned by reduced basis

$$U = \begin{bmatrix} \mathbf{u}^{(1)}, \mathbf{u}^{(2)}, \cdots, \mathbf{u}^{(n_{\xi})} \end{bmatrix} \uparrow_{n_{x}} = \begin{bmatrix} Q \\ Q \end{bmatrix} \begin{bmatrix} \mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \cdots, \mathbf{y}^{(n_{\xi})} \end{bmatrix} \uparrow_{n_{r}}$$

$$\longleftarrow n_{\xi} \longrightarrow \bigcap_{n_{r}} \bigcap_{n$$

Can write collection of collocation equations as A(U) = F

Reduced basis method ~ finding low-rank solution

Concluding remarks

Idea applies to Galerkin formulation

Galerkin system

$$\left(\sum_{\ell=0}^m G_\ell \otimes A_\ell\right) \mathbf{u}_{hp} = \mathbf{f}$$

Equivalently:

$$\sum_{\ell=0}^{m} A_{\ell} U G_{\ell}^{T} = F, \quad \mathbf{u}_{hp} = vec(U), \ \mathbf{f} = vec(F)$$

Kressner & Tobler, Ballani & Grasedyck, Matthies & Zander, Oseledets & Tyrtyshnikov, Schwab & Gittelson, Khoromskij & Schwab, Benner, Onwunta & Stoll, Powell, Silvester & Simoncini

New approach: tensor methods

Recapitulating: For linear/affine models

Three + techniques for construction of surrogates:

Stochastic Galerkin

Offline: solve coupled Galerkin system

Online simulation: evaluate Galerkin solution

Stochastic collocation

Offline: solve n_{ξ} deterministic systems

Online simulation: evaluate interpolant

Reduced-order model

Offline: compute n_r snapshots, use error indicator

Online simulation: solve reduced-order model

+ Combined approaches

Offline: use reduced-order philosophy in combination with

collocation / Galerkin

Online simulation: evaluate solution

- Introduction
- Surrogate solution methods
- Combined approaches and low-rank methods
- Reduced-order methods for nonlinear problems
 - Discrete empirical interpolation methods
 - Computational results
 - Preconditioning
- Concluding remarks

Reduced-order models for nonlinear systems

Nonlinear discrete system $F_{\xi}(u_{\xi}) = 0$

Preliminary:

Recall linear form $F_{\xi}(\mathbf{u}_{\xi}) = A_{\xi}\mathbf{u}_{\xi} - \mathbf{f}$, $A_{\xi} \equiv \sum_{\ell=1}^{m} A_{\ell}\phi_{\ell}(\xi)$ Reduced basis in columns of Q, span $\{\mathbf{u}^{(1)}, \mathbf{u}^{(2)}, \dots, \mathbf{u}^{(n_r)}\}$, $n_r \ll N$ Reduced (surrogate) solution $\tilde{\mathbf{u}}_{\xi} = Q\mathbf{y}_{\xi} \approx \mathbf{u}_{\xi}$ from Galerkin system

$$\left[\sum_{\ell=1}^{m} \underbrace{(Q^{T} A_{\ell} Q)}_{\text{Precompute}} \phi_{\ell}(\xi)\right] \mathbf{y}_{\xi} = Q^{T} \mathbf{f}$$
(1)

Matrix of order nr

Simulation: New $\xi \longrightarrow$ new system (1)

Construct, solve at cost depending on $n_r \ll N$

Return to nonlinear system $F_{\xi}(u_{\xi}) = 0$

Reduced basis in Q

Reduced operator $Q^T F_{\xi}(Q\tilde{\mathbf{y}}_{\xi})$

N (scalar) nonlinear function evaluations

Jacobian $J_{F_{\varepsilon}}(Q\mathbf{y})$, cost of evaluation also depends on N

Advantages of reduced basis are gone

Example: Navier-Stokes equations

$$-\nabla \cdot (a(\mathbf{x}, \boldsymbol{\xi}) \nabla \vec{u}) + (\vec{u} \cdot \nabla) \vec{u} + \nabla p = \vec{f}, \quad \nabla \cdot \vec{u} = 0$$

Algebraic system has form
$$F_{\xi}(\mathbf{u}) = A_{\xi}\mathbf{u} + C(\mathbf{u}) - \mathbf{b}$$

$$A_{\xi}$$
 = discrete parameter-dependent diffusion operator

$$C(\mathbf{u}) = N(\mathbf{u})\mathbf{u} = \text{discrete version of } -(\mathbf{u} \cdot \nabla)\mathbf{u}$$

