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TENSORS =d-DIMENSIONAL MATRICES

X
Tensor = d-linear form =
d-dimensional matrix (array) of size n; X ... X ny:
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MAIN PROBLEM

Representing a d-tensor A = [a(iy, ..., iy)] of size
n X ... X n by a list of its entries is intractable:

» iIf d = 30k0 and n = 2 then
the number of elements is 239 > 1033

greater than atoms in the universe!
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CANONICAL DECOMPOSITION
NOW FOR TENSORS

Nonzero tensor with separated variables

\ u(i)v(j)w(k)

is called rank-one tensor or skeleton.

Canonical decomposition = sum of rank-one tensors (skeletons)

r

a(i,j, k) =) u(i,a)v(j,a)w(k,a)

a=1

Defined by three matrices: = b, 1), .eun 30z, 7)),
V =[v(:1),...v(:sr)], W =][w(:1),..,w(:,r)]
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APPLICATIONS OF CANONICAL
DECOMPOSITION

» As a model for data, e.g. in spectrometry: given n; samples of
mixed substances, the data = an array of size n; x ny x ns.
n» and n3 — for frequences of emitters and receivers.

Canonical decompositions reveal the number of substances and
concentrations.

» As a main tool in the complexity theory for the computations of
bilinear forms (Strassen, Pan, Bini,...).

» Abundant with difficult problems both in theory and computations!
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MINIMAL CANONICAL DECOMPOSITIONS

k(A) := minimal natural k s.t. any k columns of A are linearly
independent.

KRUSKAL THEORFM. Assume that k(U)+k(V)+ k(W) = 2R-2.
Then the canonical decomposition is minimal and its rank-one tensors
(skeletons) are unique.

Recent results by Domanov & De Lathauwer (2013) — weaker
minimality conditions. E.g.:

k(Ul) -+ r(Ug) + f(U3 > 2R + 2,

)
r(Ul) + k(UQ) + r(U3) > 2R + 2,
r(Ur) + r(U2) + k(U3) = 2R + 2.
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A SOURCE OF TROUBLE

tensors of rank <r — tensor of ramk r

CONJECTURE STILL OPEN

For any tensor A of rank R < maximal possible rank,
there exists a rank-one tensor B s.t.

rank (A + B) = rank (A) + 1.

We can prove that it is true generically for rank-R tensors.
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REDUCE TENSORS TO MATRICES !

For Canonical and Tucker decompositions see,
e.g. Kolda—Bader survey.
But both are of limited use for our purposes (by different reasons).

k

New decompositions in numerical anaysis:

» TT (Tensor Train) — Moscow, INM (2009)
Oseledets, Tyr.

» HT (Hierarchical Tucker) — Leipzig, MPI (2009)
Hackbusch, Grasedyck, ...

Both use low-rank matrices.

Both use the same dimensionality reduction tree.
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ASSUME SEPARATION OF VARIABLES

Tensor converts into a matrix (many ways!):

This matrix i1s assumed to be of low rank:

b(h. k) = u(h,a)v(a.hb)

Next idea is to repeat same for u(h, ) and v(a, b).

If straightforwardly, then too many a's arise.
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REDUCTION OF DIMENSIONALITY
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THE FIRST STEP IS ESSENTIALLY SAME

a(1112 I3I4I516 E U(’1’2, O’; i3i4i5"6)

‘ensor reduces to smaller dimensionality tensors.

"he a index is no longer viewed as a parameter!
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SCHEME FOR TT

Auxiliary indices must go to different descendants.

I'l fz(l' i3i4f5i6(}
@ i isis0
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WHERE TT AND HT START TO DIFFER

In TT, we relegate o and 7 to different descendants:
a(iskay) = Z u(isa; m)v(n; isy)
In HT, we separate a and ~ from the original indices:

a(isisay) = Y ulisie; E)v(£: )

The only difference: auxilliary summation indices are
treated in different ways!
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SCHEME FOR HT
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TENSOR TRAIN IN d DIMENSIONS

a(i1 — Id) —
Z gl(ilal)gg(a'ligaz) PR

o Gd—1(ag—oig_10qd—1)8a(g—1ig)

d-tensor reduces to 3-tensors gx(ax_1ikk).

If the maximal size is r X n x r then
the number of tensor-train elements does not exceed

dnr? < n?.
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WHAT IS OUR CLASS OF TENSORS?

Ac=laliy...0x; Ikt1---ig)] =

[Z Uk(il S - ik : &k) vk(ak : ik+1 Y id)] = Uk VkT
u(i - . - k) = Z gi(hay) ... gk(ak—1iko)

Vi(klkt1 - - - ig) = Z r+1(Okik410k+1) - - - Bd(Otk—11d)

THE MAIN PROPERTY OF THE CLASS:

all matrices Ax must be (close to) low-rank matrices.
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WHAT IS OUR CLASS OF TENSORS?

