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Overview

o Introduction - motivating examples and goals
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@ Accurate SVD and scaling invariant condition number
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‘H,, L, rational matrix valued approximations

Suppose the dynamics of an n—dimensional LTI stable system

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

Is inaccessible to direct modeling, but the input-output relationships may
be observed in the frequency domain yielding H(&;) € CP*™ for selected
& €IR, j=1,...,L The task is to construct an empirical dynamical
system model represented as a stable matrix-valued rational function
H,(s) that fits the measured frequency response data H(&;).

Problem: Minimize over R,

min Zp,nn,(s, HE)IE , H, stable.

< H(s) = C(s/ —A)"'B

R, consists of p x m matrix valued functions with entries that are strictly
proper rational functions of McMillan degree r.
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Basic Iterations (Sanathanan—Koerner, Kalman)

Sanathanan—Koerner (SK) lterations

Compute a sequence of Hﬁk)(s) = N®)(s5)/d¥) (s), where N(K)(s) is a
p X m matrix of polynomials of degree r — 1 or less and d(¥)(s) is a
(scalar-valued) polynomial of degree r. Iterate for k = 0,1,2,...

4

2 .
T S L

Barycentric type representation

H (s) =

N (s) ¥ q;(“)/(s - /\(k)) ¢(k) c cpxm
di(s) 14+ 50, 0 (s — Ay’ &"’ A9 ec

Z. Drma& (University of Zagreb) October 20. 2015.

5 /54




Vector Fitting (Gustavsen—Semlyen)

SK iterations in barycentric form

., o plktD) r k) |17
€= el b K (€| 1+ k = I
The /\j(.kH)’s are computed as the zeros of 1+ ¢, cpj(.k+1)/(s — /\J(.k)).
Once the poles are fixed at A;'s, the residues follow by solving
2
4 r b
= W; I _ _ H(¢&; — min
Zl 2_; e—x ~HE)
T = F
Consider first the scalar SISO case (m=p =1), ®; = ¢; € C, Then the
LS problems for €(¥) and e have particular Cauchy-type structures.
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lll-conditioned weighted Cauchy-type least squares problem

A=W (¢ D,€), or A= W%

—H(§;) \

Hence, we have to solve | W(Ax — h)|[ — min, where

) -

diag(H(&i))i=1
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Cauchy-Vandermonde type ill-conditioning

@ The coefficient matrices from previous examples are of Cauchy type,
which, together with Vandermonde matrices, are among the most
notoriously ill-conditioned matrices.

@ The condition number of an arbitrary 100 x 100 real Vandermomde

matrix is larger than 3 - 1028, and the condition number of the
100 x 100 Hilbert (Cauchy) matrix is more than 10150.

condition number(condition number) = condition number, D. J.

Higham

>> cond(hilb(100))
ans = 4.6226e+19

Goal: high acuracy numerical linear algebra

Accurate SVD of any Cauchy or Vandermonde matrix is feasible without
resorting to higher precision arithmetic. Need only a few basic building
blocks for a uniform approach to many classes of ill-conditioned matrices.

-
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© Preliminaries: accurate computation with ill-conditioned matrices
@ Accurate SVD and scaling invariant condition number
@ Rank revealing (pivoted) QR factorization
@ An interesting connection: RRQR and DIME
@ PSVD, RRD and Cauchy and Vandermonde SVD
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backward error «— perturbation theory

Let rank(A) = n < m, D = diag(||A(:,)||2), and
A A+ 6A = (I +5AA)A = o; — 0j + d0;.

o 16A]l2 B
max D=1 < saal, 6aAt < { T, (A IAlR) = € K(4)
<« & ISAD 2 [l2l(AD 1)1

@ ||AD 1|2 < /nmax; “”"f((f‘.’))””z . column-wise small backward error

o [[(AD)Tl2 = [|B'||l2 < K2(B) < v/nmina—gisg K(AA)
@ Possible: [|E7||2 <« &(A); always ||E'||2 < /nk(A)
@ Jacobi SVD: max; ||I|6/’\4((i;'j))||”2 <e—||B']]2 —

@ bidiagonal SVD: I—ln%ql:—lf e — k(A) — less accurate ,

bidiagonalization provokes k(A).

