Variational Approach to Image Segmentation and Inpainting

Franco Tomarelli

Politecnico di Milano
Dipartimento di Matematica
franco.tomarell@polimi.it
http://cvgmt.sns.it/papers

SIAM PDE 2015 - Scottsdale, Arizona USA, Dec. 7, 2015

joint research with
Michele Carriero \& Antonio Leaci (Università del Salento, Italy).
joint research with
Michele Carriero \& Antonio Leaci (Università del Salento, Italy).
This talk deals with free discontinuity problems related to contour enhancement
in image segmentation and inpainting,
joint research with
Michele Carriero \& Antonio Leaci (Università del Salento, Italy).
This talk deals with free discontinuity problems related to contour enhancement
in image segmentation and inpainting,
The segmentation we look for provides
a cartoon of the given image satisfying some requirements: the decomposition of the image is performed by choosing a pattern of lines of steepest discontinuity for light intensity, and this pattern will be called segmentation of the image.
joint research with
Michele Carriero \& Antonio Leaci (Università del Salento, Italy).
This talk deals with free discontinuity problems related to contour enhancement in image segmentation and inpainting,

The segmentation we look for provides a cartoon of the given image satisfying some requirements: the decomposition of the image is performed by choosing a pattern of lines of steepest discontinuity for light intensity, and this pattern will be called segmentation of the image.

In image restoration the term inpainting denotes the process of filling in the missing information over subdomains where a given image is damaged: these domains may correspond to scratches in a camera picture, occlusion by objects, blotches in an old movie film or aging of canvas and colors in a painting.

Fill region

Inpainted image

We focus on the mathematical analysis of Blake \& Zisserman functional, [A.Blake, A.Zisserman, Visual Reconstruction, The MIT Press, Cambridge, 1987]
exploiting this variational approach for both segmentation and inpainting:
(1) existence of strong solution with Dirichlet boundary condition is shown,
(2) several extremality conditions on optimal segmentation are stated,
(3) well-posedness of the problem is discussed,
(9) non trivial local minimizers are analyzed
(5) a variational approximation is introduced and implemented.

A general introduction to Image Inpainting is contained in:

- M.Bertalmío, V.Caselles, S.Masnou, G.Sapiro, Inpainting, in "Encyclopedia of Computer Vision", Springer, 2011.
- G. Aubert \& P. Kornprobst, Mathematical Problems in Image Processing, P.D.E. and Calc. of Var., Second Ed., Springer, 2006, where are analyzed several variational or PDE-based models for inpainting, proposed by many Authors.

A general introduction to Image Inpainting is contained in:

- M.Bertalmío, V.Caselles, S.Masnou, G.Sapiro, Inpainting, in "Encyclopedia of Computer Vision", Springer, 2011.
- G. Aubert \& P. Kornprobst, Mathematical Problems in Image Processing, P.D.E. and Calc. of Var., Second Ed., Springer, 2006, where are analyzed several variational or PDE-based models for inpainting, proposed by many Authors.
Presentations of Variational Methods for Image Inpainting :
- T.F.Chan \& J.Shen, Variational image inpainting, Comm. Pure Appl. Math., LVIII (2005), 579-619.
- S.Masnou \& J.M.Morel, On a variational theory of image amodal completion, Rend. Sem. Mat. Univ. Padova 116 (2006) 211-252.
- P. Markowich, Applied Partial Differential Equations, Springer, 2007.

MS and TV approach to inpainting

A general introduction to Image Inpainting is contained in:

- M.Bertalmío, V.Caselles, S.Masnou, G.Sapiro, Inpainting, in "Encyclopedia of Computer Vision", Springer, 2011.
- G. Aubert \& P. Kornprobst, Mathematical Problems in Image Processing, P.D.E. and Calc. of Var., Second Ed., Springer, 2006, where are analyzed several variational or PDE-based models for inpainting, proposed by many Authors.
Presentations of Variational Methods for Image Inpainting :
- T.F.Chan \& J.Shen, Variational image inpainting, Comm. Pure Appl. Math., LVIII (2005), 579-619.
- S.Masnou \& J.M.Morel, On a variational theory of image amodal completion, Rend. Sem. Mat. Univ. Padova 116 (2006) 211-252.
- P. Markowich, Applied Partial Differential Equations, Springer, 2007.

Total variation

- L.I. Rudin, S.Osher \& E.Fatemi, Nonlinear total variation based noise removal algorithms, Physica D 60, (1992).
- M.Fornasier \& C.B.Schönlieb, Subspace correction methods for total variation and ℓ^{1} minimization, SIAM J.Num.An., (2009).
- L.Calatroni, B.Düring \& C.B.Schönlieb, ADI splitting schemes for a 4th order nonlinear PDE from image processing, Discr.Cont.Dynamical Systems, (2014).
- M.Bergounioux Mathematical Analysis of an Inf-Convolution Model for Image Processing J.O.T.A (2015)
- M.Fornasier \& C.B.Schönlieb, Subspace correction methods for total variation and ℓ^{1} minimization, SIAM J.Num.An., (2009).
- L.Calatroni, B.Düring \& C.B.Schönlieb, ADI splitting schemes for a 4th order nonlinear PDE from image processing, Discr.Cont.Dynamical Systems, (2014).
- M.Bergounioux Mathematical Analysis of an Inf-Convolution Model for Image Processing J.O.T.A (2015)
- A.Bertozzi-S.Esedoglu-A.Gillette A Cahn-Hilliard model for binary image inpainting (2007).

Exact reconstruction of damaged color images by a TV model

[I. Fonseca - G. Leoni - F. Maggi - M. Morini, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2010].
reconstruction of damaged piecewice constant color images studied using a RGB total-variation based model for colorization inpainting.
vector-valued functions

When used for Image Inpainting, the (Mumford-Shah based) first order variational approach fosters straight edges and produces artificial corners as shown in the following example taken from

- [S.Esedoglu, J.Shen, Europ.J.Applied Mathematics, 2002].

When used for Image Inpainting, the (Mumford-Shah based) first order variational approach fosters straight edges and produces artificial corners as shown in the following example taken from

- [S.Esedoglu, J.Shen, Europ.J.Applied Mathematics, 2002].

To overcome this drawback T.Chan, S.Esedoglu, J.Shen and others have added terms taking into account the curvature of the jump set.

When used for Image Inpainting, the (Mumford-Shah based) first order variational approach fosters straight edges and produces artificial corners as shown in the following example taken from

- [S.Esedoglu, J.Shen, Europ.J.Applied Mathematics, 2002].

To overcome this drawback T.Chan, S.Esedoglu, J.Shen and others have added terms taking into account the curvature of the jump set.
Here we adopt another strategy based on a
second order variational model with free discontinuity,

a first order variational model with free discontinuity

This by now classic variational model for image segmentation has been set by Mumford \& Shah, who introduced the functional

$$
\begin{equation*}
\int_{\Omega \backslash K}\left(|D u(x)|^{2}+\mu|u(\mathbf{x})-g(\mathbf{x})|^{2}\right) d \mathbf{x}+\gamma \mathcal{H}^{n-1}(K \cap \Omega) \tag{1}
\end{equation*}
$$

where

- $\Omega \subset \mathbb{R}^{n}(n \geq 1)$ is an open set,
- $K \subset \mathbb{R}^{n}$ is a closed set,
- u is a scalar function,
- Du denotes the distributional gradient of u,
- $g \in L^{2}(\Omega)$ is the datum (grey intensity levels of the given image),
- $\gamma>0, \mu>0$ are parameters related to the selected contrast threshold,
- \mathcal{H}^{n-1} denotes $n-1$ dimensional Hausdorff measure.

a first order variational model with free discontinuity

This by now classic variational model for image segmentation has been set by Mumford \& Shah, who introduced the functional

$$
\begin{equation*}
\int_{\Omega \backslash K}\left(|D u(x)|^{2}+\mu|u(\mathbf{x})-g(\mathbf{x})|^{2}\right) d \mathbf{x}+\gamma \mathcal{H}^{n-1}(K \cap \Omega) \tag{1}
\end{equation*}
$$

where

- $\Omega \subset \mathbb{R}^{n}(n \geq 1)$ is an open set,
- $K \subset \mathbb{R}^{n}$ is a closed set,
- u is a scalar function,
- Du denotes the distributional gradient of u,
- $g \in L^{2}(\Omega)$ is the datum (grey intensity levels of the given image),
- $\gamma>0, \mu>0$ are parameters related to the selected contrast threshold,
- \mathcal{H}^{n-1} denotes $n-1$ dimensional Hausdorff measure.