THEOREM (Oseledets-Tyr.”2009)

Given a tensdr A, assume that rank (Ax + Ex) = rx.
Then a tensor train T exists with ranks ry.....r4_1
St

A= Tlle <\ 3l

L.Graesedyck: a similar result for HT.
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EVERYTHING REDUCES TO MATRICES

Tensor train can be viewed as a rank-structured
representation for matrices Ay, ....A4_1. Structured

SVD can be tomputed for them simultaneously just
in O(dnr>) operations!

Tensor train can be constructed if we know low-rank
decompositons for matrices Ay, ..., Ag_1.

J

Moreover, it can be construced from cleverly chosen crosses

in some small submatrices of those matrices.
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INTERPOLATION ERROR

= A [An A

0 0
0 Ax — AnAf A
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MAXIMAL VOLUME PRINCIPLE

It is still not illegal to teach determinants

THEOREM (Goreinov, Tyr.) Let

A A
Ay Axpl|’

with maximal volume (determinant in modulus)
among all r x r blocks in A, and set
]

A= AL [An A

A+ A1 Is rxr

Then

A= Allc < (r+17_min |[A=Bllc.
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MAXIMAL VOLUME PRINCIPLE

PREVIOUS RESULT (Goreinov, Tyr.'2000)

r

IA=Allc < (r+1) min_ [|A=Bllp = 0,:1(A),

Coming soon: generalizations for using larger or even
rectangular cross-intersection blocks.
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PROOF

1
s
1
Q =
dr+11 -+ qr+1.r
i dn dnr |

Necessary for the maximal volume:
il <1, r+1<i<n 1<j<r.

Otherwise, swapping the rows increases the volume!
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CROSS INTERPOLATION HISTORY

1985 Knuth: Semi-optimal bases for linear dependencies
1995 Tyr., Goreinov, Zamarashkin: A = CGR pseudoskeleton
2000 Tyr.: incomplete cross approximation with ALS maxvol
2000 Bebendorf: ACA = Gaussian elimination

2001 Tyr., Goreinov: maximum volume principle,
quasioptimality || cross|c < (r+1)| best ||2

2006 Mahoney et al: randomized CUR algorithm
2008 Oseledets, Savostyanov, Tyr.: Cross3D

2009 Oseledets, Tyr.: TT-Cross

2010 J.Schneider: function-related quasioptimality
| cross ||c < (r + 1)?|| best || ¢

2011 Tyr., Goreinov: quasioptimality
I cross [|c < (r+1)?|| best ||c

2013 Ballani, Grasedyck, Kluge: HT-Cross
2013 Townsend, Trefethen -- Chebfun2

Eugene Tyrtyshnikov MATRICES, TENSORS, COMPUTATIONS




What do YOU possess that you have not RECEIVED?

TT, HT and some algorithms (most famous is DMRG by White) can be
found in theoretical physics.

A useful outcome with the new name are some
NEW ALGORITHMS:

» TT-CROSS (Oseledets, Tyr., 2009)
» Wavelet-TT (Oseledets, Tyr., 2011)
» AMEn (Dolgov & Savostyanov, 2013)
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TT-CROSS

Seek crosses in the unfoldlng matrices. Let a; = a(i, ia, i3, ig).
On input: r initial columns in each. Select good rows.

A= [a(ir; i2.i3. ia)].
i o - v . . _} 3
= [a(i. i2; iy ia)], f= (i{7) (7))

a(h, 2, i3; ia)], Jz= {’}263)}

p=
re
I

Ji = {1231) (81) (15’1)}

rows

matrix

skeleton decomposition

h={i"™)

I2 e {'-{C*Z),'(OZ)}
E = {i}az) (a3) (03)}

ay(iy; ir, I3, ig)
32((Y1. I'2 x i3. 14)

33(02. i3 s 14)

a1 =) g1l 1) a2(ay; i2, 3. ig)

o

a2 =Y g(o1.i2; ) az(az.i3; ia)
a2

a3 = ) g3(2.i3; a3) ga(as; ig)

(3

7 —

Y alin 1) g0r 2. a2) ga(az.is. a3) ga(as. ia)

(¥1.,0¥p,(¥3,(vg
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TENSOR TRAIN COMES
FROM SMALL CROSSES IN THE UNFOLDING MATRICES

A(i1 it o fd) = H A(Jgk-h I J>k) [A(Jsk, J>k)]_1

d
k=1
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PSEUDO-QUASI-OPTIMALITY RESULT

THEOREM (Savostyanov'2013)

Assume that'a d-tensor A is approximated by A on
the maximal volume crosses in the unfolding matrices,

and let the error is upper bounded by < ||Al||c in each
matrix. Then for sufficiently small = we have

|A— Allc < 2dre]|Al|c.
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WHAT HAMLET WOULD SAY

Tensor Train = Matrix Product State = Linear Tensor Network

o a(iv, bz, ia, is) =
Z gl(ib G:’l)gg((}'l, fQ, (}2)g3(():‘2, I.3. Oi’3)g4((}.3. i4, (}4)g5((].’4. I3)

_ A’l) A(’z A'3) A(') A(fs)
AR S L

1Xrn nXr rnXxXr r3xrn mxl
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EASY OPERATIONS ON TENSORS

e.g. summation

a(iv.ia,iz) = A AP AP b(iy, . iz) = B{Y B B{®)
s e s Nt N gt g gt

1xn nxrn rnxl 1xs1 s1Xs sHx1
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A NEW PARADIGM OF COMPUTATIONS

only through low-parametric formats

» A=A(p), * B=B(q), C=C(s)
» To implement C = A x B we should devise fast algorithms for
getting s from p and gq.