Demmel and Veseli¢: Jacobi's method is more accurate than QR. (1992.)
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Jacobi SVD ( Z. D., K. Veseli¢ 2008., 2015. )

o (MA)/ :Q(g); Rank Revealing Decomposition (RRD)

o R(1:p,1:n)7 =@ (§1>; p = rank(R),

B O
@ X = RIT = ( = : XTX — 5/ quasi—definite; entropy based decisions

o X = U2 = X<J1J'2 .o ./oo> Jacobi rotations
S —

Vi
o V=R (Xs)
U 0 : V. 0
Y X CVo— | X
v=ra(y ) )iv=ra(s )
@ifp=n QVi=R X,
Delivers provably accurate SVD if A can be written as A = BD with some

diagonal D and well conditioned B. If A= D;CD, with Dy, D> diagonal
and C well conditioned, the results are also accurate but theoretical

bounds are lacking. k2(D), k2(D1), k2(D2) irrelevant.
October 29. 2015. 12 / 54
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Numerical test: accuracy and scaled condition number

Complex A € C™*". m = 500, n = 456, single precision

pp o

- -
-
‘I'l
.
.
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RRD: QRCP with Businger—Golub pivoting

/. HE B BN .\
permutation O H B B B N
o> R |0 0O N B ¢
2, F _Q(o>’R_ 0 0 0 « M ¢
e 0 0 0 0 M ¢
Q=1 \0 0 0 0 0 ¢/
|R;i| > \‘Z |Rij|2, forall 1<i<j<n. (2.1)
lRll‘ > 'R22| il s 'RPP| > 'Rp——l.p-{—li 2 Wik B g ann' (22)

The structure (2.1), (2.2) may not be rank revealing but it must be
guaranteed by the software (e.g. LAPACK, Matlab). Implemented in
LINPACK in 1971., adopted by (Sca)LAPACK and used in many packages.
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Examples of failure (since LINPACK 1971., until LAPACK
3.1, 2006.) of: minpack, odrpack, SLICOT, Matlab, ...
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Consequences (since LINPACK 1971., until LAPACK 3.1,

2006.) ... sparse QRCP, windowed QRCP at risk as well

|Ax — d||2 = min; x = A\d
Warning: Rank deficient, rank = 304 tol = 1.0994e-012.

1o’ ; ; ; ; ;

10° B

10

107"°

SO SRS SURPUUR NN 35 WSS,

10—& 1 l 1 1 1
0 100 200 300 400 500 800

rank(A,1.0994e-12) returns 466
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L(IN+A)PACK update, xGEQPF, xGEQP3

DO30J=1I1+1N
IF ( WORK( J ).NE.ZERO ) THEN
TEMP = ONE- (ABS(A(I,J)) /WORK( J) )**2
TEMP = MAX( TEMP, ZERO )
TEMP2 — ONE + 0.05*TEMP*( WORK( J ) / WORK( N+J ) )**2
WRITE(* *) TEMP2
IF( TEMP2.EQ.ONE ) THEN
IF( M-L.GT.0 ) THEN
WORK( J') = SNRM2( M-I, A( 141, J ), 1)
WORK( N-+J ) = WORK( J )
ELSE
WORK( J ) = ZERO
WORK( N+J ) = ZERO
END IF
ELSE
WORK( J ) = WORK( J )*SQRT( TEMP )
END IF
END IF
30 CONTINUE ...

