Reverse Engineering a PDE from an Image Inpainting Algorithm

Rob Hocking

University of Cambridge

Supervisor: Carola-Bibiane Schönlieb

December 6, 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Problem of Interest

- Problem of Interest
 - Image inpainting

• Problem of Interest

- Image inpainting
- Class of Non-iterative, Geometric Methods

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Problem of Interest
 - Image inpainting
 - Class of Non-iterative, Geometric Methods

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation

- Problem of Interest
 - Image inpainting
 - Class of Non-iterative, Geometric Methods

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Motivation
 - Target application: 3D Conversion

- Problem of Interest
 - Image inpainting
 - Class of Non-iterative, Geometric Methods

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Motivation
 - Target application: 3D Conversion
 - Example usage in Industry

- Problem of Interest
 - Image inpainting
 - Class of Non-iterative, Geometric Methods

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Motivation
 - Target application: 3D Conversion
 - Example usage in Industry
 - Not mathematically motivated

- Problem of Interest
 - Image inpainting
 - Class of Non-iterative, Geometric Methods

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Motivation
 - Target application: 3D Conversion
 - Example usage in Industry
 - Not mathematically motivated
- Maths

- Problem of Interest
 - Image inpainting
 - Class of Non-iterative, Geometric Methods
- Motivation
 - Target application: 3D Conversion
 - Example usage in Industry
 - Not mathematically motivated
- Maths
 - Can we use analysis to understand these methods?

- Problem of Interest
 - Image inpainting
 - Class of Non-iterative, Geometric Methods
- Motivation
 - Target application: 3D Conversion
 - Example usage in Industry
 - Not mathematically motivated
- Maths
 - Can we use analysis to understand these methods?
 - Yes. In fact analysis of (a) continuum limit already exists.

- Problem of Interest
 - Image inpainting
 - Class of Non-iterative, Geometric Methods
- Motivation
 - Target application: 3D Conversion
 - Example usage in Industry
 - Not mathematically motivated
- Maths
 - Can we use analysis to understand these methods?
 - Yes. In fact analysis of (a) continuum limit already exists.

• Actually, there is a second possible continuum limit...

- Problem of Interest
 - Image inpainting
 - Class of Non-iterative, Geometric Methods
- Motivation
 - Target application: 3D Conversion
 - Example usage in Industry
 - Not mathematically motivated
- Maths
 - Can we use analysis to understand these methods?
 - Yes. In fact analysis of (a) continuum limit already exists.

- Actually, there is a second possible continuum limit...
- ...which is "closer" to the discrete solution.

- Problem of Interest
 - Image inpainting
 - Class of Non-iterative, Geometric Methods
- Motivation
 - Target application: 3D Conversion
 - Example usage in Industry
 - Not mathematically motivated
- Maths
 - Can we use analysis to understand these methods?
 - Yes. In fact analysis of (a) continuum limit already exists.
 - Actually, there is a second possible continuum limit...
 - ...which is "closer" to the discrete solution.
 - analyzing the *closer* limit facilitates the design of better algorithms.

The Problem

Image Inpainting

Filling holes / removing objects from images.

・ロト・日本・モト・モート ヨー うへで

Image Inpainting

Filling holes / removing objects from images.

Figure

ヘロン 人間と 人間と 人間と

ъ

Image Inpainting

Filling holes / removing objects from images.

Figure

• • • • • • • • • • • • •

3.5 3

Fill in Shells using by taking weighted averages

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fill in Shells using by taking weighted averages

(Denote the hole to be filled by O, pixel *coordinates* by x, pixel *color* by u(x), weights w(x, y))

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fill in Shells using by taking weighted averages

(Denote the hole to be filled by O, pixel *coordinates* by x, pixel *color* by u(x), weights w(x, y))

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

while
$$O \neq \emptyset$$

for pixels $x \in \partial O$
 $u(x) \leftarrow \frac{\sum_{y \in B_{\epsilon}(x) \cap O^{c}} w(x,y)u(y)}{\sum_{y \in B_{\epsilon}(x) \cap O^{c}} w(x,y)}$
end
 $O \leftarrow O \setminus \partial O.$
end