» General algebraic method for a wide class of applications!

» We can use classical methods of numerical analysis together
with TT-approximation.
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AND EVEN NEWER APPROACH
MINIMIZE THE ERROR FUNCTIONAL ON THE TT MANIFOLD

AMEn does it for quadratic functionals.

A= AA... Ay (approximation)
B = B,B,...By (gradient)

rE

A = Al 5% & A,'_2 [A,'_.l, B,'_l] 0

A,’+1 . o Ad
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TENSORIZATION OF VECTORS

Any vector of size mn can be viewed as a matrix of
size m X n.

Any vector of size N = ny...ny can be viewed as a
d-dimensional matrix (tensor) of size n; X ... X ny.
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TENSORIZATION OF MATRICES

Let N = ny...ny. Any matrix of size N x N

3(,1) — a(il o I'd. .jl & _jd)
k

can be viewed as a 2d-tensor, and as a d-tensor, e.g.

2 2

of size ny x ... x n3.

Tensorization with TT may crucially
decrease the number of representation
parameters!

Eugene Tyrtyshnikov MATRICES, TENSORS, COMPUTATIONS




EXAMPLES OF TENSORIZATION

f(x) is a function on [0, 1]

mh”ypﬁmyi:%+%+m+%

The array of values of f is viewed as a tensor of size 2 x - .- x 2.

EXAMPLE 1. f(x) = e&* + e 4 3
ttrank= 2.7  ERROR=1.5e-14

EXAMPLE 2. f(x) =1+ x+x*+x3
ttrank= 3.4  ERROR=2.4e-14

EXAMPLE 3. f(x)=1/(x —0.1)
ttrank= 10.1 ERROR=5.4e-14
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EXAMPLE OF TT INTERPOLATION

f(X) o sm(lOOOx) [0 1000]

63 \/_

2°° nodes.
Number of
tol IElF IEllc function calls | Ili-Tramk
1072 | 6.46 10—{ 139« 10;3 B 73668 3.00

104 | 1.71%x107% | 3.11% 10> 164729 4.67
10°° [ 212%x10°°| 1.82x10' 288449 6.18
1077 | 154%107 | 3.54% 108 348201 6.88
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TT-FE APPROXIMATION
ur(x) = r*sinag(x), x € Q= (0,1)?

1
g < exp{—cNF}, N, —the number of TT-elements

THEOREM (V.Kazeev & C.Schwab). x <5.

-~ -
- R
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TE-FE-F-AMEN Au=0, ulsg=ur

Q = (0,1)*\ [0,1) % (—1,0] Q= (0,1)%\ [0,1) x {0}
N — — N —— r—
bright labels black labels

(V.Kazeev)
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TENSOR TRAINS

FOR PARAMETRIC EQUATIONS

Diffusion domain = [0. 1]? consists of p x p square subdomains with
constant diffusion coefficient, p? parameters varying from 0.1 to 1.

k

256 knots in each parameter. Space grid of size 256 x 256.

Solutions for all values of parameters are approximated by a tensor
train with relative accuracy 10~>:

Number of parameters

Memory

4
16
64

(1.Oseledets)

8 Mb
24 Mb
78 Mb
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LOW RANK AND TENSOR TRAINS
IN THE SMOLUCHOWSKI EQUATIONS

b V= [V, < V4) — volumes of different substances of a particle

» n(V.t) — concentration function for volume components of a particle

n(v, o L
( "(,V ) = 1/ duy .. / K(v — @, u)n(a, t)n(v — @, t)dug—
()t 2 0 0

—n(V. t) /:C duy . . ./030 K(v;T)n(d, t)duy.
n(v

.0) = no(V).

Joint work with S.Matveev and A.Smirnov
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GLOBAL SEARCH CAN BADLY GAIN
WHEN IT USES TENSOR TRAIN

THEOREM. [f Ag is of maximal volume among
r x r blocks¥n A, then

|Aml[c > [|A[lc/(2r* + r).

D S. Goreinov, |. Oseledets, D. Savostyanov, E. Tyrtyshnikov,
N. Zamarashkin, How to find a good submatrix, Matrix Methods: Theory,
Algorithms and Applications. Devoted to the Memory of Gene Golub (eds.
V.Olshevsky and E.Tyrtyshnikov), World Scientific Publishers, Singapore,
2010, pp. 247-256.
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DIRECT DOCKING IN THE DRUG DESIGN

ACCOMMODATION OF LIGAND INTO PROTEIN
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DIRECT DOCKING IN THE DRUG DESIGN
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Joint work with D.Zheltkov and V.Sulimov
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