A strategically placed WRITE(*,*) statement may change the computed
numerical rank substantially (!!) and thus completely change LS solution,
computed properties of a dynamical system (e.g. staircase form).
Numerical catastrophes in mission critical applications! Detailed analysis

and solution by Z.D. and Z. Bujanovi¢, ACM TOMS 2006., LAPACK 3.1.
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An interesting new application of QRCP

@ Discrete Empirical Interpolation Method: Chaturantabut/Sorensen,

2010

@ Discrete variation of the EIM algorithm (Barrault, Maday, Nguyen,

Patera; 2004)

@ Given are: f:7 Cc RY — R" and a basis matrix U € R"™*™
@ U is the POD basis for F = [f(ty) f(t2),...,f(tn)] ; U'U =1,
@ The goal is:  f(t) = Uc(t) wherec(t) e R™

DEIM approximation is

where P is n X m matrix obtained by selecting columns of the identity

I,

@ Note that PTf(t) = ]P’Tf(t), i.e., interpolation at the selected rows.

@ How to pick P?

Z. Drma& (University of Zagreb)
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The key: best conditioned submatrix

Lemma (Chaturantabut/Sorensen, 2010)
Let U € R"™™ be orthonormal (U*U =1,,, m < n) and let

f=UPTU) 1PTf (2.3)
be the DEIM projection f € R", with P computed by DEIM. Then
|f = fll2 < CIET-VUf|l2, C=[@TU) M2,  (24)

where

m—1
C < (1+ v2n) <

[ [|oc

vn(l+v2n)™ 1,

-

@ If R(U) captures the behavior of f well, and if P results in a moderate
C, the DEIM approximation will succeed.

@ Optimality related to picking the submatrix of maximal volume
(Goreinov, Tyrtyshnikov and Zamarshkin; Mikhalev and Oseledets)
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Discrete Empirical Interpolation Method (DEIM)

DEIM, Z.D., S. Gugercin 2015.

INPUT: vy, ..., Um € C"(linearly independent) function S = q_deim(U) :
OUTPUT:p1,...,Pm [~,~,P] — qr( U,, 'vector') :
@ [p p1] = max|u S = P(1:size(U,2)) ;
U=[u], §=[p1). P=[ep] | N )

@ forj=2tom Q_DEIM properties:

Q u« y @ simple, efficient, blocked,

@ Solve (PTU)z = P7u for z parallelizable, numerically robust
@ r—u-— code already available

Q [p pj] = max{|r[}

Q U« [U 4, s5<—[ &
P« [P e@j]

basis independent
better error bounds

close to optimal volume property

L= o
- l
[

(¥ © (" ©

randomized sampling QRCP
enhanced version possible
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QRCP as preconditioner

Let AP = Q(§): Ac = A-diag(1/[|A(:, 1)l .- ., 1/[|AC:, n)]l2);
Re = R diag(1/|[RG: s 1/IRG: ) =
R, = diag(1/[|R(1,")ll2,---,1/||R(n.:)[l2) - R = (

O Ot
ool O+

Let AP = Q(’g), where |R;;| > \/ZJ;‘:,. |Rkj|?, 1 <i<j<n. Then
IR M2 < v/all [RZY ll2. £2(Rr) < n*/2k2(Ac). Moreover, ||R7H|2 is
bounded by O(2"), independent of A. With exception of rare pathological
cases, |R1||2 is below O(n) for any A. RR* is more diagonal than R*R.

-

Example ( A = Hilbert(100). k3(A) > 10° > cond(A) =~ 4.6e19)

ka(Ac) = Ka(R:) > 10, k(R,) ~ 48.31. Repeat with A < RT P=1,
to get new ko(R,) =~ 3.22.
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PSVD(X-D-Y*), D diagonal; X, Y well conditioned

=f
3
. AXD(
J,
olumns; Ax = diag(||X(, )||), Y* = AxDY*.

@ QRCP: YP=0Q (’;

e

); it holds that XDY* = (XP) (R* 0) Q*;

© Need SVD of A= (XP)R“, where R* = (. o ) has dominant

diagonal and mina—gjag K.z(AA) < nz(f() MiNA=diag K2(R*A)

L-_—

Q [U, L, V1]=SVD(A); Jacobi SVD of explicitly computed A

Q@ With V:Q(Vl .

