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Can we use analysis to understand these methods?
Yes. In fact analysis of (a) continuum limit already exists.
Actually, there is a second possible continuum limit...
...which is “closer” to the discrete solution.
analyzing the closer limit facilitates the design of better algorithms.
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Image Inpainting

Filling holes / removing objects from images.
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Approach of Interest

Fill in Shells using by taking weighted averages

(Denote the hole to be filled by O, pixel coordinates by x, pixel color by
u(x), weights w(x, y))

while O 6= ∅
for pixels x ∈ ∂O
u(x)←

∑
y∈Bε(x)∩Oc w(x,y)u(y)∑
y∈Bε(x)∩Oc w(x,y)

end
O ← O\∂O.

end
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Immediate Observations

“Kinking ”of extrapolated isophotes.

Can be explained by proposing a continuum limit [Marz2007]. However,

This limit does not account for other behaviour we will see later.

It turns out another, closer limit also exists.

It does.
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Motivation



3D Conversion

Given only the left eye view of the world, can we construct what the
right eye sees?

Yes - in fact, in the movie industry entire films are routinely converted.

There are companies that exist solely for this purpose.

One of them is Gener8, a company I worked for at the start of my
PhD.
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“Recent” Converted Films

(a) (b)



Render the Scene from a new viewpoint

A depth map is used to decide how much to shift pixels left or right.

“Gaps” are created at depth discontinuities.
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Incomplete Disocclusion

In classical inpainting, our goal is to fill the hole in an image in its entirety.
But in the present case, we only have to fill part of the hole.
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Classical Inpainting vs. Present Case

Filling the entire hole is allowed, but it is potentially very wasteful.

Shell based approaches are natural, as they can be “stopped early”.

GPU implementation is extremely fast.
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ErodeFill and Compass Fill

When I arrived at Gener8, the company was using two inpainting
schemes, both special cases of the approach described earlier.

Both suffered from the “kinking” phenomena we saw earlier.

My Job: “Can you make that kinking go away?”
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Coherence Transport

Idea: Instead of uniform weights, assign higher weights to pixels on edges.
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Coherence Transport

For each pixel x due to be filled, estimate local edge magnitude µ(x) ≥ 0
and direction g(x) ∈ S1.

Adapt weights accordingly:

w(x, y) =
exp

(
−µ(x)2

2ε2

(
g⊥(x) · (y − x)

)2)
‖x− y‖

.
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Coherence Transport

Figure: µ = 0



Coherence Transport

Figure: µ = 1



Coherence Transport

Figure: µ = 10



Is the kinking fixed?

Test the method on a toy problem, feeding in the correct g by hand and
set µ� 1.

Figure



Actually, no

ε = 3px, µ = 50.
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Intuitive Fix

weights are highest for pixels on the line passing through x parallel to
g.

Problems come up when this line “misses” pixel centers in Bε,h(x).
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Intuitive Fix

Sum over a rotated ball of “ghost pixels” instead.

Figure

Define “ghost pixels” using bilinear interpolation.
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Lines do not bend

ε = 3px, µ = 50.
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Part III

Maths



What’s going on?

What caused the kinking observed earlier?

Why did ghost pixels fix it?
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Assumptions

From now on, assuming inpainting domain O = (0, 1]2, with periodic
boundary conditions at x = 0 and x = 1.

Boundary data is on the strip (0, 1]× (−δ, 0].

Also some restrictions on the weights.
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Existing Theory

März justifies Coherence Transport by arguing that in the double limit
h→ 0 and then ε→ 0, the method behaves like the transport PDE

g∗µ · ∇umärz = 0

where,

g∗µ :=
∫
y∈B−1

wµ,1(0, y)ydy −→ g as µ→∞,

B−1 := {(y1, y2) ∈ R2 : y2
1 + y2

2 ≤ 1 and y2 ≤ 0},
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Existing Theory

Call the continuum solution umärz, discrete solution uh.

We know that the double limit

umärz = lim
ε→0

[
lim
h→0

uh

]
does what we want.

But does h ≈ 0 and ε ≈ 0 mean uh ≈ umärz?

Actually, no.
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Closer Look

First, let’s take h→ 0...
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Closer Look

Now let’s make ε “pretty small” as well.
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Closer Look

Define r = ε/h (the radius of the ball measured in pixels).

For uh ≈ umärz, we need not only h ≈ 0 and ε ≈ 0, but also r � 1.

But in practice, one fixes r = 3px to r = 5px.

Makes more sense to study the limit h→ 0 with r fixed.
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New Limit

h→ 0, r = ε/h constant.
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Which Limit is Closer?

It is possible to prove convergence of uh to either limit:

‖uh − ur‖p → 0 as h→ 0 with r fixed.

‖uh − umärz‖p → 0 as h→ 0 and r →∞ but r2h→ 0.

true for p <∞ for boundary data with finitely many jump
discontinuities.

true for all 1 ≤ p ≤ ∞ if there are no jumps.
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Which Limit is Closer?

But for fixed h, one finds:

‖uh − ur‖p / Cr‖uh − umärz‖
2
p.



New Limit

Under this limit we still get a transport equation

g∗µ,r · ∇ur = 0,

but the transport direction is different:

g∗µ,r :=
∑
j∈b−r

wµ,r(0, j)j.

where
b−r := {(i, j) ∈ Z2 : i2 + j2 ≤ r2 and j < 0}

vs

g∗µ :=

∫
y∈B−1

wµ,1(0, y)ydy

where
B−1 := {(y1, y2) ∈ R2 : y2

1 + y2
2 ≤ 1 and y2 ≤ 0}.
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Explanation of Clamping

In this case we have

g∗r,µ :=
∑
j∈b−r

e−
µ2

2r2
(j·g⊥)2 j

‖j‖
,

Suppose j∗ is the unique minimizer of |j · g⊥| for j ∈ b−r

Then, rescaling by e
µ2

2r2
(j∗·g⊥)2 we have

g∗r,µ =
j∗

‖j∗‖
+

∑
j∈b−r \{j∗}

e−
µ2

2r2
{(j·g⊥)2−(j∗·g⊥)2} j

‖j‖

→ j∗

‖j∗‖
as µ→∞.
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Comparison with real Life

Define θ = ∠g, θ∗r = ∠g∗r , consider θ∗r = Θ(θ).
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Figure



Back to the Fix

We get a remarkably similar formula:

g∗r =
∑
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w(0, j)j vs. g∗r =
∑
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w(0, j)j
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Back to the Fix

This simple formula is a consequence of our choice to define ghost
pixels via bilinear interpolation.

It is not true for generic interpolants.

Key property is that the bilinear interpolant of a linear function is the
function.

Now let’s see why everything is fixed.
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For smooth boundary data, proving convergence is routine.

However, nonsmooth boundary data (e.g. images) is much more
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Convergence

In this case, the fact that our weights are non-negative and sum to
one means they can be interpretted as a probability density.

This opens the door to a probabilistic line of attack based on
martingales.

Enables us to prove convergence even for data with jump
discontinuities.
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The End