Figure

Figure

Figure

Figure

◆□> <圖> <필> <필> < => < =</p>

Figure

◆□> <圖> <필> <필> < => < =</p>

Figure

◆□> <圖> <필> <필> < => < =</p>

Figure

◆□> ◆圖> ◆国> ◆国> 三国

Figure

◆□> ◆圖> ◆国> ◆国> 三国

Can be explained by proposing a continuum limit [Marz2007].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Can be explained by proposing a continuum limit [Marz2007]. However,

• This limit does not account for other behaviour we will see later.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Can be explained by proposing a continuum limit [Marz2007]. However,

• This limit does not account for other behaviour we will see later.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• It turns out another, *closer* limit also exists.

Can be explained by proposing a continuum limit [Marz2007]. However,

• This limit does not account for other behaviour we will see later.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- It turns out another, *closer* limit also exists.
- It does.

Motivation

3D Conversion

• Given only the left eye view of the world, can we construct what the right eye sees?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
3D Conversion

- Given only the left eye view of the world, can we construct what the right eye sees?
- Yes in fact, in the movie industry entire films are routinely converted.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3D Conversion

- Given only the left eye view of the world, can we construct what the right eye sees?
- Yes in fact, in the movie industry entire films are routinely converted.

• There are companies that exist solely for this purpose.

3D Conversion

- Given only the left eye view of the world, can we construct what the right eye sees?
- Yes in fact, in the movie industry entire films are routinely converted.
- There are companies that exist solely for this purpose.
- One of them is Gener8, a company I worked for at the start of my PhD.

Figure

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

"Recent" Converted Films

(a)

(b)

Render the Scene from a new viewpoint

A depth map is used to decide how much to shift pixels left or right.

・ロト・日本・モト・モート ヨー うへで

Render the Scene from a new viewpoint

A depth map is used to decide how much to shift pixels left or right. "Gaps" are created at depth discontinuities.

Render the Scene from a new viewpoint

A depth map is used to decide how much to shift pixels left or right. "Gaps" are created at depth discontinuities.

Incomplete Disocclusion

In classical inpainting, our goal is to fill the hole in an image *in its entirety*. But in the present case, we only have to fill *part* of the hole.

Figure

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

• Filling the entire hole is *allowed*, but it is potentially very wasteful.

(ロ)、(型)、(E)、(E)、 E) の(の)

- Filling the entire hole is *allowed*, but it is potentially very wasteful.
- Shell based approaches are natural, as they can be "stopped early".

- Filling the entire hole is *allowed*, but it is potentially very wasteful.
- Shell based approaches are natural, as they can be "stopped early".

• GPU implementation is extremely fast.

• When I arrived at Gener8, the company was using two inpainting schemes, both special cases of the approach described earlier.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• When I arrived at Gener8, the company was using two inpainting schemes, both special cases of the approach described earlier.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Both suffered from the "kinking" phenomena we saw earlier.

• When I arrived at Gener8, the company was using two inpainting schemes, both special cases of the approach described earlier.

- Both suffered from the "kinking" phenomena we saw earlier.
- My Job: "Can you make that kinking go away?"

Idea: Instead of uniform weights, assign higher weights to pixels on edges.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Idea: Instead of uniform weights, assign higher weights to pixels on edges.

Figure

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

For each pixel x due to be filled, estimate local edge magnitude $\mu(x) \geq 0$ and direction $\mathbf{g}(x) \in S^1.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For each pixel x due to be filled, estimate local edge magnitude $\mu(x) \ge 0$ and direction $\mathbf{g}(x) \in S^1$. Adapt weights accordingly:

$$w(x,y) = \frac{\exp\left(-\frac{\mu(x)^2}{2\epsilon^2} \left(\mathbf{g}^{\perp}(x) \cdot (y-x)\right)^2\right)}{\|x-y\|}.$$

Figure: $\mu = 0$

ヨト ヨ

Figure: $\mu = 1$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

Figure: $\mu = 10$

・ロト ・聞ト ・ヨト ・ヨト

æ

Is the kinking fixed?