. the SVD is XDY* = UL V*
i b

The SVD will be accurate if mina—diag £2(XA) and mina—giag K2(YA)
are moderate. Detailed analysis in Z.D. 1998.
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PSVD application: Hankel SVD, o; = \/\;(HM)

A(E)=-Poe(t) = Dutt), yrey= Cx(E)

Grammians H = [;* e"ABBTe AT gt M = Ja e AT T CetAdt via
Lyapunov equations AH + HAT = —BBT, ATM+MA=—-C'C.

Let H = LHLT, M = LML . where Ly, LM are the Cholesky factors
computed by the Hammarling algorithm. Solve HMx = Ax via the SVD of
L,C,LH, using the PSVD(L,\T,,LL) algorithm. The algorithm solves

(H+ 0H)(M + 6M)x = Ax exactly, with symmetric 6H, M,

5H;| 5M; -
< f(n)-e, <gln)-e, 1<i,j<n
i = e e <& :
Al

1 1 s
22 < () IH 2+ IMH2) -, & = eps

Hs = diag(H)~Y/2Hdiag(H) Y2, ka(Hs) < nminp_giag k2(DHD).
Accuracy invariant under changes of physical units in state variables.
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Example: X~~EB«wE«~M early loss of definiteness

The stiffness matrix of a mass spring system with 3 masses
X~ He~~El~~B with spring constants ki = k3 =1, ko = /2

ki + ko — ko 0
e —ko ko + k3 —k3
0 —k3 k3

Let £ < eps = round-off. Then the true and the computed matrix are

l+5 —5 O - 1 -5 0 K — K
K=]| =% 143 =1);K=|=%8 1 ~=1|];max ’ L <¢g/2.
0o -1 1 o -1 1) % IKil

K is the best machine representation of K. However:

K is positive definite with A\, (K) ~ £/4,

K is indefinite with A\nin(K) =~ —2/8. -
Too late for Apin(K), even in exact computation with K. :(

October 20. 2015. 25 / 54
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Example ... implicit formulation

On the other hand, K = AT A with

Vki 0 0 Vki 0 0 1 0 0
A=|—Vk Vk 0 0 vkb, 0] ]|l-1 1 0
0 —Vki Vk 0 0 vk 0 -1 1

clearly separates physical parameters and the geometry of the connections.
The problem reduces to the SVD of A.

Since A is bidiagonal, for any choice of ki, ks, k3, the singular values of A
can be computed (zero-shift bidiagonal QR SVD of Demmel and Kahan)
to nearly the same number of accurate digits to which the spring constants
are given. Hence, in this formulation, the initial eigenvalue problem

Kx = Ax is perfectly well conditioned.

This is an example of preserving the important qualitative property
(definiteness) exactly, using an implicit formulation of the problem and an
accurate algorithm.
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SVD(D, x Cauchy x D,)

Given Cauchy matrix C = C(x,y) and any two diagonal matrices Dy, D>,
the SVD of G = D;CD, can be computed to nearly fully precision as
follows (Demmel):

@ Compute the LDU, P{GP>; = LD U using explicit determinant based
formulas to update the Schur complement. This is entry wise forward
stable computation of L, D, U. Moreover, k(L), k(U) are moderate.

(Small [[sL]|/I[L]l. 6U[/[[UII, [0Diil|/|Dii| is also OK) (G = hilb(100),

%2(G) > 10120 1o (1) = ko(U) = s, kp(D) = 2.32 - 10149)
Q@ Compute the SVD of the product LDU using the Jacobi type PSVD

algorithm (Z.D). The forward error is determined by max(k(L), k(U)).

The backward errors ||AL|/|[L]|, [|[AU||/||U||, AD;;/D;; are small.

Key: ?)&C;;)f:"\/ Instead, C = C(x, y) and compute LDU as function

of x, y and the diagonal entries of Dy, D5.
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Example in applications: con—eigenvalues

In the con—eigenvalue problem Cu = Aw, or equivalently,

CCu= |MPu, C ‘/_V

— i ’71

C is factored as C = XD?X*. The problem reduces to computing the
SVD of the product G = DX T XD. Accurate SVD via the PSVD based on
the Jacobi SVD. Haut and Beylkin tested the accuracy with

k2(C) > 10%% and using Mathematica with 300 hundred digits for

reference values. Over 500 test examples of size 120, the maximal error in
IEEE 16 digit arithmetic (¢ = 2.2 - 1071°) was

A=A gy qgmt2 18— uill
X - il

Successfully used in reducing the order of the approximation to the viscous
Burgers’' equation.