According to this model the segmentation of the given image is achieved by minimizing (1) among admissible pairs (K, u), say closed $K \subset \mathbb{R}^{n}$ and $u \in C^{1}(\Omega \backslash K)$.

This model led in a natural way to the study of a new type of functional in Calculus of Variations:

free discontinuity problem.

Existence of minimizers of (1) was proven by

- De Giorgi, Carriero \& Leaci (1989)
in the framework of bounded variation functions without Cantor part (space SBV) introduced by
- De Giorgi \& Ambrosio.

Further regularity properties of optimal segmentation in Mumford \& Shah model were shown by

- [Dal Maso, Morel \& Solimini, (1992), $n=2$,]
- [Ambrosio, Fusco \& Pallara (2000)],
- [Bonnet \& David (2003), crack-tip, $n=2$],
- ...
- ...

This model led in a natural way to the study of a new type of functional in Calculus of Variations:

free discontinuity problem.

Existence of minimizers of (1) was proven by

- De Giorgi, Carriero \& Leaci (1989)
in the framework of bounded variation functions without Cantor part (space SBV) introduced by
- De Giorgi \& Ambrosio.

Further regularity properties of optimal segmentation in Mumford \& Shah model were shown by

- [Dal Maso, Morel \& Solimini, (1992), $n=2$,]
- [Ambrosio, Fusco \& Pallara (2000)],
- [Bonnet \& David (2003), crack-tip, $n=2$],
- ...
- [De Lellis, Focardi, (2013), dens.I.b. explicit constant, $n=2$],
- [Bucur, Luckhaus, (2014), monotonicity formula].

stair-casing effect

MS does not detect the crease discontinuities, i.e. the points where u is continuous while ∇u is discontinuous: indeed MS has no energy cost for creases.

BZ detects "crease discontinuities"

M-S

B-Z

To overcome the problems and aiming to better description of stereoscopic images they proposed a different functional including second derivatives.

Blake \& Zisserman variational principle faces segmentation as a minimum problem:
input is given by intensity levels of a monochromatic image,

To overcome the problems and aiming to better description of stereoscopic images they proposed a different functional including second derivatives.

Blake \& Zisserman variational principle faces segmentation as a minimum problem:
input is given by intensity levels of a monochromatic image,
output is given by

- meaningful boundaries whose length is penalized (correspond to discontinuity set of the given intensity and of its first derivatives)
- a piece-wise smooth intensity function (smoothed on each region in which the domain is splitted by such boundaries).

another problem with free discontinuity: Blake \& Zisserman functional

$$
\begin{align*}
& F\left(K_{0}, K_{1}, v\right)= \\
& =\int_{\Omega \backslash\left(K_{0} \cup K_{1}\right)} \begin{array}{l}
\left(\left|D^{2} v(\mathbf{x})\right|^{2}+\mu|v(\mathbf{x})-g(\mathbf{x})|^{2}\right) d \mathbf{x}+ \\
\quad+\alpha \mathcal{H}^{n-1}\left(K_{0}\right)+\beta \mathcal{H}^{n-1}\left(K_{1} \backslash K_{0}\right)
\end{array} \tag{2}
\end{align*}
$$

another problem with free discontinuity: Blake \& Zisserman functional

$$
\begin{align*}
& F\left(K_{0}, K_{1}, v\right)= \\
& =\int_{\Omega \backslash\left(K_{0} \cup K_{1}\right)}\left(\left|D^{2} v(\mathbf{x})\right|^{2}+\mu|v(\mathbf{x})-g(\mathbf{x})|^{2}\right) d \mathbf{x}+ \tag{2}\\
& \quad+\alpha \mathcal{H}^{n-1}\left(K_{0}\right)+\beta \mathcal{H}^{n-1}\left(K_{1} \backslash K_{0}\right)
\end{align*}
$$

to be minimized among admissible triples (K_{0}, K_{1}, v):

- K_{0}, K_{1} Borel subsets of \mathbb{R}^{n} s.t. $K_{0} \cup K_{1}$ is closed
- $u \in C^{2}\left(\Omega \backslash\left(K_{0} \cup K_{1}\right)\right)$ and approximately continuous on $\Omega \backslash K_{0}$.

another problem with free discontinuity: Blake \& Zisserman functional

$$
\begin{align*}
& F\left(K_{0}, K_{1}, v\right)= \\
& =\int_{\Omega \backslash\left(K_{0} \cup K_{1}\right)}\left(\left|D^{2} v(\mathbf{x})\right|^{2}+\mu|v(\mathbf{x})-g(\mathbf{x})|^{2}\right) d \mathbf{x}+ \tag{2}\\
& \quad+\alpha \mathcal{H}^{n-1}\left(K_{0}\right)+\beta \mathcal{H}^{n-1}\left(K_{1} \backslash K_{0}\right)
\end{align*}
$$

to be minimized among admissible triples (K_{0}, K_{1}, v):

- K_{0}, K_{1} Borel subsets of \mathbb{R}^{n} s.t. $K_{0} \cup K_{1}$ is closed
- $u \in C^{2}\left(\Omega \backslash\left(K_{0} \cup K_{1}\right)\right)$ and approximately continuous on $\Omega \backslash K_{0}$.
with data:
- $\Omega \subset \mathbb{R}^{n}$ open set, $n \geq 1$,
- $g \in L^{2}(\Omega)$ grey level intensity of the given image,
- α, β, μ positive parameters (chosen accordingly to scale and contrast threshold).

Here \mathcal{H}^{n-1} denotes the $(n-1)$ dimensional Hausdorff measure.

Existence of minimizers for BZ functional (2):

- $n=1$, [Coscia] (strong and weak form. coincide iff $n=1$!),

Existence of minimizers for BZ functional (2):

- $n=1$, [Coscia] (strong and weak form. coincide iff $n=1$!),
- $n=2$, [Carriero, Leaci \& T.] ,
via direct method in calculus of variations:
solution of a weak formulation of minimum problem (performed for any dimension $n \geq 2$) and subsequently proving additional regularity of weak minimizers with Neumann bdry condition $(n=2)$ [C-L-T, Ann.S.N.S., Pisa (1997)]

Existence of minimizers for BZ functional (2):

- $n=1$, [Coscia $]$ (strong and weak form. coincide iff $n=1$!),
- $n=2$, [Carriero, Leaci \& T.] ,
via direct method in calculus of variations:
solution of a weak formulation of minimum problem
(performed for any dimension $n \geq 2$)
and subsequently proving additional regularity
of weak minimizers with Neumann bdry condition $(n=2)$
[C-L-T, Ann.S.N.S., Pisa (1997)]

Since we looked for a weak formulation of a free discontinuity problem,
we wrote a suitable relaxed form relaxed version of BZ functional; this form depends only on u (not on triples!):
optimal segmentation ($K_{0} \cup K_{1}$) has to be recovered through jumps (discontinuity set of u) and creases (discontinuity set of ∇u)

We proved also several (interior) density estimates for minimizers energy and optimal segmentation:

- [C-L-T, Nonconvex Optim. Appl. 55 (2001)],
- [C-L-T, C.R.Acad.Sci.(2002)],
- [C-L-T J. Physiol.(2003)].

Moreover, with Gamma-convergence techniques,

- [Ambrosio, Faina \& March, SIAM J.Math.An. (2002)] obtained an efficient approximation of
Blake \& Zisserman functional with elliptic functionals, and numerical implementation was performed also by
- [R.March]
- [M.Carriero, A.Farina, I.Sgura].
- [F.Doveri, 1997] 「-convergence and implementation of GNC algorithm proposed by Blake \& Zisserman.
- [A.Braides, 2003] 1D

$$
E_{\varepsilon}(u)=\sum_{\text {gridpoints }} \varepsilon \psi_{\varepsilon}\left(\frac{u(x+\varepsilon)+u(x-\varepsilon)-2 u(x)}{\varepsilon^{2}}\right)
$$

where $\psi_{\varepsilon}(t)=\min \left(t^{2}, \mu / \varepsilon\right)$

- [A.Braides, A. DeFranceschi \& E.Vitali, ESAIM Math.Model.Numer.Anal. 2012] 2D (uniform triangulation by Bogner-Fox-Schmit finite element)
- [F.Doveri, 1997] 「-convergence and implementation of GNC algorithm proposed by Blake \& Zisserman.
- [A.Braides, 2003] 1D

$$
E_{\varepsilon}(u)=\sum_{\text {gridpoints }} \varepsilon \psi_{\varepsilon}\left(\frac{u(x+\varepsilon)+u(x-\varepsilon)-2 u(x)}{\varepsilon^{2}}\right)
$$

where $\psi_{\varepsilon}(t)=\min \left(t^{2}, \mu / \varepsilon\right)$

- [A.Braides, A. DeFranceschi \& E.Vitali, ESAIM Math.Model.Numer.Anal. 2012] 2D
(uniform triangulation by Bogner-Fox-Schmit finite element)