Test the method on a toy problem, feeding in the correct ${\bf g}$ by hand and set $\mu \gg 1.$

Figure

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

(ロ)、

 $\epsilon = 3$ px, $\mu = 50$.

Figure

(ロ)、

Intuitive Fix

 \bullet weights are highest for pixels on the line passing through ${\bf x}$ parallel to ${\bf g}.$

Intuitive Fix

 \bullet weights are highest for pixels on the line passing through ${\bf x}$ parallel to ${\bf g}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Problems come up when this line "misses" pixel centers in $B_{\epsilon,h}(\mathbf{x})$.

Intuitive Fix

- \bullet weights are highest for pixels on the line passing through ${\bf x}$ parallel to ${\bf g}.$
- Problems come up when this line "misses" pixel centers in $B_{\epsilon,h}(\mathbf{x})$.

Figure
Sum over a rotated ball of "ghost pixels" instead.

<□ > < @ > < E > < E > E のQ @

Intuitive Fix

Sum over a rotated ball of "ghost pixels" instead.

Figure

・ロト ・聞ト ・ヨト ・ヨト

æ

Define "ghost pixels" using bilinear interpolation.

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

 $\epsilon = 3$ px, $\mu = 50$.

Figure

Maths

• What caused the kinking observed earlier?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• What caused the kinking observed earlier?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Why did ghost pixels fix it?

From now on, assuming inpainting domain $O = (0, 1]^2$, with periodic boundary conditions at x = 0 and x = 1.

Boundary data is on the strip $(0,1] \times (-\delta,0]$.

From now on, assuming inpainting domain $O = (0, 1]^2$, with periodic boundary conditions at x = 0 and x = 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Boundary data is on the strip $(0,1] \times (-\delta,0]$.

Also some restrictions on the weights.

März justifies Coherence Transport by arguing that in the double limit $h\to 0$ and then $\epsilon\to 0$, the method behaves like the transport PDE

$$\mathbf{g}_{\mu}^{*} \cdot \nabla u_{\mathsf{m}\ddot{\mathsf{a}}\mathsf{r}\mathsf{z}} = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

März justifies Coherence Transport by arguing that in the *double limit* $h \rightarrow 0$ and then $\epsilon \rightarrow 0$, the method behaves like the transport PDE

$$\mathbf{g}_{\mu}^{*} \cdot \nabla u_{\mathsf{m}\ddot{\mathsf{a}}\mathsf{r}\mathsf{z}} = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where,

•
$$\mathbf{g}^*_{\mu} := \int_{y \in B_1^-} w_{\mu,1}(0, y) y dy \longrightarrow \mathbf{g} \text{ as } \mu \to \infty,$$

März justifies Coherence Transport by arguing that in the *double limit* $h \rightarrow 0$ and then $\epsilon \rightarrow 0$, the method behaves like the transport PDE

$$\mathbf{g}_{\mu}^{*} \cdot \nabla u_{\mathsf{m}\ddot{\mathsf{a}}\mathsf{r}\mathsf{z}} = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where,

$$\begin{array}{l} \bullet \ \mathbf{g}_{\mu}^{*} := \int_{y \in B_{1}^{-}} w_{\mu,1}(0,y) y dy \longrightarrow \mathbf{g} \text{ as } \mu \to \infty, \\ \\ \bullet \ B_{1}^{-} := \{(y_{1},y_{2}) \in \mathbb{R}^{2} : y_{1}^{2} + y_{2}^{2} \leq 1 \text{ and } y_{2} \leq 0\}, \end{array}$$

Call the continuum solution $u_{m\"arz}$, discrete solution u_h .

Call the continuum solution $u_{\mbox{m\"arz}}$ discrete solution $u_h.$ We know that the double limit

$$u_{\mathsf{m}\ddot{\mathsf{a}}\mathsf{r}\mathsf{z}} = \lim_{\epsilon \to 0} \left[\lim_{h \to 0} u_h\right]$$

(ロ)、(型)、(E)、(E)、 E) の(の)

does what we want.

Call the continuum solution $u_{\mbox{m\"arz}}$ discrete solution $u_h.$ We know that the double limit

$$u_{\mathsf{m}\ddot{\mathsf{a}}\mathsf{r}\mathsf{z}} = \lim_{\epsilon \to 0} \left[\lim_{h \to 0} u_h\right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

does what we want.