<54-10712
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© Hankel matrices
@ Mission impossible
@ Exploiting Vandermonde product representation
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Hankel matrices

/ hh  h? h3 : hn \
hy  hs : h,  hata
H=Hh) =]|h - . Bga - f=HTe€P™
' hn hn+1 ' h2n—2
\hn hn+1 ’ h2n—2 h2n—1)

Ubiquitous in matrix theory, rational approximation theory, signal
processing, control theory, computational geometry, algebraic coding
theory. Related with Toeplitz, Vandermonde, Bernstein, Cauchy, Pascal,
Krylov, companion and other structured matrices. Triangular Hankel
matrices key in the Carathéodory-Feyér rational approximation theory.

Autonne-Takagi-Schur factorization

Let A€ C™" Then its SVD can be written as A=WYXW/' where W is
unitary and X is a diagonal matrix carrying the singular values of A.

Variational characterization using the bilinear form xT Ax, x € C".
(Danciger 2006.)

Z. Drma& (University of Zagreb) October 20. 2015. 31 /54




Mission impossible

Severely ill-conditioned: xy(H = 0) > 3 - 2"° (Tyrtyshnikov 1994)

lll-conditioning caused by a connection with Vandermonde matrices.
Accurate SVD of H as a function of the h;’s is impossible.

It is not possible to compute the SVD of H to guaranteed high relative
accuracy as a function of any input h € C?"~1, for n big enough.

This follows from a similar claim for Toeplitz matrices:

Theorem (Demmel, Dimitriu, Holtz)

The determinant of a Toeplitz matrix is irreducible over any field. Hence,
the determinant of a complex Toeplitz matrix T cannot be evaluated
accurately. Thus, accurate SVD of T is impossible.
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Vandermonde product representation of Hankel matrices

If (hx)k is a signal generated by hy = > ;_; dgxé‘, k=0, 1, ..., 0r; f

b L
Hij = / x"H2dp(x) =~ Z dexg'ﬂ_z = hiyj-2,
=

2 n—1

1 1 < 3 1 dy 1 xq Xy - X
X1 X2 - Xp—1 Xn 2 . n—1

x2 x2 x2 x2 % il %2
H = 1 2 n—1 *n o e 5
. . n—1 =3 X « X5
xn—1 ,n—1 _ n—1 n—1 d 1 Xp—1 X1 - X5y
1 2 n—1 7N n 1 Xn x2 . x;:—l

n

This decomposition naturally arises if the underlying finite rank Hankel
operator §) : /2 — (2 is defined by its rational symbol that is represented
in the pole-residue form x(z) = >_7_; d;/(z — x;). In that case, V'is
replaced by the infinite matrix V,, = (V, D"V, D%y .. .), and VIDYis
the leading n x n submatrix of $ = V;DVOO. (Gragg, Reichel, 1989.)
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Accurate SVD of VDY

Any Vandermonde matrix Vp(x) =V = (x,(._l),’-’d-:1 can be written as

V= DiDF*, Fy=wli—D0-1//n o= e2i/n

where D1 and D, are diagonal, and € is a Cauchy matrix. More precisely,

(VF)i = [1 \_/—:'n] [wl_jl_ x,-] [ﬁ] = (D1)ii € (D2)jj, 1< i,j <n.

In our setting, this gives

FTHF = D¢ T DDD1€¢Dy = D€ D€ Ds.