- [F.Doveri, 1997] 「-convergence and implementation of GNC algorithm proposed by Blake \& Zisserman.
- [A.Braides, 2003] 1D

$$
E_{\varepsilon}(u)=\sum_{\text {gridpoints }} \varepsilon \psi_{\varepsilon}\left(\frac{u(x+\varepsilon)+u(x-\varepsilon)-2 u(x)}{\varepsilon^{2}}\right)
$$

where $\psi_{\varepsilon}(t)=\min \left(t^{2}, \mu / \varepsilon\right)$

- [A.Braides, A. DeFranceschi \& E.Vitali, ESAIM Math.Model.Numer.Anal. 2012] 2D (uniform triangulation by Bogner-Fox-Schmit finite element)

About uniqueness and well-posedness:

- [T.Boccellari - F.T., Ist.Lombardo Rend.Sci. 2008,] ($n \geq 1$),
- [T.Boccellari - F.T., Revista Mat. Complut., 2013] ($n=1$).
notice that 1-dimensional case leads to a much simpler formulation, since (only in $1-\mathrm{d}$) strong and weak functional coincide.

1-d Blake \& Zisserman 1-d functional

Given $g \in L^{2}(0,1), \alpha, \beta \mu \in \mathbb{R}$ we set $F_{\alpha, \beta, \mu}^{g}$:
$F_{\alpha, \beta, \mu}^{g}(u)=\int_{0}^{1}|\ddot{u}(x)|^{2} d x+\int_{0}^{1} \mu|u(x)-g(x)|^{2} d x+\alpha \sharp\left(S_{u}\right)+\beta \sharp\left(S_{\dot{u}} \backslash S_{u}\right)$
to be minimized among $u \in L^{2}(0,1)$ s.t.
$\sharp\left(S_{u} \cup S_{\dot{u}}\right)<+\infty$ and $u^{\prime}, u^{\prime \prime} \in L^{2}(I) \forall$ interval $I \subseteq(0,1) \backslash\left(S_{u} \cup S_{\dot{u}}\right)$.

Notation:

\dot{u} denotes the absolutely continuous part of u^{\prime},
\ddot{u} the absolutely continuous part of $(\dot{u})^{\prime}$,
$S_{u} \subseteq(0,1)$ the set of jump points of u,
$S_{u} \subseteq(0,1)$ the set of jump points of \dot{u},
\sharp the counting measure.

$n=1$

Summary of analytic results:

- Euler equations for local minimizers,
- compliance identity for local minimizers,
- a priori estimates on minimum value and minimizers,
- continuous dependence of minimum value $m^{g}(\alpha, \beta, \mu)$ with respect to g, α, β, μ.

$n=1$

Summary of analytic results:

- Euler equations for local minimizers,
- compliance identity for local minimizers,
- a priori estimates on minimum value and minimizers,
- continuous dependence of minimum value $m^{g}(\alpha, \beta, \mu)$ with respect to g, α, β, μ.

Theorem

$F_{\alpha, \beta}^{g}$ achieves its minimum provided the following conditions are fulfilled:

$$
\begin{gather*}
0<\beta \leq \alpha \leq 2 \beta<+\infty \tag{4}\\
g \in L^{2} . \tag{5}
\end{gather*}
$$

$n=1$

Summary of analytic results:

- Euler equations for local minimizers,
- compliance identity for local minimizers,
- a priori estimates on minimum value and minimizers,
- continuous dependence of minimum value $m^{g}(\alpha, \beta, \mu)$ with respect to g, α, β, μ.

Theorem

$F_{\alpha, \beta}^{g}$ achieves its minimum provided the following conditions are fulfilled:

$$
\begin{gather*}
0<\beta \leq \alpha \leq 2 \beta<+\infty \tag{4}\\
g \in L^{2} . \tag{5}
\end{gather*}
$$

Uniqueness fails

Generic uniqueness

Euler equations are an under-determined system (singular set is an unknown);
but the system becomes over-determined for inappropriate choices of the singular set: no solutions at all.

Generic uniqueness

Euler equations are an under-determined system (singular set is an unknown);
but the system becomes over-determined for inappropriate choices of the singular set: no solutions at all.

Nevertheless we can exhibit a generic uniqueness result:

```
Theorem ([T.Boccellari - F.T., Revista Mat. Complut. 2013])
n=1
```

For any α, β s.t.

$$
0<\beta \leq \alpha \leq 2 \beta, \quad \alpha / \beta \notin \mathbb{Q}
$$

there is $\mathrm{a} \mathrm{G}_{\delta}$ set (countable intersection of dense open sets)

$$
E_{\alpha, \beta, \mu} \subset L^{2}(0,1) \text { such that }
$$

$$
\sharp\left(\operatorname{argmin} F_{\alpha, \beta, \mu}^{g}\right)=1 \quad \text { for all } g \in E_{\alpha, \beta, \mu} .
$$

The whole picture is coherent with the presence of sporadic instable patterns, each of them corresponding to a bifurcation of optimal segmentation under variation of parameters $\alpha \mathrm{e} \beta$, related to:

- contrast threshold ($\sqrt{\alpha}$),
- "luminance sensitivity",
- resistance to noise,
- crease detection ($\sqrt{\beta}$),
- double edge detection.
[Carriero, Leaci \& T.],
A survey on the BZ functional, Milan J. Math. (2015)

Image InPainting refers to reconstruction of missing or partially occluded regions of an image.

Minimizing Blake \& Zisserman functional is useful to achieve contour continuation in the whole image region $\widetilde{\Omega}$ when occlusion or local damage occur in $\widetilde{\Omega} \backslash \Omega$ e.g. blotches in a fresco or a movie film.

Image InPainting refers to reconstruction of missing or partially occluded regions of an image.

Minimizing Blake \& Zisserman functional is useful to achieve contour continuation in the whole image region $\widetilde{\Omega}$ when occlusion or local damage occur in $\widetilde{\Omega} \backslash \Omega$ e.g. blotches in a fresco or a movie film.

Dirichlet problem ($U \subset \subset \Omega \subset \subset \widetilde{\Omega} \subset \mathbb{R}^{2}$) : minimize the energy F :

$$
F\left(K_{0}, K_{1}, v\right)=E\left(K_{0}, K_{1}, v\right)+\mu \int_{\Omega \backslash U}|v(\mathbf{x})-g(\mathbf{x})|^{2} d \mathbf{x}=
$$

Image InPainting refers to reconstruction of missing or partially occluded regions of an image.
Minimizing Blake \& Zisserman functional is useful to achieve contour continuation in the whole image region $\widetilde{\Omega}$ when occlusion or local damage occur in $\widetilde{\Omega} \backslash \Omega$ e.g. blotches in a fresco or a movie film.

Dirichlet problem $\left(U \subset \subset \Omega \subset \subset \widetilde{\Omega} \subset \mathbb{R}^{2}\right)$: minimize the energy F :

$$
\begin{align*}
& F\left(K_{0}, K_{1}, v\right)= E\left(K_{0}, K_{1}, v\right)+\mu \\
&=\int_{\Omega \backslash U}|v(\mathbf{x})-g(\mathbf{x})|^{2} d \mathbf{x}= \\
& \int_{\tilde{\Omega} \backslash\left(K_{0} \cup K_{1}\right)}\left(\left|D^{2} v(\mathbf{x})\right|^{2}+\delta|v(\mathbf{x})-1 / 2|^{2}\right) d \mathbf{x}+ \\
&+\alpha \mathcal{H}^{1}\left(K_{0}\right)+\beta \mathcal{H}^{1}\left(K_{1} \backslash K_{0}\right) \tag{6}\\
& \quad+\mu \int_{\Omega \backslash U}|v(\mathbf{x})-g(\mathbf{x})|^{2} d \mathbf{x}
\end{align*}
$$

among admissible triples $\left(K_{0}, K_{1}, v\right)$ which assume prescribed data w on $\widetilde{\Omega} \backslash \Omega$: say $v=w$ a.e. $\widetilde{\Omega} \backslash \Omega$

minimization of functional E : the image domain is the rectangle $\widetilde{\Omega}$.
The blotches $\Omega \subset \subset \widetilde{\Omega}$ with complete loss of information are represented by the black region Ω.

minimization of functional F : the image domain is the rectangle $\widetilde{\Omega}$.
The blotches $\Omega \subset \subset \widetilde{\Omega}$ correspond to some loss of information: complete loss in the black region $U \subset \subset \Omega \subset \subset \widetilde{\Omega}$, partially damaged image in the gray region $\Omega \backslash U$.

