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Introduction

Least squares are used across a wide range of disciplines:
everything from simple curve fitting, through the estimation of
satellite image sensor characteristics, data assimilation for weather
forecasting and for climate modelling, to powering internet
mapping services, exploration seismology, NMR spectroscopy,
ultrasound for medical imaging, aerospace systems, neural
networks ...

Linear least squares (LS)
mianRn“AX = b||2

where A € R™*" with m > n is large and sparse and b € R™.
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Introduction

Mathematically equivalent to solving n x n positive definite
normal equations

Cx = ATb. C=A"A

and this, in turn, is equivalent to solving (m + n) x (m -+ n)
symmetric indefinite augmented system

<Ll =lol w1 o]

where r = b — Ax is the residual vector.

Jennifer Scott
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Test Problems

» Taken from CUTEst LP and UFL collections

» Selected all rectangular matrices, transposed if necessary and
removed null rows/columns

» Removed “duplicates” (similar problems in same group).
921 problems.

» For test set, kept those for which solving with LSMR without
preconditioning either requires > 10 secs or > 10° iterations

» Gives a set of 83 problems

» Range in size from nz(A) ~ 5000 to nz(A) ~ 4 x 10" (latter
with m =~ 10° and n =~ 2.7 % 10°)

» Right-hand side is either provided or taken to be vector of 1's
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Stopping criteria

C1: Stop if ||rk|[2 < 01 or

T WA il =
C2: Stop if 1A rkllz - 1A nll2 5
rklf2 [rol|2 4

where tolerances 4; and &> set to 1072 and 107°, respectively.

» We take the initial solution guess to be x5 = 0.
» Stopping criteria are independent of the preconditioner.

» We exclude the cost of computing residuals to test C1 and C2
from reported times.
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Normal equation preconditioners

Consider preconditioners for the normal equations.

These will be used with LSMR (Fong and Saunders, 2011),

which is mathematically equivalent to MINRES applied to
normal equations.

LSMR monotonically decreases ||A” r,|| and ||rg]|.

Used in preference to LSQR (Paige and Saunders, 1982) as can
terminate earlier.
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» LSMR optionally uses local reorthogonalization
» Controlled by a parameter 1localSize

» Each new basis vector is reorthogonalized with respect to the
previous localSize vectors
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Normal equation preconditioners: |C

|C = Incomplete Cholesky ie
C~LL"

with L lower triangular. Set M = LLT.

» General purpose, many variants used in many applications

» Simplest is IC(0): no fill allowed. Often used in comparisons
with other preconditioners but not generally powerful enough.

» Applying M requires two triangular solves.
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Normal equation preconditioners: HSL_MI35

Scott and Tima have new IC code for LS called HSL_MI35.
This is a variant of HSL_MI28 which was designed for symmetric
positive definite systems.

HSL_MI35 implements a memory efficient approach.

» Only needs one column of C at a time.
» Incorporates ordering and scaling.

» Memory usage (number of entries in each column of L) is
under the user’s control.

» A global shift is used to prevent breakdown.

Jennifer Scott
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Time performance profile for LSMR with HSL_MI35 for range of
values of reorthogonalization parameter localSize
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Normal equation preconditioners: MIQR

Approximate orthogonal factorization of A
R
aalf]

Then C~ R"TRsoset M =RR'.
MIQR = Multilevel Incomplete QR (Li and Saad 2005)

» Builds factorization by exploiting structural orthogonality in A

» At each stage, find set S of orthogonal cols; block
orthogonalize other cols against S. Then repeat.
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Normal equation preconditioners: RIF

Robust Incomplete Factorization (Benzi and Tima 2003)

» Computes an incomplete LDLT factorization of C without
explicitly forming it.

» Utilizes a conjugate Gram-Schmidt process to compute
factorization

ZV ez =D
Z unit upper triangular and D diagonal.

» Follows that L=l = ZT.

» Entries dropped as factorization proceeds to give M = LDLT.
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Preconditioned LSMR (time): 83 test problems

——None (15 failures)
0s - { |=——Diag (13 failures)
- - =MIQR (25 failures)
A 1 | =—RIF (43 failures)
——I|C (15 failures)

w of best

fraction for which solverwithin

In terms of time, simple diagonal preconditioning and IC
(HSL_MI35) are the winners.
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» Thus at each GMRES iteration, another system of normal

equations is solved approximately using a stationary iterative
method.

» This can be done without forming any entries of C explicitly
(need repeated products with A and A').

» Memory used determined by number of steps of GMRES that
are performed before restarting.
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Iteration (left) and time (right) performance profiles for

BA-GMRES(K)
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As expected, increasing k improves reliability and reduces the
iteration count and time.
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Time performance profile for BA-GMRES(1000) and IC
preconditioned LSMR: 83 test problems
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Time performance profile for direct solver HSL_MA97 and
|C preconditioned LSMR: 83 test problems
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It is hard to beat the (parallel) direct solver!
Parallel implementations of preconditioning required
(eg Chow and Patel, Chow and Scott 2015)

Jennifer Scott
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Preconditioning the augmented system

Im A

Two approaches to incomplete factorization

Recall

» Signed incomplete Cholesky factorization (exploit structure).

» General incomplete LDLT factorization (ignore structure).

In each case, we use GMRES as the solver.

Problem: stopping criteria based on K (not A)
(GMRES not aware of structure of K).
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Signed |C preconditioner

s Al ., s T
e[ il L

» Exploits structure of augmented system

Compute

» Avoids need for numerical pivoting

» Shifts are used to avoid breakdown

v Im A Cl.llm 0
K—(AT o>+( —az/,,)

» Software that implements this is HSL_MI30
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General indefinite incomplete factorization LDL"

Many challenges:

>

>

>

Must prevent growth in the entries of the factors.
Pivoting using 1 x 1 and 2 x 2 pivots needed.
Pivoting potentially expensive: localize the pivot search?

Preprocess to improve efficiency and reliability using
matching-based ordering?

What about shifting?
Is the use of intermediate memory beneficial?

Can we monitor instability as factorization proceeds?

Jennifer Scott
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Signed IC General indef. IC
+ GMRES + GMRES + LMSR
a9 iters time Qv iters time Qv iters time
Maraguel 4 0.26 78 0.11 | 0.01 12 0.04 | 0.13 115 0.07
TF16 20 807 156 | 2.0 3972 99 | 0.26 86,715 141
mril 0.02 51 29| 20 - >600 | 20 3978 27
208bit 0.01 3654 104 | 2.0 — >600 | 0.02 2611 8.2

» In these examples, Signed |C uses a; = 0 and a» is small.

» No consistent winner!
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Concluding remarks |

» Preconditioning least squares problems is hard.

» A number of methods have been proposed and can work well
for some problems.

» BUT

» Often slower than (parallel) sparse direct solver.

» Parallel implementations of preconditioning not generally
available.

» Current preconditioners can fail to give good convergence for
many problems.

» Simple diagonal preconditioning can often be sufficient.

» There are other approaches (eg based on LU factorization) but
not included here as robust, efficient implementations not
currently available.
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Concluding remarks ||

» The NA Group at RAL has been awarded a £1M grant to

work on least squares problems over the next 4 years.

» Understanding the state-of-the-art, including preconditioners
for linear least squares, is a first step in this project.

» We will be working on practical applications (including

problems from ISIS neutron synchrotron, RAL Space and
Diamond Light Source).

» |f you have an interest/expertise in sparse least squares, we
would be keen to explore ideas with you and possible
collaborations.