Since F and D3 are unitary, it remains to compute the SVD of the
complex symmetric M = €T D€, where D3 = D?D. Note that M is
given implicitly and its factors % and D3 are given to full accuracy.
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Algorithm: (X, U, V) = SVD of

H(x,d) = V(x)diag(d)V(x); x,d € C"

Global structure of the algorithm:
Qu=e"Mg= (), :d=(1-x.")/y/n; dp= (W), ;
Q [L,ds, U, m,m] = CauchyLDU(—x, d, dy. * Vd. ones(n,1));
Q@ A = (Ldiag(ds))" L(diag(ds)); Diagonal scaling and cross-product.
Q [Xa,da, Ya,m3,ms] = XDY*(A) ; Here A= Xadiag(da)Y3;.
Q [Q.R,ms] = qr(U" Yadiag(da)) ; Pivoted QR factorization.
@ S=U"Xs(;,m5)RT ;
@ SVD of S: S = U2 W; Jacobi SVD algorithm.

O Assemble the singular vectors:
U= leiag(dg)I'lg Us; V= IFdiag(dg)l'IgQWs.

Many nontrivial details. Complicated implementation and analysis (Z.D.,
ETNA, to appear). Output includes reliable error estimates.
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Example: € = eps = 2.22e — 016, ky(H) =~ 1.40e + 260

Comparison of oy (SVILVIDV ) and 5 (SVDOVTDV) u"

o, by SVD_VTDV,

0
o™ * 7 b SN SUREND: - SRRRR - USRI SRR SRS SRR S, W)
+ 0 bysvdH)
¢ by Jacobi SVD{H)
— Rel. difler. (o-x)egrifox) : : : : : :
-m ' . ' ’ ' a
o™ = | | 1 1 | 1
0 20 @ 80 80 100 120 140 180

Figure: The relative differences |o; — ;|/\/0jg; are all at the level of n - eps.
Reference values using Advanpix multiprecision toolbox (300 digits).
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An extreme case: ky(H) = 0.28 - 10°1°

S © o, by svd_640 5 : : P :
bl T W N T T SRR N StelE S e et G S e S e L I
Rel. differ. (o—x)/sqrt(ox)| : ; PR
—=soo0| | - Nn"eps SR AR ARG S A DS e )
10 T a T T | | I 1 S
O 5 10 15 20 25 30 35 40

Figure: The singular values of the 39 x 39 product X = V" DV, computed in 16
digit arithmetic and the reference values computed in 640 digit arithmetic. The
extreme singular values were o1 = 1.659563214356268e+306,

039 X 5.752792768736278e — 309. The maximal measured relative error over all

singular values was 8.632007535220512e — 013.
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© Case study: Matrix valued rational LS approximation
@ Sanathanan—Koerner iterations and Vector Fitting. H, MOR
@ Details of the VF algorithm
@ Accurate LS for more robust VF
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Basic Iterations (Sanathanan—Koerner, Kalman)

Sanathanan—Koerner (SK) lterations

Compute a sequence of H(,k)(s) = N&)(s)/d*)(s), where Nk)(s) is a
p X m matrix of polynomials of degree r — 1 or less and d(k)(s) iIs a
(scalar-valued) polynomial of degree r. Iterate for k =0,1,2, ...

2

4
1= e N6 - o) —

F

SK iterations in barycentric form

P IGe QD ]
J —
Zld(k)(€)|2 p NG H(&i) 1+Z _/\(k) '
J

=1 &i =%

Implementation details D. Deschrijver, B. Gustavsen, T, Dhaene.
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Vector Fitting (Gustavsen—Semlyen)

Vector Fitting: replace scaling by pole relocation
Let d¥)(s) = H(s — )\J(.Hl))/H(s — /\J(.k)). Then, using the )\J(.kH) 5
¢ r o gkt . (k+1) 2
(k) — : J _ :
B == Z Pi Z (k+1) H(&) [ 1+ Z (k+1)
i=1 =1 51— ’\j j=1 &i — ’\ E
Compare with
¢ N o (k+1) k+1) -
(k) — Z ’ 1
& k)(€.)]2 ' T Z k
i=1 |d( )(\l)l j=1 5, j=1 £I A( ) F
New development jointly with Chris Beattie and Serkan Gugercin (Virginia
Tech): new VF and connection to MOR (IRKA).
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A bigger picture: The Hardy space H5 "

The algebraic least squares error is closely related to the H; system norm.
More precisely, consider the space ’prm of p x m matrix functions M(s),
analytic in the open right half-plane C+ {s € C : J(s) > 0}, such that

SUP,>0 [o [IM(x + ay)||7dy < oo.