But does $h \approx 0$ and $\epsilon \approx 0$ mean $u_h \approx u_{marz}$?

Call the continuum solution $u_{\mbox{m\"arz}}$ discrete solution $u_h.$ We know that the double limit

$$u_{\mathsf{m}\ddot{\mathsf{a}}\mathsf{r}\mathsf{z}} = \lim_{\epsilon \to 0} \left[\lim_{h \to 0} u_h\right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

does what we want.

But does $h \approx 0$ and $\epsilon \approx 0$ mean $u_h \approx u_{marz}$?

Actually, no.

First, let's take $h \to 0...$

Figure

First, let's take $h \to 0...$

Figure

・ロト ・四ト ・ヨト ・ヨト

- 2

First, let's take $h \rightarrow 0...$

Figure

First, let's take $h \to 0...$

Figure

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

First, let's take $h \to 0...$

Figure

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

First, let's take $h \to 0...$

Figure

・ロト ・四ト ・ヨト ・ヨト

Next, take $\epsilon \to 0...$

Figure

・ロト ・四ト ・ヨト ・ヨト

æ –

Next, take $\epsilon \to 0...$

Figure

・ロト ・四ト ・ヨト ・ヨト

₹.

Next, take $\epsilon \to 0...$

Figure

・ロト ・四ト ・ヨト ・ヨト

₽.
Next, take $\epsilon \to 0...$

Figure

・ロト ・四ト ・ヨト ・ヨト

Next, take $\epsilon \to 0...$

Figure

・ロト ・四ト ・ヨト ・ヨト

Next, take $\epsilon \to 0...$

Figure

・ロト ・四ト ・ヨト ・ヨト

Next, take $\epsilon \to 0...$

Figure

・ロト ・四ト ・ヨト ・ヨト

Next, take $\epsilon \to 0...$

Figure

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

First, let's make h "pretty small".

Figure

First, let's make h "pretty small".

Figure

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

First, let's make h "pretty small".

Figure

Image: Image:

First, let's make h "pretty small".

Figure

<ロト <回ト < 注ト < 注ト

æ

Now let's make ϵ "pretty small" as well.

Figure

3.1

・ロト ・ 一下・ ・ ヨト ・

Now let's make ϵ "pretty small" as well.

Figure

3.1

・ロト ・ 一下・ ・ ヨト ・

Now let's make ϵ "pretty small" as well.

Figure

3.1

・ロト ・ 一下・ ・ ヨト ・

Now let's make ϵ "pretty small" as well.

Figure

(日)、

3.0

Now let's make ϵ "pretty small" as well.

Figure

3.5

-

For $u_h \approx u_{m \mbox{arz}}$, we need not only $h \approx 0$ and $\epsilon \approx 0$, but also $r \gg 1$.

For $u_h \approx u_{m \mbox{arz}}$, we need not only $h \approx 0$ and $\epsilon \approx 0$, but also $r \gg 1$.

・ロト・日本・モト・モート ヨー うへで

But in practice, one fixes r = 3px to r = 5px.

For $u_h \approx u_{m \mbox{arz}}$, we need not only $h \approx 0$ and $\epsilon \approx 0$, but also $r \gg 1$.

But in practice, one fixes r = 3px to r = 5px.

Makes more sense to study the limit $h \rightarrow 0$ with r fixed.

 $h \rightarrow 0 \text{, } r = \epsilon / h$ constant.

 $h \rightarrow 0$, $r = \epsilon/h$ constant.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $h \rightarrow 0$, $r = \epsilon/h$ constant.

Figure

(日)

 $h \rightarrow 0$, $r = \epsilon/h$ constant.

Figure

・ロト ・ 理 ト ・ ヨ ト ・

-

 $h \rightarrow 0$, $r = \epsilon/h$ constant.