Weak formulation of Dirichlet pb for BZ functional

Minimize $\mathcal{F}: X \rightarrow[0,+\infty]$ defined by

$$
\begin{equation*}
\mathcal{F}(v)=\mathcal{E}(v)+\mu \int_{\Omega \backslash U}|v-g|^{2} d \mathbf{x} \tag{7}
\end{equation*}
$$

where $\Omega \subset \subset \widetilde{\Omega} \subset \mathbb{R}^{2}$ are open sets, $\mathbf{x}=(x, y) \in \Omega$,
$x=\operatorname{GSBV}^{2}(\widetilde{\Omega}) \cap L^{2}(\widetilde{\Omega}) \cap\{v=w$ a.e. $\widetilde{\Omega} \backslash \Omega\}$
and the main part of \mathcal{F} is denoted by \mathcal{E} :

$$
\begin{equation*}
\mathcal{E}(v)=\int_{\tilde{\Omega}}\left(\left|\nabla^{2} v\right|^{2}+\delta|v-1 / 2|^{2}\right) d \mathbf{x}+\alpha \mathcal{H}^{1}\left(S_{v}\right)+\beta \mathcal{H}^{1}\left(S_{\nabla v} \backslash S_{v}\right) \tag{8}
\end{equation*}
$$

Weak formulation of Dirichlet pb for BZ functional

Minimize $\mathcal{F}: X \rightarrow[0,+\infty]$ defined by

$$
\begin{equation*}
\mathcal{F}(v)=\mathcal{E}(v)+\mu \int_{\Omega \backslash U}|v-g|^{2} d \mathbf{x} \tag{7}
\end{equation*}
$$

where $\Omega \subset \subset \widetilde{\Omega} \subset \mathbb{R}^{2}$ are open sets, $\mathbf{x}=(x, y) \in \Omega$,
$X=\operatorname{GSBV}^{2}(\widetilde{\Omega}) \cap L^{2}(\widetilde{\Omega}) \cap\{v=w$ a.e. $\widetilde{\Omega} \backslash \Omega\}$
and the main part of \mathcal{F} is denoted by \mathcal{E} :

$$
\begin{equation*}
\mathcal{E}(v)=\int_{\widetilde{\Omega}}\left(\left|\nabla^{2} v\right|^{2}+\delta|v-1 / 2|^{2}\right) d \mathbf{x}+\alpha \mathcal{H}^{1}\left(S_{v}\right)+\beta \mathcal{H}^{1}\left(S_{\nabla v} \backslash S_{v}\right) \tag{8}
\end{equation*}
$$

Theorem (C-L-T)

If $g \in L^{2}(\widetilde{\Omega}), w \in X$ and $\beta \leq \alpha \leq 2 \beta$ then \mathcal{F} has at least one minimizer in X.

Blake \& Zisserman functional
Euler equations

consider a sequence with smaller and smaller disks where datum is a steeper and steeper affine function:
(1) sublevels of functional \mathcal{E} are not compact on

$$
\{v \in \operatorname{SBV}(\Omega): \nabla v \in \operatorname{SBV}(\Omega) \times \operatorname{SBV}(\Omega)\}
$$

consider a sequence with smaller and smaller disks where datum is a steeper and steeper affine function:
(1) sublevels of functional \mathcal{E} are not compact on

$$
\{v \in \operatorname{SBV}(\Omega): \nabla v \in \operatorname{SBV}(\Omega) \times \operatorname{SBV}(\Omega)\}
$$

(2) by letting untilted some of the big disks we find functions with unbounded gradient with arbitrarily small energy \mathcal{E}

We recall the definitions of some function spaces where derivatives are special measures in the sense introduced by Ennio De Giorgi:
$S B V(\Omega)$ denotes the class of functions $v \in B V(\Omega)$ s.t.

$$
\int_{\Omega}|D v|=\int_{\Omega}|\nabla v| d y+\int_{S_{v}}\left|v^{+}-v^{-}\right| d \mathcal{H}^{1}
$$

$$
\operatorname{SBV}_{\text {loc }}(\Omega)=\left\{v \in \operatorname{SBV}\left(\Omega^{\prime}\right): \forall \Omega^{\prime} \subset \subset \Omega\right\},
$$

$\operatorname{GSBV}(\Omega)=\left\{v: \Omega \rightarrow \mathbb{R}\right.$ Borel $\left.;-k \vee v \wedge k \in S B V_{\text {loc }}(\Omega) \forall k\right\}$

$$
\operatorname{GSBB}^{2}(\Omega)=\left\{v \in \operatorname{GSB} v(\Omega), \nabla v \in(\operatorname{GSB} V(\Omega))^{2}\right\}
$$

disadvantages (of dealing with GBV)

We emphasize that
$\operatorname{GSB} V(\Omega), \operatorname{GSBV}^{2}(\Omega)$ are neither vector spaces (e.g. $1 / x \in \operatorname{GSBV}, 1 / x+\sin (1 / x) \in \operatorname{GSBV}, n=1$)
nor subsets of distributions in $\Omega\left(\not \subset L^{1}\right)$
Nevertheless
smooth variations of a function in $\operatorname{GSBV}^{2}(\Omega)$ still belong to the same class.

Notice that,

- if $v \in \operatorname{GSB} V(\Omega)$, then S_{v} is countably $\left(\mathcal{H}^{1}, 1\right)$ rectifiable and ∇v exists a.e. in Ω.
- possibly $D v \neq \nabla v$ in $\operatorname{GSB}^{2}(\Omega)$
- $S_{\nabla v}=\bigcup_{i=1}^{2} S_{\nabla i v}$

advantages (of dealing with GBV)

Remark

(1) $v \in B V \cap L^{\infty}, \quad P(E)<+\infty \Rightarrow v \chi_{E} \in B V$
(2) $v \in B V, P(E)<+\infty \quad \not{ }^{*} \quad v \chi_{E} \in B V$
(3) $v \in B V, P(E)<+\infty \quad \Rightarrow \quad v \chi_{E} \in G B V$

* the trace of v could be not integrable, e.g.:

$$
\begin{gathered}
n=2 \quad \Omega=B_{1} \quad v=\varrho^{-1 / 2} \in W^{1,1}\left(B_{1}\right) \\
E=\left\{\mathbf{x}=\{x, y\}: \frac{1}{k^{2}+1}<\varrho<\frac{1}{k^{2}}, k \in \mathbf{N}\right\}
\end{gathered}
$$

Theorem [C-L-T, Adv.Math.Sci.Appl., 2010] existence of strong minimizer

Assume

$$
0<\beta \leq \alpha \leq 2 \beta, \mu>0, \quad g \in L^{2}(\widetilde{\Omega}) \cap L_{l o c}^{4}(\widetilde{\Omega}), w \in L^{2}(\widetilde{\Omega})
$$

Ω is a bounded open set with C^{2} boundary $\partial \Omega$,

$$
w \in C^{2}(\widetilde{\Omega}), \quad D^{2} w \in L^{\infty}(\widetilde{\Omega})
$$

Then there is at least one triple minimizing the functional (6)

$$
F\left(K_{0}, K_{1}, v\right)
$$

with finite energy, among admissible triples $\left(K_{0}, K_{1}, v\right)$ s.t.

$$
\left\{\begin{array}{l}
K_{0}, K_{1} \text { Borel subsets of } \mathbb{R}^{2}, \quad K_{0} \cup K_{1} \text { closed, } \\
v \in C^{2}\left(\widetilde{\Omega} \backslash\left(K_{0} \cup K_{1}\right)\right), v \text { approximately continuous in }\left(\widetilde{\Omega} \backslash K_{0}\right), \\
v=w \text { a.e. in } \widetilde{\Omega} \backslash \Omega .
\end{array}\right.
$$

Steps of the proof

Existence of minimizing triples is achieved by showing partial regularity of the weak solution with penalized Dirichlet datum. The novelty consists in the regularization at the boundary for a free gradient discontinuity problem;
regularity is proven at points with 2-dimensional energy density by:
(. blow-up technique
(2) suitable joining along lunulae filling half-disk
(3) a decay estimate for weak minimizers

Steps of the proof

Existence of minimizing triples is achieved by showing partial regularity of the weak solution with penalized Dirichlet datum. The novelty consists in the regularization at the boundary for a free gradient discontinuity problem;
regularity is proven at points with 2-dimensional energy density by:
(. blow-up technique
(2) suitable joining along lunulae filling half-disk
(3) a decay estimate for weak minimizers

In the blow-up procedure, two refinements of relevant tools are

- hessian decay of a function which is bi-harmonic in half-disk and vanishes together with normal derivative on the diameter
- a Poincaré-Wirtinger inequality for GSBV functions vanishing in a sector [C-L-T, Note di Matematica, 2011] ($v \in \operatorname{GSBV}^{2}(\Omega)$ does not even entail that either v or ∇v belongs to $\left.L_{l o c}^{1}(\Omega)\right)$.