X
§.+mv < >
The space Hg’imis a Hilbert space with the associated inner product and
norm defined by
1 oo

M1, Ma)y, = o [ T?race(Ml(nw)Mg(nw))

(5 [ MG a) =

By a Fatou theorem, M(s) can be identified with its boundary function
M(aw), w € R.

M2,
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Distretized H,: Quadrature driven LS on [,(zR)

Discretized H, error as algebraic least squares error

+oo
/ [H(iw) — H, (iw) |2 dew pruH &) —H. (&)

—00

£ P [Mo[H = H,]2 + g2 [M_[H — H, ||}

Mi[H = Hr] = Iimw_,ioo M[H — H,](uw)

An adapted Clenshaw-Curtis scheme (Boyd) :
€+1

o0 ™ »
Jm
flw)dw = f(Lcott) ~§ (Lcott;), tj=-—°;
/_oc (w) = ./o ( =% sm t Wil koo j & {+1
L
2 =
2 S— ’ :1,....[
) BT e y)sin?y
W= Lo
2 - g

(20 +2)sin’ ¢’ =
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VF details - computing the new residues pj(.k) and ¢J(. )

Data structure
Samples S(:,:, i) = st = H()+E.i=1,...,£, S € Cpxmxt
Residues F(K)(:,:,j) = d)J(.k), =k, oy T, € CRSRSE

The residual for the input—output pair (u,v) € {1,...,p} x {1,..., m} is

C uv)c ]:(k+1) u,v,: 3
ipp (@k+D), _pla)g (k) ( go(k(+n v )) —DS(u,v,2)||
2
Dp — dl&g(\/ﬁ) ’ p(uv) — dlag(sc(:(/))le, QO(IH_I) = (‘19(1k+1)- . ’¢£k+1))7’.
(61_;&1(-&1) gl_l\lgkﬂ) 51_)‘1?(4.-1)\ ((¢(1k+1))w\
1 L (85 )ur
(g(kﬁ-l) - £2~_)‘(lk+1) £2_)‘(2k+1) 52_/\Skn*-l) : ,F(k+1)(u, v, :) .
; - (6%D).
\Ef"\l(1k+l) Ef"\l(zkH) Ef—)‘lgkﬂ) ) \(d)(’kﬂ))”")
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VF details - assembling the global errror Altkt1)x(k+1) _ p

o efe el o] o] o]
o ofo ofo o] ofe o

:

e of fe e ok ok
¥ ok ok ok of ok
TEEEE

(16'(k+1).’ _D(uv)(g(k-l-l))
paired Cauchy structure

can be exploited for more
accurate computation

o ofe oo ofe ofoo]e of
o s]o oo oo ofs ofs shs
U LR O L

e e o ok e ok ool ok ok s ok s el sk e ok ok ok | b
e e ok ol ok e k[ ok ok e ok sk ak[oke ok ok e ok ok k|

e o ook ok e e[k sk okl ok s (e sk ok ke ke e sk

AR A R R
ool ol ol ool ol

A(k+1) ¢=7 r=3 p=m=2
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p - m QR factorization(s) of size { X 2 - r

—~—

P OO0 OO

-

DOOO O * *
POOO * % ¥

X K XK

X X X

X X X

(: £ x X X x\ x * »

s X % X * *

v k+1 .

