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Issue with Poisson Regression

* Poisson assumption
Var(Y;)
E(Y;)

— Var(Y;) = E(Y)) —  GOF =

* Count data oftentimes do not conform to
assumption
— QOver-dispersion: GOF>1
— Under-dispersion: GOF< 1




Alternative I:
Negative Binomial Regression

* Benefit:

— Regression tool available in many statistical
software packages

* Drawbacks:

— Does not allow for under-dispersion

— Requires fixing r in order to express log-likelihood in
form of a generalized linear model (GLM)




Alternative ll: Restricted Generalized
Poisson Regression
(Famoye 1993)

e Has the form
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* link function, log u; = B'X;
* arestrictedtol +au; >0,and1+ay; > 0

* & = 0 : Poisson regression
* a > 0:over-dispersion

2 , :
B — < a < 0 : under-dispersion
L




Alternative Il: Restricted Generalized
Poisson Regression (cont.)

* Benefits:
— handles over- or under-dispersion

* Drawbacks:
— limited ability to handle under-dispersion
— belongs to exponential family only for constant o

Introduce Conway-Maxwell-Poisson
(COM-Poisson) Regression




Determining Maximum Likelihood
Estimates (MLEs) (cont.)

* Determined iteratively via Newton-type algorithm
(nlminb or optim in R)

N

— Starting values: v = 1 and Poisson estimates, 8

» Standard errors derived via Fisher Information
matrix

* Hypothesis testing procedure developed for
dispersion




Airfreight Breakage: Underdispersion

Data stem from 10 air shipments, each carrying
1000 ampules on the flight. For each shipment, we
have the number of times the carton was
transferred from one aircraft to another (Y) and the
number of ampules found broken upon arrival (X)

¥ of Broxen Ay




Airfreight Breakage Example (cont.)

Estimated coefficients and standard errors (in parentheses) for

Airfreight example, for five types of regression models

Model B (65,) 3 (63,)
Linear (log Y) & = 0.141 23273 (0.0631) 0.2800 (0.0446)

)
Poisso 2.3529 (0.1317) 0.2638 (0.0792)
CMP((# = 5.7818)5; = 2.597) 13.8247 (6.2369) 1.4838 (0.6888)
* Negative Binomial regression produces Poisson
estimates

* RGPR does not converge
» Test statistic for dispersion: C=9.10 (p-val =0.003)
* 90% bootstrap Cl for v: (4.414, 20.643)




Airfreight Breakage Example (cont.)

® Actua

CMP median fit

FPosson fit

C— —r:|.l; f-.-. ;‘5".

percenties

- = Posson Sth, 65t

percenties

# Broken Ampules

# Transfers




Airfreight Breakage Example (cont.)

B Goodness-of-fit statistics

Model AlICc MSE
L ; ~ Linear (logY) 49.37 2.363
sree= Poisson 5211 2210

COM-Poisson 47.29 1.900




Art Book Purchases (cont.)

Estimated coefficients and standard errors (in parentheses) for four

regression models.

I

Model Bo (63, Brens (55, ) Boooks (65,
Poisson/NB 220 (0.18) -0.06 (0.02) 0.73 (0.05)
Logistic 223 (0.24) -0.07 (0.02) 0.99 (0.14)
COM-Poisson 223 (0.24) -0.07 (0.02) 0.99 (0.14)

(7 = 30.4, 5, = 10123)




Toronto Accidents Example:
Overdispersion

Lord et al. (2008) independently established
Bayesian formulation of COM-Poisson regression

Used link function, log(Al/v)

Estimate parameters using Markov-chain Monte
Carlo (MCMC)

Dataset: 1995 crash data at 868 signalized
intersections located in Toronto, Ontario




Example: Toronto Accident Data
(Lord et al. 2008) (cont.)

Estimated models: comparing two COM-Poisson formulations

(ours and Lord et al. 2008), and four alternative models for the
Toronto crash data.

Model Extra parameter 3 (& 3 ) 34 (63 ) 3, (& 3 ) ‘
Our formulation —=0.3492 (0.0208) -11.7027¢ (0.7501+) 0.6559: (0.0619+) 0.7911c» (0.0461r

Lord et al. 2008 »—>0.3408 (0.0208 -11.53 (0.4159) 0.6350 (0.0474 0.7950 (0.0310
Linear Reg (log Y) o—>0.3491 -9.8132 (0.5161) 0.5966 (0.0512) 0.6566 (0.0226)
Poisson -10.2342 (0.2838) 0.6029 (0.0288) 0.7038 (0.0140)
Neg-Bin Fr—7.154 (0.625) -10.2458 (0.4626) 0.6207 (0.0456) 0.6853 (0.0215)
RGPR a=0.050 (0.004) -10.2357 (0.4640) 0.6205 (0.0451) 0.6843 (0.0215)

—

* Two models produce nearly identical
coefficients, standard errors, and fitted values

* Significant runtime difference!
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Powerful regression tool
for count data given any
form of dispersion

Encompasses common
regressions

COMPoissonReg: R
package for constant
dispersion available on
CRAN (Sellers and Lotze,
2010, 2011, 2015)

Sellers and Raim (2015)
address zero-inflation




Who
Knew?!

Abstract

Title of Thesis: Iterative Methods for Computing Mean First
Passage Times of Markov Chains

Name of degree candidate: Kimberly Ann Flagg Sellers
Degree and year: Master of Arts, 1998

Thesis directed by: Dr. Dianne P. O'Leary, Professor
Department of Computer Science

Much of the literature involving the numerical analysis of Markov chains
focuses on computing stationary distributions. Although a great deal of infor-
mation can be gained from such analyses, we can still learn more from inves-
tigating other parameters associated with the chain (e.g., mean first passage
times). Finding stationary distributions and mean first passage times involves
solving linear systems of the form AX = B, where A is an n x n nonsymmetric
matrix, but X and B are matrices of size n x s (s > 1). In many practical
applications involving queueing networks, the number of states n is enormous
and direct methods cannot be used. This research compares the Block-GMRES
algorithm to the Block Quasi-Newton method with appropriate preconditioning

to solve such systems and calculate the mean first passage time from one state

to another.