Discrete empirical interpolation

DEIM (Barrault, Maday, Nguyen, & Patera, Chaturantabut & Sorensen)

For
$$F_{\xi}(\mathbf{u}) = A_{\xi}\mathbf{u} + C(\mathbf{u}) - \mathbf{b}$$
, reduced model has form
$$F_{\xi}^{(r)}(\hat{\mathbf{u}}) = Q^T A_{\xi} Q \mathbf{y} + Q^T C(Q \mathbf{y}) - Q^T \mathbf{b}$$

Strategy for approximating nonlinear term:

- Generate matrix of snapshots $S \equiv [C(\mathbf{u}^{(1)}), C(\mathbf{u}^{(2)}), \dots, C(\mathbf{u}^{(M)})]$
- Generate low-rank Φ for which $range(S) \approx range(\Phi)$ (via SVD) $n_s \equiv rank(\Phi)$, analogous to n_r
- Identify "index choosing" matrix $P = [e_{i_1}, e_{i_2}, \dots, e_{i_{n_s}}]$
- Replace C(Qy) with approximation $\widehat{C}(Qy) \equiv \Phi(P^T\Phi)^{-1}P^TC(Qy)$ \longrightarrow approximation $\widehat{F}_{\xi}(Qy) = A_{\xi}Qy + \widehat{C}(Qy) - \mathbf{b}$
- Galerkin condition: $Q^T \widehat{F}_{\xi}(Q\mathbf{y}) = 0$ $Q^T A_{\xi} Q\mathbf{y} + Q^T \Phi(P^T \Phi)^{-1} P^T C(Q\mathbf{y}) - Q^T \mathbf{b} = 0$

Comments:

- Approximation interpolates desired quantity at indices of P: $P^T\Phi(P^T\Phi)^{-1}P^TC(Q\mathbf{y}) = P^TC(Q\mathbf{y})$
- N.B. Need C to be "sparse", OK for grid-based discrete PDE
- Makes evaluation of reduced Jacobian cheap also

Benchmark problem:

Driven cavity flow, piecewise constant viscosity on $\sqrt{m} \times \sqrt{m}$ subdomains

Piecewise constant viscosity

$$\nu(\mathbf{x}, \boldsymbol{\xi}) = \sum_{r=1}^{m} a_r(\mathbf{x}) \, \boldsymbol{\xi}_r, \quad a_r = \chi_{D_r}$$

parameterized by random variables $\boldsymbol{\xi} = [\xi_1, \cdots, \xi_m]^T$ independently and uniformly distributed in $\Gamma = [0.01, 1]^m$

Experiment: Solve three versions of the discrete NS equations using Picard iteration:

- the discrete full system, on 128 x 128 grid
- the discrete reduced system w/o special treatment of nonlinear term
- the discrete reduced system obtained from DEIM

Report: Average CPU times over 10 simulations Relative residual norms $\eta \equiv \|F_{\xi}\|_2/\|\mathbf{b}\|_2$

N.B. this error measure is not available at low cost

m	m 4 k 237			16		36	49 4083		
k			j	1383	3	3039			
n _{deim}		4		14		23	30		
	time	η	time	η	time	η	time	η	
Full	135	1.E-8	147	1.E-8	132	1.E-8	148	1.E-8	
Reduced	1.62	1.13E-5	23.8	2.85E-5	98.1	5.14E-5	191	7.16E-5	
DEIM	0.09	8.27E-5	1.12	1.02E-4	7.11	1.55E-4	15.7	1.56E-4	

Preconditioning

During nonlinear iteration, have sequence of systems of order n_r

$$\begin{pmatrix} Q^T \begin{bmatrix} A(\xi) & B^T \\ B & 0 \end{bmatrix} Q + \begin{bmatrix} Q_u^T \widehat{C}(\mathbf{u}_j^R) Q_u & 0 \\ 0 & 0 \end{bmatrix}) \begin{bmatrix} \delta \mathbf{u}_j \\ \delta \mathbf{p}_j \end{bmatrix} = -r_j^{deim}$$

Would like preconditioners whose construction depends on $n_r \ll N$

Changes the game. Choices:

- Stokes ("beginning") preconditioner: $M = Q^T \begin{bmatrix} A(\xi_0) & B' \\ B & 0 \end{bmatrix} Q$
- "End" preconditioner:

$$M = Q^T \begin{bmatrix} A(\xi_0) & B^T \\ B & 0 \end{bmatrix} Q + \begin{bmatrix} Q_u^T \widehat{C}(\mathbf{u}_j^R(\xi_0))Q_u & 0 \\ 0 & 0 \end{bmatrix}$$

Use entails computing and factoring preconditioners in "offline" stage