Figure

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

$$||u_h - u_r||_p \rightarrow 0$$
 as $h \rightarrow 0$ with r fixed.

$$\begin{aligned} \|u_h - u_r\|_p &\to 0 \quad \text{as } h \to 0 \text{ with } r \text{ fixed.} \\ \|u_h - u_{\text{märz}}\|_p &\to 0 \quad \text{as } h \to 0 \text{ and } r \to \infty \text{ but } r^2 h \to 0. \end{aligned}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$\begin{aligned} \|u_h - u_r\|_p &\to 0 \quad \text{as } h \to 0 \text{ with } r \text{ fixed.} \\ \|u_h - u_{\text{märz}}\|_p &\to 0 \quad \text{as } h \to 0 \text{ and } r \to \infty \text{ but } r^2 h \to 0. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\bullet\,$ true for $p<\infty$ for boundary data with finitely many jump discontinuities.

$$\begin{aligned} \|u_h - u_r\|_p &\to 0 \quad \text{as } h \to 0 \text{ with } r \text{ fixed.} \\ \|u_h - u_{\text{märz}}\|_p &\to 0 \quad \text{as } h \to 0 \text{ and } r \to \infty \text{ but } r^2 h \to 0. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $\bullet\,$ true for $p<\infty$ for boundary data with finitely many jump discontinuities.
- true for all $1 \le p \le \infty$ if there are no jumps.

But for *fixed* h, one finds:

$$\|u_h - u_r\|_p \lesssim C_r \|u_h - u_{\mathsf{m} \mathsf{arz}}\|_p^2$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Under this limit we still get a transport equation

$$\mathbf{g}_{\mu,r}^* \cdot \nabla u_r = 0,$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Under this limit we still get a transport equation

$$\mathbf{g}_{\mu,r}^* \cdot \nabla u_r = 0,$$

but the transport direction is different:

$$\mathbf{g}_{\mu,r}^* := \sum_{\mathbf{j} \in b_r^-} w_{\mu,r}(0,\mathbf{j})\mathbf{j}.$$

where

$$b^-_r := \{(i,j) \in \mathbb{Z}^2: i^2 + j^2 \leq r^2 \text{ and } j < 0\}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Under this limit we still get a transport equation

$$\mathbf{g}_{\mu,r}^* \cdot \nabla u_r = 0,$$

but the transport direction is different:

$$\mathbf{g}_{\mu,r}^* := \sum_{\mathbf{j} \in b_r^-} w_{\mu,r}(0,\mathbf{j})\mathbf{j}.$$

where

$$b^-_r := \{(i,j) \in \mathbb{Z}^2: i^2 + j^2 \leq r^2 \text{ and } j < 0\}$$

VS

$$\mathbf{g}^*_{\mu} := \int_{y \in B_1^-} w_{\mu,1}(0,y) y dy$$

where

$$B_1^- := \{(y_1, y_2) \in \mathbb{R}^2 : y_1^2 + y_2^2 \le 1 \text{ and } y_2 \le 0\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In this case we have

$$\mathbf{g}_{r,\mu}^* := \sum_{\mathbf{j} \in b_r^-} e^{-\frac{\mu^2}{2r^2} (\mathbf{j} \cdot \mathbf{g}^\perp)^2} \frac{\mathbf{j}}{\|\mathbf{j}\|},$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

In this case we have

$$\mathbf{g}_{r,\mu}^* := \sum_{\mathbf{j} \in b_r^-} e^{-\frac{\mu^2}{2r^2} (\mathbf{j} \cdot \mathbf{g}^\perp)^2} \frac{\mathbf{j}}{\|\mathbf{j}\|},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Suppose \mathbf{j}^* is the *unique* minimizer of $|\mathbf{j} \cdot \mathbf{g}^{\perp}|$ for $\mathbf{j} \in b_r^-$

In this case we have

$$\mathbf{g}_{r,\mu}^* := \sum_{\mathbf{j} \in b_r^-} e^{-\frac{\mu^2}{2r^2} (\mathbf{j} \cdot \mathbf{g}^\perp)^2} \frac{\mathbf{j}}{\|\mathbf{j}\|},$$

