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Variational Functionals for Image
Segmentation - sharp interfaces with penalty
function restricting regularity of interface

E(u,T) :/ (u—f)Qda:Jr,u/ Vul*dz 4 v|T|
R? R2-T

Mumford-Shah segmentation model 1989 CPAM

FE(z) = a/zgsderﬁ/zgder /(F(z))ds

Terzopoulos snakes, Lagrangian curve attracted to edges, F is
an environmental function that attracts to edges, Kass-Witkin-
Terzopoulos IJCV 1987
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Chan-Vese Segmentation — binary with sharp interface Gamma between regions,
IEEE Trans. Imag. Proc. 2001. Solved using level sets and the TV functional via a
gradient flow.



FROM
EUCLIDEAN SPACE TO SIMILARITY GRAPHS

l FOR LARGE DATA l
Minimal surface Graph mincut problem
problem Graph Laplacian
Laplace operator Projection to
Pseudo-spectral eigensubspace of graph
methods | aplacian
Fast Fourier Transform Nystrom extension/
Uses all the modes Rayleigh-Chebyshev

Often only needs a small
percentage of spectral
modes.



w(z,y) = exp(—||lz — y|[*/7)

US Congress

image processing

3 x 3 Hyperspectral data cube

Formed feature vector



GRAPH CUTS AND TOTAL VARIATION
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Total Variation of function fdefined on nodes of a weighted graph:

Y wilfi = £



NONLOCAL MEANS GRAPHS AND TOTAL
VARIATION

Buades Coll and Morel (2006)— introduced the NL Means
functional for imaging applications — patch comparisons
between pixels

Osher and Gilboa (2007-8)— developed the Nonlocal TV
functional for imaging applications- very effective for image
Inpainting applications with texture

Drawback with Osher-Gilboa is slowness of algorithm

We will accomplish these results with much faster run time
and extend to general Machine Learning problems
Suggests an alternative to the NL means calculus of Gilboa-
Osher



if v = p,

otherwise.




Theorem 3.1 (I'-convergence). f. LN fo as € — 0, where

fO(‘u) — { X Zi,jelm wijlui - Ujl ifu e vb, _ { 2x TVal(‘u.) ifu € Vb,

+00 otherwise +00 otherwise.




Second Eigenvector Segmentation Ginzburg-Landau Segmentation

Two Moons Classification Accuracy Average Run Time

Percent Comect
Average Time (s)

2-Laplacian 1-Laplacian 1-Laplacian Ginzburg- 2-Laplacian 1-Laplacian 1-Laplacian Ginzburg-
Fast Accurate Landau Fast Accurate Landau
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MACHINE LEARNING IDENTIFICATION OF
SIMILAR REGIONS IN IMAGES

Original Image Training Region

High dimensional fully connected graph — use Nystrom extension methods for fast
computation methods.



RECALL CONVEX SPLITTING SCHEMES

Schoenlieb and Bertozzi, Comm. Math. Sci. 2011 i:
Analysis of convex splitting schemes for higher order l N 1)
PDE in image processing -

By S

Basic idea: .\
E(u) m EC(U) — b (u) ggr:cc))lsmieb

Uk+1 — U, = —At(VEC(Uk_|_1) — VEQ(Uk))

Project onto Eigenfunctions of the gradient (first variation) operator

For the GL functional the operator is the graph Laplacian






ALGORITHM

|) Create a graph from the data, choose a weight
function and then create the symmetric graph
Laplacian.

II) Calculate the eigenvectors and eigenvalues of the
symmetric graph Laplacian

I1l) Initialize u.

V) Iterate the two-step scheme described above until a
stopping criterion is satisfied.