Theorem (Biharmonic extension and L^{2} decay of Hessian) [CLT]

Set $B_{R}^{+}=B_{R}(\mathbf{0}) \cap\{y>0\} \subset \mathbb{R}^{2}, R>0$.
Assume $z \in H^{2}\left(B_{R}^{+}\right), \Delta^{2} z \equiv 0 B_{R}^{+}, \quad z=z_{y} \equiv 0$ on $\{y=0\}$.)
Then there exists an (obviously unique) extension Z of z in whole B_{R} such that $\quad \Delta^{2} Z \equiv 0 B_{R}$.
This extension may increase a lot the L^{2} hessian norm of $D^{2} Z$ nevertheless it implies nice decay on half-ball:

$$
\left\|D^{2} z\right\|_{L^{2}\left(B_{\eta R}^{+}\right)}^{2} \leq \eta^{2}\left\|D^{2} z\right\|_{L^{2}\left(B_{R}^{+}\right)}^{2} .
$$

Theorem (Biharmonic extension and L^{2} decay of Hessian) [CLT]

Set $B_{R}^{+}=B_{R}(\mathbf{0}) \cap\{y>0\} \subset \mathbb{R}^{2}, R>0$.
Assume $z \in H^{2}\left(B_{R}^{+}\right), \Delta^{2} z \equiv 0 B_{R}^{+}, \quad z=z_{y} \equiv 0$ on $\{y=0\}$.)
Then there exists an (obviously unique) extension Z of z in whole B_{R} such that $\quad \Delta^{2} Z \equiv 0 B_{R}$.
This extension may increase a lot the L^{2} hessian norm of $D^{2} Z$ nevertheless it implies nice decay on half-ball:

$$
\left\|D^{2} z\right\|_{L^{2}\left(B_{\eta R}^{+}\right)}^{2} \leq \eta^{2}\left\|D^{2} z\right\|_{L^{2}\left(B_{R}^{+}\right)}^{2} .
$$

Such estimate is not a straightforward consequence of classical Schwarz reflection principle for harmonic functions vanishing on the diameter,

Theorem (Biharmonic extension and L^{2} decay of Hessian) [CLT]

Set $B_{R}^{+}=B_{R}(\mathbf{0}) \cap\{y>0\} \subset \mathbb{R}^{2}, R>0$.
Assume $z \in H^{2}\left(B_{R}^{+}\right), \Delta^{2} z \equiv 0 B_{R}^{+}, \quad z=z_{y} \equiv 0$ on $\{y=0\}$.)
Then there exists an (obviously unique) extension Z of z in whole B_{R} such that $\quad \Delta^{2} Z \equiv 0 B_{R}$.

This extension may increase a lot the L^{2} hessian norm of $D^{2} Z$ nevertheless it implies nice decay on half-ball:

$$
\left\|D^{2} z\right\|_{L^{2}\left(B_{\eta \beta}^{+}\right)}^{2} \leq \eta^{2}\left\|D^{2} z\right\|_{L^{2}\left(B_{R}^{+}\right)}^{2} .
$$

Such estimate is not a straightforward consequence of classical Schwarz reflection principle for harmonic functions vanishing on the diameter, since the Almansi decomposition on the half-disk B_{R}^{+}may neither respect the vanishing value on the diameter:
e.g. $\varrho^{3}(\cos \vartheta-\cos (3 \vartheta))=\varrho^{2} \varphi+\psi$ where $\varphi=x, \psi=3 x^{2} y-x^{3}$ are both harmonic but do not vanish on the diameter $\{y=0\}$,

Theorem (Biharmonic extension and L^{2} decay of Hessian) [CLT]

Set $B_{R}^{+}=B_{R}(\mathbf{0}) \cap\{y>0\} \subset \mathbb{R}^{2}, R>0$.
Assume $z \in H^{2}\left(B_{R}^{+}\right), \Delta^{2} z \equiv 0 B_{R}^{+}, \quad z=z_{y} \equiv 0$ on $\{y=0\}$.)
Then there exists an (obviously unique) extension Z of z in whole B_{R} such that $\quad \Delta^{2} Z \equiv 0 B_{R}$.

This extension may increase a lot the L^{2} hessian norm of $D^{2} Z$ nevertheless it implies nice decay on half-ball:

$$
\left\|D^{2} z\right\|_{L^{2}\left(B_{\eta \beta}^{+}\right)}^{2} \leq \eta^{2}\left\|D^{2} z\right\|_{L^{2}\left(B_{R}^{+}\right)}^{2} .
$$

Such estimate is not a straightforward consequence of classical Schwarz reflection principle for harmonic functions vanishing on the diameter, since the Almansi decomposition on the half-disk B_{R}^{+}may neither respect the vanishing value on the diameter:
e.g. $\varrho^{3}(\cos \vartheta-\cos (3 \vartheta))=\varrho^{2} \varphi+\psi$ where $\varphi=x, \psi=3 x^{2} y-x^{3}$ are both harmonic but do not vanish on the diameter $\{y=0\}$, nor preserves orthogonality in L^{2} or H^{2} :
cancelation of big norms
may take place in one half-disk and not in the other:

Duffin extension formula

Assume

$z \in H^{2}\left(B_{1}^{+}\right)$,
z is bi-harmonic in B_{1}^{+}
$z=\partial z / \partial y=0$ on $B_{1}(\mathbf{0}) \cap\{y=0\}$.

Then

z has a bi-harmonic extension Z in B_{1} defined by

$$
\begin{cases}Z(x, y)=z(x, y) & \forall(x, y) \in B_{1}^{+} \\ Z(x,-y)=-z(x, y)+2 y z_{y}(x, y)-y^{2} \Delta z(x, y) & \forall(x,-y) \in B_{1}^{-}\end{cases}
$$

Almansi-type decomposition ([Ann.Mat.Pura Appl., 1899]) (revisited: [CLT, J.Math.Pures Appl., 96, 2011])

Let $u \in H^{2}\left(B_{R} \backslash \Gamma\right)$ and set $\Gamma=$ negative x axis.
Then

$$
\begin{equation*}
\Delta_{\mathbf{x}}^{2} u=0 \quad B_{R} \backslash \Gamma \tag{9}
\end{equation*}
$$

iff

$$
\begin{equation*}
\exists \varphi, \psi: u(\mathbf{x})=\psi(\mathbf{x})+\|\mathbf{x}\|^{2} \varphi(\mathbf{x}), \quad \Delta_{\mathbf{x}} \varphi(\mathbf{x})=\Delta_{\mathbf{x}} \psi(\mathbf{x}) \equiv 0, B_{R} \backslash \Gamma \tag{10}
\end{equation*}
$$

Moreover decomposition (10) is unique up to possible linear terms in ψ :
say $A \varrho \cos \vartheta=A x$ and $B \varrho \sin \vartheta=B y$ that can switch independently to respectively $A \varrho^{-1} \cos \vartheta$ and $B \varrho^{-1} \sin \vartheta$ in φ.

Back to hessian decay estimate (18)

$$
\begin{aligned}
& v_{k}=\varrho^{k+1}\left(\sin ((k-1) \vartheta)-\frac{k-1}{k+1} \sin ((k+1) \vartheta)\right. \\
& \omega_{k}=\varrho^{k+1}(\cos ((k-1) \vartheta)-\cos ((k+1) \vartheta)
\end{aligned}
$$

Several Euler equations in 2 dimensional case [c.l.t] Calc.Var.Part.Diff.Eq, 2008 [c.l.t] J.Math. Pures Appl., 2011

- $\Delta^{2} u+\mu u=\mu g \quad \Omega \backslash\left(K_{0} \cup K_{1}\right)$
- Neumann boundary operators (plate-type bending moments) vanishing in $K_{0} \cup K_{1}$
- $\left.\llbracket\left|D^{2} u\right|^{2}+\mu|u-g|^{2} \rrbracket\right]=\alpha \mathcal{K}\left(K_{0}\right)$
- $\llbracket\left|D^{2} u\right|^{2} \rrbracket=\beta \mathcal{K}\left(K_{1} \backslash K_{0}\right)$
- Integral and geometric conditions at the "boundary" of singular set: crack-tip and crease-tip.