• Suppose \mathbf{j}^* is the *unique* minimizer of $|\mathbf{j} \cdot \mathbf{g}^{\perp}|$ for $\mathbf{j} \in b_r^-$ Then, rescaling by $e^{\frac{\mu^2}{2r^2}(\mathbf{j}^* \cdot \mathbf{g}^{\perp})^2}$ we have

$$\mathbf{g}_{r,\mu}^* = \frac{\mathbf{j}^*}{\|\mathbf{j}^*\|} + \sum_{\mathbf{j}\in b_r^-\setminus\{\mathbf{j}^*\}} e^{-\frac{\mu^2}{2r^2}\left\{(\mathbf{j}\cdot\mathbf{g}^\perp)^2 - (\mathbf{j}^*\cdot\mathbf{g}^\perp)^2\right\}} \frac{\mathbf{j}}{\|\mathbf{j}\|}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In this case we have

$$\mathbf{g}_{r,\mu}^* := \sum_{\mathbf{j} \in b_r^-} e^{-\frac{\mu^2}{2r^2} (\mathbf{j} \cdot \mathbf{g}^\perp)^2} \frac{\mathbf{j}}{\|\mathbf{j}\|},$$

• Suppose \mathbf{j}^* is the *unique* minimizer of $|\mathbf{j} \cdot \mathbf{g}^{\perp}|$ for $\mathbf{j} \in b_r^-$ Then, rescaling by $e^{\frac{\mu^2}{2r^2}(\mathbf{j}^* \cdot \mathbf{g}^{\perp})^2}$ we have

$$\begin{split} \mathbf{g}_{r,\mu}^* &= \quad \frac{\mathbf{j}^*}{\|\mathbf{j}^*\|} + \sum_{\mathbf{j} \in b_r^- \setminus \{\mathbf{j}^*\}} e^{-\frac{\mu^2}{2r^2} \left\{ (\mathbf{j} \cdot \mathbf{g}^\perp)^2 - (\mathbf{j}^* \cdot \mathbf{g}^\perp)^2 \right\}} \frac{\mathbf{j}}{\|\mathbf{j}\|} \\ &\to \quad \frac{\mathbf{j}^*}{\|\mathbf{j}^*\|} \qquad \text{as } \mu \to \infty. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
Define
$$\theta = \angle \mathbf{g}$$
, $\theta_r^* = \angle \mathbf{g}_r^*$, consider $\theta_r^* = \Theta(\theta)$.

Theoretical Curve (r = 3)

Figure

Real Curve (r = 3, $\mu = 40$)

Figure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theoretical Curve (r = 5)

Figure

Real Curve (r = 5, $\mu = 40$)

Figure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

• This explains earlier kinking.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- This explains earlier kinking.
- But why were we able to make it go away?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Earlier, we proposed a continuum limit u_r with transport direction

$$\mathbf{g}_r^* = \sum_{\mathbf{j} \in b_r^-} w(0, \mathbf{j}) \mathbf{j}.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Earlier, we proposed a continuum limit u_r with transport direction

$$\mathbf{g}_r^* = \sum_{\mathbf{j} \in b_r^-} w(0, \mathbf{j}) \mathbf{j}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

But actually this assumed that we use no ghost pixels.

Now assume we sum over a rotated ball $\tilde{B}_{\epsilon,h}(\mathbf{x})$.

Figure

Back to the Fix

We get a remarkably similar formula:

$$\mathbf{g}_r^* = \sum_{\mathbf{j} \in \tilde{b}_r^-} w(0,\mathbf{j})\mathbf{j}$$
 vs.

$$\mathbf{g}_r^* = \sum_{\mathbf{j} \in b_r^-} w(0, \mathbf{j}) \mathbf{j}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Figure

• This simple formula is a consequence of our choice to define ghost pixels via bilinear interpolation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• This simple formula is a consequence of our choice to define ghost pixels via bilinear interpolation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• It is *not* true for generic interpolants.

- This simple formula is a consequence of our choice to define ghost pixels via bilinear interpolation.
- It is *not* true for generic interpolants.
- Key property is that the bilinear interpolant of a linear function is the function.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- This simple formula is a consequence of our choice to define ghost pixels via bilinear interpolation.
- It is *not* true for generic interpolants.
- Key property is that the bilinear interpolant of a linear function is the function.