*Fast linear algebra routines are necessary - either
Raleigh-Chebyshev procedure or Nystrom extension.
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Fig. 4: Examples of digits from the MNIST data base




Fig. 6: Examples of digits from the MNIST data base

95.0%- 97.17%




Computing Wy x, Wxy = Wity requires only (| X|-(| X |+]Y|) computations

ersus (|X|+ |Y])? for the whole similarity matrix. The method approximates

Wyvy by Wy x W)}}( Wxvy and the error is determined by how much the rows o
W xy span the rows of Wyvy.




HYPERSPECTRAL VIDEO SEGMENTATION
Merkurjgv,%LE:M&L?&J E)ZZ/ X!?EB Paris 2014

Eigenfunctions computed using Nystrom
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(b) 5-way K-means

c) Spectral Clustering with 4-way K-means

(d) Spectral Clustering with 5-way K-means







Joint work with Huiyi Hu (UCLA), Thomas Laurent (Loyola Marymount),

and Mason Porter (Oxford) SIAP 2013.

Modularity: Q = o g (wij —vFii)0(gi,95)
MM “— ] ] )
i]

Newman, Girvan, Phys. Rev. E 2004.
[w;] is graph adjacency matrix

P is probability nullmodel (Newman-Girvan) P;=kk;/2m

ki =sum, w; (strength of the node)
Gamma is the resolution parameter
g; is group assignment

2m is total volume of the graph = sum; k; = sum; w;

The modularity of a partition
measures the fraction of total
edge weight within each
community minus the edge
weight expected if edges were
placed randomly using some
null model.

This is an optimization (max) problem. Combinatorially complex — optimize over
all possible group assignments. Very expensive computationally.



Minimizey f.c— (+1}}| flTv — %"f - m2(f)||%2

Minimize, .c_vy E(f) == |flrv —7Ilf — ma(f)|Z,




Three Gaussian Clouds
Two Moons

Two Moons Three Clouds

2

4 6
n-class MBO
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" [N.[ @ [ NMI Purity | Time (seconds)
 Gemlowain | 2 [00305| 08 | 097 |  110s
~ Modularity MBO (=2) | 2 | 0.0816 | 085 | 0977 |  11s
Multi-n MM (7 € {2,3,...,10}) | 2 | 09316 | 0.85 | 0.977 | %5
" Spectral Clustering (k-Means) | 2 | NA | 0.008| 053 |  15s

TABLE 4.2

TABLE 4.3
Computation times and network diagnostics for partitions of the MNIST 70k data set.

| Ne| Q | NMI | Purity | Time(s) |
| GenLouvain | 11 [083 | 082 | 097 | 10900
Multi-i MM (f € {2,3,...,20}) | 11 | 093 | 0.89 | 0.96 | 200 /212 *

Modularity MBO 3% GT (A =10) | 10 [ 0.92 | 0.95 | 0.96 | 94.5 / 16.5*
" Calculated with the RC procedure.




max-flow | primal augmented | binary | binary
i MBO GL

MNIST (3.6% fidelity) random initialization, random fidelity 98.48% . 98.37% | 98.29%

MNIST (3.6% fidelity) 2nd eigenvector initialization, random fidelity 98.48% . 98.36% | 98.25%

MNIST (3.6% fidelity) random initialization, corner fidelity 98.47% . 62.35% | 64.39%

MNIST (3.6% fidelity) 2nd eigenvector initialization, corner fidelity 98.46% . 63.87% | 63.19%

Banknote Authentication Data Set (5.1% fidelity) 99.09% . 95.43% | 97.76%

Banknote Authentication Data Set (3.6% fidelity) 98.83% . 93.48% | 96.10%

two moons (5% fidelity) 97.10% 97.07% 98.41% | 98.31%

two moons (2.5% fidelity) 97.05% 96.78% 97.53% | 98.15%

Table 2 Number of Iterations and Timing

Number of iterations primal augmented

Lagrangian
MNIST 2709

Banknote Authentication Data Set 725

two moons 451

Timing (s) primal augmented

Lagrangian
MNIST “ 43.21

Banknote Authentication Data Set 3.76

two moons 5.23
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