Theorem - Uniform density estimates up to the bdry [C-L-T, Discr.Cont.Dyn.Sis.-A 2011]

(Minkowski content of the segmentation)
Let (K_{0}, K_{1}, u) be an essential locally minimizing triple for the functional F under: structural assumptions $g \in L^{4}(\widetilde{\Omega})$.

Then $K_{0} \cup K_{1}$ is $\left(\mathcal{H}^{1}, 1\right)$ rectifiable and

$$
\lim _{\varrho \downarrow 0} \frac{\left|\left\{\mathbf{x} \in \tilde{\Omega} ; \operatorname{dist}\left(\mathbf{x},\left(K_{0} \cup K_{1}\right) \cap \bar{\Omega}\right)<\varrho\right\}\right|}{2 \varrho}=\mathcal{H}^{1}\left(K_{0} \cup K_{1}\right) .
$$

- [G.Bellettini, A.Coscia] ($n=1$)
- [L.Ambrosio, L.Faina, R.March, 2001, SIAM J.Math.Anal.] ($n=2$) (segmentation)
- [M.Carriero, I.Farina, A.Sgura, 2004] implementation of finite difference on Euler-Lagrange equations (segmentation)
- [M.Zanetti, A.Vitti, 2012, 2013] Digital surface models in aerial photogrammetry (segmentation)

Variational approximations of BZ functional

- [G.Bellettini, A.Coscia] ($n=1$)
- [L.Ambrosio, L.Faina, R.March, 2001, SIAM J.Math.Anal.] (n=2) (segmentation)
- [M.Carriero, I.Farina, A.Sgura, 2004] implementation of finite difference on Euler-Lagrange equations (segmentation)
- [M.Zanetti, A.Vitti, 2012, 2013] Digital surface models in aerial photogrammetry (segmentation)
- [M.Carriero, A.Leaci, \& F.T., Adv.Calc.Var., 2014] (inpainting)

$$
\begin{aligned}
& \mathcal{F}_{k}(v, s, \sigma)=\int_{\tilde{\Omega}}\left(\left(\sigma^{2}+\kappa_{k}\right)\left|\nabla^{2} v\right|^{2}\right)+\mu \int_{\Omega \backslash U}|v-g|^{2}+\delta \int_{\Omega}|v-1 / 2|^{2} \\
&+(\alpha-\beta) \mathcal{G}_{k}(s)+\beta \mathcal{G}_{k}(\sigma)+\xi_{k} \int_{\tilde{\Omega}}\left(s^{2}+\xi_{k}\right)|\nabla u|^{\gamma}
\end{aligned}
$$

with $\kappa_{k}, \xi_{k}, \zeta_{k}$ suitable infinitesimal weights and

$$
\mathcal{G}_{k}(s)=\int_{\tilde{\Omega}}\left(\frac{1}{k}|\nabla s|^{2}+k \frac{(s-1)^{2}}{4}\right)
$$

Theorem $-\mathcal{F}_{k} \stackrel{\Gamma}{ } \mathcal{F}$ (weak BZ functional for inpainting). (4) E.L.

Euler-Lagrange system.

The system of Euler-Lagrange equations, associated to the k-th (elliptic) approximating functional \mathcal{F}_{k} when the term κ_{k} is neglected, is given by:

$$
\left\{\begin{array}{l}
\sigma^{2} \Delta^{2} u+2 \sigma\left(2 D \sigma \cdot D(\Delta u)+u_{x x} \sigma_{x x}+2 u_{x y} \sigma_{x y}+u_{y y} \sigma_{y y}\right) \\
+2\left(D^{2} u D \sigma\right) \cdot D \sigma-\xi_{k}\left(s^{2} \Delta u+2 s D u \cdot D s\right) \\
\quad+\delta\left(u-\frac{1}{2}\right) \chi_{\Omega}+k(u-w) \chi_{\tilde{\Omega} \backslash \Omega}=0, \\
4(\alpha-\beta) \Delta s=4 \xi_{k} k s|D u|^{2}+(\alpha-\beta) k^{2}(s-1), \\
4 \beta \Delta \sigma=4 k \sigma\left|D^{2} u\right|^{2}+\beta k^{2}(\sigma-1),
\end{array}\right.
$$

in the open set $\widetilde{\Omega}$.
For the sake of simplicity, we have set $\kappa_{k}=0$, and to speed up computations we could assume $\alpha=\beta, \xi_{k}=0$ and $s \equiv 1$.

Euler-Lagrange system.

The system of Euler-Lagrange equations, associated to the k-th (elliptic) approximating functional \mathcal{F}_{k} when the term κ_{k} is neglected, is given by:

$$
\left\{\begin{aligned}
& \sigma^{2} \Delta^{2} u+ 2 \sigma\left(2 D \sigma \cdot D(\Delta u)+u_{x x} \sigma_{x x}+2 u_{x y} \sigma_{x y}+u_{y y} \sigma_{y y}\right) \\
&+2\left(D^{2} u D \sigma\right) \cdot D \sigma-\xi_{k}\left(s^{2} \Delta u+2 s D u \cdot D s\right) \\
&+\delta\left(u-\frac{1}{2}\right) \chi_{\Omega}+k(u-w) \chi_{\tilde{\Omega} \backslash \Omega}=0, \\
& 4(\alpha-\beta) \Delta s= 4 \xi_{k} k s|D u|^{2}+(\alpha-\beta) k^{2}(s-1), \\
& 4 \beta \Delta \sigma=4 k \sigma\left|D^{2} u\right|^{2}+\beta k^{2}(\sigma-1),
\end{aligned}\right.
$$

in the open set $\widetilde{\Omega}$.
For the sake of simplicity, we have set $\kappa_{k}=0$, and to speed up computations we could assume $\alpha=\beta, \xi_{k}=0$ and $s \equiv 1$.
The system seems closely related to the stationary/asymptotic version of the scheme for Bertozzi-Esedoglou-Gillette-Cahn-Hilliard model as implemented by [Cherfils-Fakhi-Miranville (2015), Inv.Pbs Imaging] for proving the existence of finite dimensional attractors.

... and numerical experiments

$4 \square$

SEGMENTATION

Franco Tomarelli

Franco Tomarelli

Drone and battleship

Parameters: alpha $=1 \mathrm{e}-5$, beta $=1 \mathrm{e}-5, \mathrm{mu}=22$

Drone and battleship...indeed battleships!

Parameters: alpha $=1 \mathrm{e}-5$, beta $=1 \mathrm{e}-5, \mathrm{mu}=22$

INPAINTING

We conclude by showing some numerical experiments of inpainting based on our variational approximation by elliptic functionals of BZ functional without fidelity term in the damaged portion of raw image ([C.L.\& T.: St Petersburgh OTARIE 2011, J.Math.Sciences 2012]): the inpainting algorithm removes masks or overlapping text.

Input image with mask

Output inpainted image

Jumps segmentation

Inpainting of a circle without introducing artificial corners.

Inpainting of 4 circles (preserved by small mask).

Input image with mask

Output inpainted image

Jumps segmentation

Inpainting of four disks with a big mask is connected!.

INPAINTING (text removal) in color images

Input image

INPAINTING (text removal)

Output image

INPAINTING (text removal) in color images

input image

INPAINTING (text removal)

output image

Euler equations

From now on, for sake of simplicity, we examine only the main part E of functional F :

$$
\begin{align*}
& E\left(K_{0}, K_{1}, v\right)= \\
& =\int_{\Omega \backslash\left(K_{0} \cup K_{1}\right)}\left|D^{2} v(x)\right|^{2} d x+\alpha \mathcal{H}^{1}\left(K_{0}\right)+\beta \mathcal{H}^{1}\left(K_{1} \backslash K_{0}\right) \tag{11}
\end{align*}
$$

and the structural assumption $\beta \leq \alpha \leq 2 \beta$ will be always understood.