(Rk+D)); (RS, 002X X X 204
000 % * S—

(k+1)y =] 0000 « « | X XX

0 (Rav' "")22 |=| 0000 0 % 4 X X X

* X X X

0 0 et R 000 - &

\ ) 000 0 + #

0000O0O 000 0 0 %

000 000

* ¥ * % - XK

single pivoted QR factorization * 86 . i i i

QR factorizations with column pivoting * 000 el

not computed X 000 00«

faster implementation, LAPACK, BLAS o > i s

numerically more robust; details follow ... 886 X X X

0000 + «

\ 0000 0 ,/
00000 O

(Qk+1))* A(k+1)
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LS solution for ¢p(k+1)

B
*x ok
0 =

=g

OO #*
O ¥ #
* * *
OO *
O *
* A
OO *
O * *%
¥ ¥ *

COOO® % % % %% % % ¥ HXXXXXXX XXX XX

OCOOCOOOH OO+ OOHFOOHIX X XX XXX X XX XX
OCOO0OCOFXF +* O+ O+ O HIX X X X XXX X XX X X

\

(Q(IH—I) *A(k+1)‘ row

hermuted

Z. Drma& (University of Zagreb)

(k+1)
i,
+1
B2
0
(k+1) (k+1)
BElZ] b (k+1) =y
B k+1) ( (k+1)) ~ S(2k+1)
[25] 7o) sgkﬂ)
(k+1) _ Sgk+1)||2 % sHiB




Weighted augmented Cauchy least squares problem

Extracting residues from weighted Cauchy LS problems

D, (€9(i,j,1:£)—S(i,j,1:£))|2—>min, i=1:p, j=1:m.

»

To simplify the notation, write ||D,%éx — h||2 — min, where € = €¢ , is
a Cauchy matrix, h is the corresponding scaled right-hand side,

A= (A1,...,A,) is closed under conjugation and and the solution vector
should also be closed under conjugation. Consider equivalent augmented
unconstrained LS

D,C¢ h
PEEA b |
Dp‘gz«\ h

with the coefficient matrix again of the diagonally scaled Cauchy structure,
€ = (Dp®Dp)Ec )1

= ||€x — h||[ —> min
2
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Accurate regularized LS solution

Let € = WX V* be the SVD and let the unique! LS solution be
X=VEIW =Y 4 v,-(w,-*i;)/a,-. Unfortunately, an accurate SVD is not
enough to have the LS solution computed to high relative accuracy, and
additional regularization techniques must be deployed. This is in particular
important if the right-hand side is contaminated by noise. In the Tichonov
regularization, we choose 1 > 0 and use the solution of

€ x — h||2 + 12| x||2 — min, explicitly computable as

r
agj

Xy = (W} h)vi. (4.2)

2
= O; + U

The parameter i can be further adjusted using the Morozov discrepancy
principle, i.e., to achieve |[€'x, — h||2 = v, where v is the estimated level

of noise 8h in the right-hand side, v ~ ||()77\||2

!Since all nodes are distinct and the poles are assumed simple, the matrix is of full

column rank.
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Test drive of the new implementation (mimoVF)

For the resulting rational approximation H,, define S,(:,:,7) = H.(&),
i =1,....¢, and the relative LS error as

Y = IS =Skl /IISIlF-

Recall that S(:,:, i) = H(&;) € CP*™, i =1,...,{, contains the original
samples that are either measurements, or computed from a state space
realization of the underlying LT| dynamical system.

Example (1R module, International Space Station)

Dynamical system of order n = 270, with m = 3 inputs and p = 3 outputs.
It is very hard to approximate and is challenging for model order reduction.
We take r = 50 and use £ = 300 samples.

o

Compare with vectfit3 (http://www.sintef.no/Projectweb/VECTFIT/)
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Stress test: |SS R1, difficult poles, good subspace in R,

... RO 1P ; .../
.
102 —
i
4l A V) "‘I : “\
10 N\>”h‘.“.l% %.
108~ | | *’ ) \

~
-y

I SO LN
10*3%-”‘ \P

10" ! 100
1042 Il 1 Il L I0-12 RSO | PP P | St aaaaaal 5.4 o gaasch PP VON
10* 10! 10° 10' 10° 10° 10 10" 10° 10' 107 10°
Frequency [rad/sec] Frequency [rad/sec]
v(vectfit3) ~ 14.1, v(mimoVF) ~ 6.45 - 1073,
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© Concluding remarks
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