• Now let's see why everything is fixed.

Back to the Fix

Figure

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Back to the Fix

Figure

< 日 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ヨト ヨ

$$\mathbf{g}_{r,\mu}^* = \sum_{\mathbf{j}\in\Psi_0} \frac{\mathbf{j}}{\|\mathbf{j}\|} + \sum_{k=1}^r \sum_{\mathbf{j}\in\Psi_k} e^{-\frac{\mu^2}{2r^2}k^2 \|\mathbf{g}\|^2} \frac{\mathbf{j}}{\|\mathbf{j}\|}$$

$$\begin{split} \mathbf{g}_{r,\mu}^* &= \sum_{\mathbf{j}\in\Psi_0} \frac{\mathbf{j}}{\|\mathbf{j}\|} + \sum_{k=1}^r \sum_{\mathbf{j}\in\Psi_k} e^{-\frac{\mu^2}{2r^2}k^2 \|\mathbf{g}\|^2} \frac{\mathbf{j}}{\|\mathbf{j}\|} \\ &\to \sum_{\mathbf{j}\in\Psi_0} \frac{\mathbf{j}}{\|\mathbf{j}\|} \quad \text{ as } \mu \to \infty. \end{split}$$

$$\begin{split} \mathbf{g}_{r,\mu}^* &= \sum_{\mathbf{j}\in\Psi_0} \frac{\mathbf{j}}{\|\mathbf{j}\|} + \sum_{k=1}^r \sum_{\mathbf{j}\in\Psi_k} e^{-\frac{\mu^2}{2r^2}k^2 \|\mathbf{g}\|^2} \frac{\mathbf{j}}{\|\mathbf{j}\|} \\ &\to \sum_{\mathbf{j}\in\Psi_0} \frac{\mathbf{j}}{\|\mathbf{j}\|} \quad \text{as } \mu \to \infty. \\ &= \mathbf{g} \quad \text{after rescaling.} \end{split}$$

$$\begin{split} \mathbf{g}_{r,\mu}^* &= \sum_{\mathbf{j}\in\Psi_0} \frac{\mathbf{j}}{\|\mathbf{j}\|} + \sum_{k=1}^r \sum_{\mathbf{j}\in\Psi_k} e^{-\frac{\mu^2}{2r^2}k^2 \|\mathbf{g}\|^2} \frac{\mathbf{j}}{\|\mathbf{j}\|} \\ &\to \sum_{\mathbf{j}\in\Psi_0} \frac{\mathbf{j}}{\|\mathbf{j}\|} \quad \text{as } \mu \to \infty. \\ &= \mathbf{g} \quad \text{after rescaling.} \end{split}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Can show $\Psi_0 \neq \emptyset$ if $\theta > \theta_c(r)$.

Theoretical Curve (r = 3)

Figure

Real Curve (r = 3, $\mu = 40$)

Figure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Theoretical Curve (r = 5)

Figure

Real Curve (r = 5, $\mu = 40$)

Figure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

• For *smooth* boundary data, proving convergence is routine.

(ロ)、(型)、(E)、(E)、 E) の(の)

- For smooth boundary data, proving convergence is routine.
- However, *nonsmooth* boundary data (e.g. images) is much more challenging.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• In this case, the fact that our weights are non-negative and sum to one means they can be interpretted as a probability density.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• In this case, the fact that our weights are non-negative and sum to one means they can be interpretted as a probability density.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• This opens the door to a probabilistic line of attack based on martingales.

• In this case, the fact that our weights are non-negative and sum to one means they can be interpretted as a probability density.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- This opens the door to a probabilistic line of attack based on martingales.
- Enables us to prove convergence even for data with jump discontinuities.

・日・・四・・日・・日・

æ

・日・・四・・日・・日・

æ

æ

・日・・四・・日・・日・

æ

・日・・四・・日・・日・

æ

・ロト ・四ト ・ヨト ・ヨト

æ

æ

- 2

- E

・ロト ・四ト ・ヨト ・ヨト

・日・・四・・日・・日・

・ロト ・四ト ・ヨト ・ヨト

・ロト ・四ト ・ヨト ・ヨト

The End

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>