Euler equations I : smooth variations

Theorem

Any essential locally minimizing triple $\left(K_{0}, K_{1}, u\right)$ for functional F fulfils

$$
\Delta^{2} u+\mu(u-g)=0 \quad \text { in } \Omega \backslash\left(K_{0} \cup K_{1}\right) .
$$

Any essential locally minimizing triple $\left(K_{0}, K_{1}, u\right)$ for the functional E fulfils

$$
\Delta^{2} u=0 \quad \text { in } \Omega \backslash\left(K_{0} \cup K_{1}\right) .
$$

Euler equations II : boundary-type conditions on singular set

Necessary conditions on jump discontinuity set K_{0} for natural boundary operators

Assume $\left(K_{0}, K_{1}, u\right)$ is an essential locally minimizing triple for the functional $E, B \subset \subset \Omega$ is an open disk such that $K_{0} \cap B$ is a diameter of the disk and $\left(K_{1} \backslash K_{0}\right) \cap B=\emptyset$. Then

$$
\begin{array}{ll}
\left(\frac{\partial^{2} u}{\partial N^{2}}\right)^{ \pm}=0 & \text { on } K_{0} \cap B \\
\left(\frac{\partial^{3} u}{\partial N^{3}}+2 \frac{\partial}{\partial N}\left(\frac{\partial^{2} u}{\partial \tau^{2}}\right)\right)^{ \pm}=0 & \text { on } K_{0} \cap B
\end{array}
$$

where B^{+}, B^{-}are the connected components of $B \backslash K_{0}, N$ is the unit normal to K_{0} pointing toward B^{+}, v^{+}, v^{-}the traces of any v on K_{0} respectively from B^{+}and $B^{-}, \tau=\left(\tau_{1}, \tau_{2}\right)=\left(-N_{2}, N_{1}\right)$ the choice of the unit tangent vector to K_{0}.

Euler equations III : singular set variations

Next we evaluate the first variation of the energy around a local minimizer u, under compactly supported smooth deformation of K_{0} and K_{1}

Euler equations III : singular set variations

Next we evaluate the first variation of the energy around a local minimizer u, under compactly supported smooth deformation of K_{0} and K_{1}

Integral Euler equation

If $\left(K_{0}, K_{1}, u\right)$ is a locally minimizing triple of E. Then $\forall \eta \in C_{0}^{2}\left(\Omega, \mathbb{R}^{2}\right)$

$$
\begin{aligned}
& \int_{\Omega \backslash\left(K_{0} \cup K_{1}\right)}\left(\left|D^{2} u\right|^{2} \operatorname{div} \eta-2\left(D \eta D^{2} u+(D \eta)^{t} D^{2} u+D u D^{2} \eta\right): D^{2} u\right) d \mathbf{x} \\
& \quad+\alpha \int_{K_{0}} \operatorname{div}_{\mathrm{K}_{0}}^{\tau} \eta d \mathcal{H}^{1}+\beta \int_{K_{1} \backslash K_{0}} \operatorname{div}_{\mathrm{K}_{1} \backslash \mathrm{~K}_{0}}^{\tau} \eta d \mathcal{H}^{1}=0
\end{aligned}
$$

where $\operatorname{div}_{S}^{\tau}$ denotes the tangential (to set S) divergence and

$$
\begin{aligned}
& \left(D \eta D^{2} u+(D \eta)^{t} D^{2} u+D u D^{2} \eta\right)_{i j}= \\
& \quad=\sum_{k}\left(D_{k} \eta_{i} D_{k j}^{2} u+D_{i} \eta_{k} D_{k j}^{2} u+D_{k} u D_{i j}^{2} \eta_{k}\right)
\end{aligned}
$$

Curvature of jump set K_{0} and squared hessian jump

If $\left(K_{0}, K_{1}, u\right)$ is an essential locally minimizing triple for functional E,
$B \subset \subset U \subset \widetilde{\Omega}$ two open disks, s.t. $K_{0} \cap U$ is the graph of a C^{4} function, B^{+}(resp. B^{-}) the open connected epigraph (resp. subgraph) of such function in B,.
$K_{1} \cap U=\emptyset$, and u in $W^{4, r}\left(B^{+}\right) \cap W^{4, r}\left(B^{-}\right), r>1$.
Then

$$
\llbracket\left|D^{2} u\right|^{2} \rrbracket=\alpha \mathcal{K}\left(K_{0}\right) \quad \text { on } K_{0} \cap B .
$$

where we denote
by \mathcal{K} the curvature and by $\llbracket w]$ the jump of a function w on K_{0}
Analogous results holds true for crease set $K_{1} \backslash K_{0}$ Both results follows by plugging (normal to singular set) vector fields in Integral Euler equation

Crack-tip

Now we perform a qualitative analysis of the "boundary" of the singular set, by assuming it is manifold as smooth as required by the computation of boundary operators.
The strategy is a new choice of the test functions in Euler equation: a vector field η tangential to K_{0} (or K_{1}).

Crack-tip

Now we perform a qualitative analysis of the "boundary" of the singular set, by assuming it is manifold as smooth as required by the computation of boundary operators.
The strategy is a new choice of the test functions in Euler equation: a vector field η tangential to K_{0} (or K_{1}).

Crack-tip Theorem

Assume (K_{0}, K_{1}, u) is an essential locally minimizing triple of E, $B=B\left(\mathbf{x}_{0}\right) \subset \Omega$ an open disk with center at \mathbf{x}_{0} s.t. $\left(K_{1} \backslash K_{0}\right) \cap B=\emptyset$, $K_{0} \cap B=\overline{S_{u}} \cap B$ is a is a smooth curve from center to bdry of B and

$$
\exists r>1: \quad u \in W^{4, r}\left(U \backslash\left(K_{0} \cup B_{k}\left(\mathbf{x}_{0}\right)\right) \quad \forall k>0\right.
$$

Then u fulfils, for every $\eta \in C_{0}^{3}\left(B, \mathbb{R}^{2}\right)$ s.t. $\eta=\zeta \tau$
$\left(\zeta \in C_{0}^{\infty}(B), \tau \in C^{3}\left(B, S^{1}\right)\right.$ and
η vector field tangent to K_{0} pointing toward K_{0} at \mathbf{x}_{0})

$$
\lim _{\varepsilon \rightarrow 0_{+}} \int_{\partial B_{\varepsilon}\left(\mathbf{x}_{0}\right) \backslash K_{0}} \mathcal{L}^{\eta}(u) d \mathcal{H}^{1}=\alpha \zeta\left(\mathbf{x}_{0}\right)
$$

Crack-tip

Franco Tomarelli

Mode 1 (JUMP) :

$$
\varrho^{3 / 2} \omega(\theta)=\varrho^{3 / 2}\left(\sin \frac{\theta}{2}-\frac{5}{3} \sin \left(\frac{3}{2} \theta\right)\right) \quad-\pi<\theta<\pi
$$

Mode 2 (CREASE) :

$$
\varrho^{3 / 2} \mathrm{w}(\theta)=\varrho^{3 / 2}\left(\cos \frac{\theta}{2}-\frac{7}{3} \cos \left(\frac{3}{2} \theta\right)\right) \quad-\pi<\theta<\pi
$$

CANDIDATE:

$$
W= \pm \sqrt{\frac{\alpha}{193 \pi}} \varrho^{3 / 2}(\sqrt{21} \omega(\theta) \pm \mathrm{w}(\theta)) \quad-\pi<\theta<\pi
$$

Mode 1 (JUMP) :

$$
\varrho^{3 / 2} \omega(\theta)=\varrho^{3 / 2}\left(\sin \frac{\theta}{2}-\frac{5}{3} \sin \left(\frac{3}{2} \theta\right)\right) \quad-\pi<\theta<\pi
$$

Mode 2 (CREASE) :

$$
\varrho^{3 / 2} \mathrm{w}(\theta)=\varrho^{3 / 2}\left(\cos \frac{\theta}{2}-\frac{7}{3} \cos \left(\frac{3}{2} \theta\right)\right) \quad-\pi<\theta<\pi
$$

CANDIDATE:

$$
W= \pm \sqrt{\frac{\alpha}{193 \pi}} \varrho^{3 / 2}(\sqrt{21} \omega(\theta) \pm \mathrm{w}(\theta)) \quad-\pi<\theta<\pi
$$

W fulfils all Euler equations, all constraints on jump and curvature of singular set and Energy equipartition:

$$
\int_{B_{\ell}(0)}\left|\nabla^{2} u\right|^{2} d \mathbf{x}=\alpha \varrho
$$

Candidate conjecture
Assume $0<\beta \leq \alpha \leq 2 \beta<+\infty$.
Then triple

$$
\left.\left(K_{0}=\text { negative real axis, } K_{1}=\emptyset, \text { function } W\right)\right)
$$

is a locally minimizing triple for E in \mathbb{R}^{2}.
Moreover we conjecture that there are no other nontrivial locally minimizing triples with non empty jump set and different from triples

$$
\begin{gathered}
\left(K_{0}=\text { closed negative real axis, } K_{1}=\emptyset, \Phi\right) \\
\Phi=(A \omega(\vartheta)+B w(\vartheta)) r^{3 / 2}, \quad 35 A^{2}+37 B^{2}=\frac{4 \alpha}{\pi}, \quad A \neq 0
\end{gathered}
$$

possibly swayed by rigid motions of \mathbb{R}^{2} co-ordinates and/or addition of affine functions.

