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Overview

€ Diffuse Optical Tomography and Nonlinear Parametric Inversion

© A Stochastic Approach Using Simultaneous Random Sources and
Detectors

© Improving the Stochastic Approach Using Optimized Sources and
Detectors

© Conclusions and Future Work

This material is based upon work supported by the National Science Foundation under
DMS-1217156 and DMS-1217161.

Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foundation.
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Diffuse Optical Tomography

@ Tissue illuminated by near-infrared, frequency modulated light
@ Light detected in array(s)
@ Tumors have different optical properties than healthy tissue
@ Recover images of optical properties, D(x) and x(x), in
V- (D(x)Vn) — (u(x) + ’,—77)1] =

@ Problem is ill-posed and underdetermined, and data is noisy

@ Sources 2mm apart: 2500 sources

@ Detectors ~ 0.5mm apart.
Implies > O(10°) forward unknowns

@ m, sources and m,, frequency
modulations: solution of m. - m,,
discretized PDEs for function
evaluation. Additional solves for

Jacobian.
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Parametric Inversion

@ Parameterize D and i by expansion in compactly supported radial
basis functions (CSRBF) and map to near bivalued function using
approximate Heavyside function and level set ?

@ Solve for (relatively) modest number of parameters
@ [his parameterization yields regularized solution

@ Assume for simplicity a single frequency. Nonlinear residual:

ri(p) - C'A7'(p)by —d;

_rms(p) CTA_l(p)bms il dms

@ Nonlinear Least Squares Problem:

1 5
m‘;ngrlr(p)llz
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Nonlinear Problem

The Gauss-Newton (GN) approximation at p

men(p+9) = lI'Tl‘ +rT)s+ EO‘TJTJ()‘
2 2
where Jacobian: (le()';) = [ 'fzf)‘;) :;Ir)(:p) ]

and Jj(p) = 55-(CTA~(p)b;) = CT A~ (p)7-A(p)A~!(p)b;

Opk

Trust region algorithm with REGularized model Solution® (TREGS) solves
Nonlinear Least-Squares Problem:

@ lll-conditioned Jacobians

@ Gauss-Newton step: Regularized solve for Jop =~ —r

@ [SVD of J for the large singular values

@ Combined with selecting large spectral components in r

2EdS 'Kilmer'11
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Recast as a Stochastic Problem

min[[r(p)|3 = min}_ CTA(p)b; — d; [} = min |CTA~(p)B — D2
j=1

Matrix Form: R(p) = CTA(p)"'B-D
Stochastic optimization problem (Haber, Chung, Herrmann SIOPT'12):

min E,, (wTR(p)TR(p)w) — mintrace R(p)TR(p) = min |R(p)||2
p p p

Rademacher distribution: w; € {—1.+1} i.i.d. with equal probability (1/2)

Drastically reduces the number of solves in function evaluation but not in
Jacobian.
0

Jjk(p) = CTA_I(P)ObkA(P)A_l(P)bJ
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Simultaneous Random Sources & Detectors

Similar approach for detectors:

minE (v R(p)w) = min|[R(p)|}

Columns of B correspond to ms sources; rows of C’ to m, detectors

Replace columns of B by a few random linear combinations Bw; (SAA)
Replace columns of C by a few random linear combinations Cy;

v’ (CTA(p)—lB _ D) W = VT R(p)W
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Simultaneous Random Sources & Detectors

In vector form

min IVIR(p)W||% = min | (WT ® VT) r(p)|)3

With simultaneous sources W and detectors V
Regularized solve for Jop =~ —r and the Gauss-Newton step becomes

(wT D vT) r(p - op) ~ (WT <z vT) (r(p) = Jop)

Hence

WTeVlip~—WT oV
Use TREGS

A modest number of random sources and detectors is typically enough to
get a reasonable solution
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Weighted CSRBFs

Unoerlying ABFs
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Full Order Model Result

Figure: Image reconstruction results with all sources and all detectors
m.— g =32

50 100 150 200 250 300 350 440

Eric de Sturler (Virginia Tech) Random & Optimized Sources and Detectors Georgia Tech 2015 10 /21



Stochastic Results

Figure: Example 1: Image reconstruction results with 5 = (4 = 10
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Stochastic Results

Figure: Example 2: Image reconstruction results with s = (4 = 10
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How to Improve the Stochastic Approach?

Good localization from random sources and detectors in modest # steps.
Replace few sources and detectors by optimized sources and detectors.

Compute full Jacobian and residual
Replace a few sources/detectors to maximize Frobenius norm

max |[(WT @ V)] (think spaces not vectors)
TREGS prefers large sin. values (also link with opt. design of experiments)
Drop: V™mé*td by Vmd*la-1 sych that R(V) c R(V)
Find unitary [@*f-1 such that V = VI %*%-1 and

max (W' @ VI)J|[
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Drop Random Sources & Detectors (optimal fashion)

For simplicity consider a single simultaneous source and /4 detectors

w/ @V 1=VT]

N RO

Goal: max'!\?T]H% i.e. max(o? +o —---+f7,2d_1)

max |\\7T]|\2F = max \\FTVTj]|2F

V'] =oQw’(SVD)

Keep the largest ({4 — 1) left singular vectors of VAN

N=[p1 ¢2 -+ De,—1]

We can also remove one (or more) simultaneous sources
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Adding Optimized Sources & Detectors

Find unit g L V that maximizes

Tw/ eVl |
WlT .::_>’<)qT
F owaF 2
.:I—p\' T J — T [Jl J(s ]
W; &9 q A
L w,®q" | ||,
5 ~ 1112
New part: “qT [Jl J(s] ' and takinggq=V.y (V. _LV)gives
2
max”yT [VCle VCT/j{S] |2
y

Standard problem, can be solved by SVD (also for multiple new det.s)
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Examples

Figure: Example 1: Image reconstruction results with ¢4 = (4 = 10
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Results in lterations

Average number of iterations, Function evaluations, Jacobian evaluations

lter  Fevals Jevals tol PDE solves
Only Stochastic Method 12 13 6 3e-7 190
+ Replacing 1 src/1 det 10 9 6 3e-10 214
+ Replacing 2 src/2 det 10 9 5 3e-10 204
Only Stochastic Method | (149) (150) (119) (3e-10) 2690
All srcs/ All dets 16 17 9 3e-10 1120
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