Proving the minimality of a given candidate for a free discontinuity problem is a difficult task in general.

As far as we know, neither the calibration techniques [Alberti, Bouchitte, DalMaso], nor the method used by [Bonnet, David] (both successfully applied to Mumford \& Shah functional to test non trivial minimizers) seem to apply to the present context of second order functionals.

Even the excess identity approach of [Percivale \& T.], which succeeds with second order functionals related to elasto-plastic plates, does not apply to the present context since Blake \& Zisserman functional do not control $\int_{S_{D v}}|[D v]| d \mathcal{H}^{1}$.

Mumford-Shah functional

Theorem [M.Carriero, A.Leaci, D.Pallara, E.Pascali]

If $\left(\mathbb{R}^{-}, u\right)$ is a local minimizer in \mathbb{R}^{2} of

$$
\int_{B_{1}}|\nabla v|^{2}+\alpha \mathcal{H}^{1}\left(S_{v}\right)
$$

then

$$
\left.u(\rho, \theta)=a_{0} \pm u^{S}(\rho, \theta)+u^{R}(\rho, \theta)\right)
$$

where

$$
u^{S}(\rho, \theta)=\sqrt{\frac{2 \alpha}{\pi}} \rho^{1 / 2} \sin \frac{\theta}{2}, \quad u^{R}(\rho, \theta)=o\left(\rho^{1-\varepsilon}\right)
$$

CONJECTURE (E.De Giorgi)

$$
\psi(\rho, \theta)=\sqrt{\frac{2 \alpha}{\pi}} \rho^{1 / 2} \sin \frac{\theta}{2}
$$

is a local minimizer of Mumford-Shah functional in \mathbb{R}^{2}. ψ is the only non trivial local minimizer in \mathbb{R}^{2}
(up to the sign and/or a rigid motion and constant addition)
where local minimizer of $\mathrm{M}-\mathrm{S}$ functional refers to
compactly-supported variation
(without topological restrictions)
With a slightly different definition
competitor for (u, K) : any pair (w, H) s.t. and if $x, y \in \mathbb{R}^{2} \backslash\left(K \cup B_{R}\right)$ are separated by K, then also H separates them,
A.Bonnet \& G.David proved the conjecture in a weak form. (the difference does not play any role for candidate ψ.)

Theorem - Uniform density estimates up to the bdry
 [C-L-T, Pure Math.Appl., 2009]

(Density upper bound for the functional F)

Let (K_{0}, K_{1}, u) be an essential locally minimizing triple for the functional F under structural assumptions, $g \in L_{l o c}^{4}(\Omega)$, and

$$
\exists \bar{\varrho}>0: \mathcal{H}^{1}\left(\partial \Omega \cap B_{\varrho}(\mathbf{x})\right)<C \varrho \quad \forall \mathbf{x} \in \partial \Omega, \forall \varrho \leq \bar{\varrho}
$$

Then for every $0<\varrho \leq(\bar{\varrho} \wedge 1)$ and for every $x \in \bar{\Omega}$ such that $\bar{B}_{\varrho}(x) \subset \widetilde{\Omega}$ we have

$$
F_{\bar{B}_{e}(x) \cap \bar{\Omega}}\left(K_{0}, K_{1}, u\right) \leq c_{0} \varrho
$$

where $c_{0}=C^{2} \pi+2 \pi^{\frac{1}{2}} \mu\left(\|w\|_{L^{4}\left(B_{e}(\mathbf{x})\right)}^{2}+\|g\|_{L^{4}\left(B_{e}(\mathbf{x})\right)}^{2}\right)+(2 \pi+C) \alpha$.

Theorem - Uniform density estimates up to the bdry [C-L-T, Discr.Cont.Dyn.Sis.-A 2011]

Let (K_{0}, K_{1}, u) be an essential locally minimizing triple for the functional F under structural assumptions, $g \in L_{l o c}^{4}(\Omega)$, and

$$
\exists \bar{\varrho}>0: \mathcal{H}^{1}\left(\partial \Omega \cap B_{\varrho}(\mathbf{x})\right)<C \varrho \quad \forall \mathbf{x} \in \partial \Omega, \forall \varrho \leq \bar{\varrho} .
$$

(Density lower bound for the functional F)
Then there exist $\varepsilon_{0}>0, \varrho_{0}>0$ such that, for every $0<\varrho \leq(\varrho \wedge 1)$ and for every $x \in \bar{\Omega}$ such that $\bar{B}_{\varrho}(x) \subset \widetilde{\Omega}$ we have

$$
F_{B_{e}(\mathbf{x})}\left(K_{0}, K_{1}, u\right) \geq \varepsilon_{0} \varrho \quad \forall x \in\left(K_{0} \cup K_{1}\right) \cap \bar{\Omega}, \quad \forall \varrho \leq \varrho_{0}
$$

(Density lower bound for the segmentation length) and there exist $\varepsilon_{1}>0, \varrho_{1}>0$ such that

$$
\mathcal{H}^{1}\left(\left(K_{0} \cup K_{1}\right) \cap B_{\varrho}(\mathbf{x})\right) \geq \varepsilon_{1} \varrho \quad \forall x \in\left(K_{0} \cup K_{1}\right) \cap \bar{\Omega}, \quad \forall \varrho \leq \varrho_{1} .
$$

Theorem - Asymptotic expansion of loc.min. triples with crack-tip

Assume (Γ, \emptyset, u) is a locally minimizing triple of E in \mathbb{R}^{2},
where $\Gamma=$ denotes the closed negative real axis.
Then there are constants A, B with $(A, B) \neq(0,0)$ and A_{h}, B_{h} s.t.

$$
\begin{aligned}
& u(r, \theta)= \\
& \begin{array}{l}
=r^{3 / 2}\left(A\left(\sin \left(\frac{\theta}{2}\right)-\frac{5}{3} \sin \left(\frac{3}{2} \theta\right)\right)+B\left(\cos \left(\frac{\theta}{2}\right)-\frac{7}{3} \cos \left(\frac{3}{2} \theta\right)\right)\right)+ \\
\\
\quad+\sum_{h=1}^{+\infty} r^{h+\frac{3}{2}}\left(A_{h} \cos \left(\left(h+\frac{3}{2}\right) \theta\right)+B_{h} \sin \left(\left(h+\frac{3}{2}\right) \theta\right)+\right. \\
\left.\quad-\frac{2 h+3}{2 h+7} A_{h} \cos \left(\left(h-\frac{1}{2}\right) \theta\right)-\frac{2 h+3}{2 h-5} B_{h} \sin \left(\left(h-\frac{1}{2}\right) \theta\right)\right)
\end{array}
\end{aligned}
$$

where u is expressed by polar coordinates in \mathbb{R}^{2}
with $\theta \in(-\pi, \pi)$ and $r \in(0,+\infty)$.
This expansion is strongly convergent in $H^{2}\left(B_{\varrho} \backslash \Gamma\right)$, moreover ...
... the lower order term $(h=0)$ in the expansion must have the following form

$$
\left\{\begin{array}{cl}
W_{0}=(A \omega(\vartheta)+B w(\vartheta)) r^{3 / 2} & \text { in } B_{\varrho} \backslash \Gamma, \text { referring to modes: } \\
\text { Mode } 1 \text { (Jump) } & \omega(\vartheta)=\left(\sin \left(\frac{\vartheta}{2}\right)-\frac{5}{3} \sin \left(\frac{3}{2} \vartheta\right)\right) \\
\text { Mode } 2 \text { (Crease) } & w(\vartheta)=\left(\cos \left(\frac{\vartheta}{2}\right)-\frac{7}{3} \cos \left(\frac{3}{2} \vartheta\right)\right)
\end{array}\right.
$$

where $\vartheta \in(-\pi, \pi)$ and constants A, B verify

$$
35 A^{2}+37 B^{2}=\frac{4 \alpha}{\pi}, \quad A \neq 0
$$

