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The Euler equations

I We consider the Cauchy problem for the ideal incompressible
homogeneous Euler equations

ut + u · ∇u +∇p = 0
∇ · u = 0
u(x ,0) = u0(x)

(E)

where (x , t) ∈ Rd × [0,∞) or Td × [0,∞) and d ∈ {2,3}.
I This Eulerian formulation (E) is due to Euler [1757].



Well-posedness

I If u0 ∈ Hs with s > d/2 + 1, or u0 ∈ L2 ∩ C1,γ for some γ ∈ (0,1),
there exists a T > 0 and a unique solution u bounded in the
same class as the datum on [0,T ).

I d = 2: Wolibner [’33], Hölder [’33]. Kato [’67].
I d = 3: Lichstenstein [’30]. Kato [’72].

I d = 2: T =∞, even for ω0 ∈ L1 ∩ L∞; Yudovich [’63].
I d = 3: the classical solution may be extended past time T iff∫ T

0
‖ω(t)‖L∞dt <∞

where ω = ∇× u is the vorticity; Beale-Kato-Majda [’84].
I The local existence theorems are in classes which guarantee

u is Lipschitz continuous

up to logarithms, as long as the solution exists.
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Lagrangian paths

I Given a Lipschitz velocity field u(x , t) the Lagrangian path
starting at “label” a is given by the solution of the ODE

dX
dt

(a, t) = u(X (a, t), t), X (a,0) = a.

I Conservation of momentum becomes

∂2
t X (a, t) + (∇xp)(X (a, t), t) = 0.

I Conservation of mass becomes

det(∇aX ) = 1

i.e., the map a 7→ X (a, t) is volume preserving.
I Lagrangian description of ideal fluids is also due to Euler [1757].
I When u ∈ C1,γ ∩ L2 the two formulations are equivalent, and

local existence and uniqueness results are “the same”.



Any difference between Lagrangian and Eulerian?

I Consider u0 that is in L2 ∩ C1,γ .
I If we view the Eulerian solution as a function of time with values

in C1,γ , then this function is everywhere discontinuous for generic
initial data: Cheskidov-Shvydkoy [’10], Misiolek-Yoneda [’12-’14].

I See also Masmoudi-Elgindi [’14], Bourgain-Li [’14] for
ill-posedness in critical spaces.

I On the other hand, the Lagrangian paths, viewed as functions of
time with values in C1,γ are real-analytic (wrt t).
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Eulerian regularity
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A Lagrangian path
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Lagrangian analyticity for 3D Euler

I Chemin [’92], Gamblin [’94], Serfati [’95], Sueur [’11],
Glass-Sueur-Takahashi [’12]: commutators, Littlewood-Paley.

I Shnirelman [’12]: Complexification of geodesic exponential map
in SDiff.

I Frisch-Zheligovsky [’12-’13] “A Very Smooth Ride in a Rough
Sea”: Cauchy invariant gives local elliptic system in label
variables. Special structure of 3D Euler.

I Nadirashvili [’13]: 2D elliptic theory yields that nondegenerate
level sets of stream function in steady 2D Euler are analytic.

I Quantifying the distinct degrees of regularity for weak solutions
of 3D Euler with respect to Eulerian and Lagrangian derivatives
is crucial for the recent works on the Onsager conjecture: Isett
[’12-’13], Buckmaster-DeLellis-Szekelyhidi [’13-’14].



Lagrangian analyticity in hydrodynamic systems

Question: is there anything robust about these results, or are all the
results due to the special structure of the Euler equations?

Theorem (Constantin-V.-Wu (’14))
Consider a well-posed hydrodynamic equation (such as 2D/3D Euler,
2D Boussinesq, 2D SQG, 2D IPM, etc...) on a time interval [0,T )
when the Eulerian velocities are C1,γ , for some γ ∈ (0,1).
Then, the Lagrangian particle trajectories X (a, t) are real-analytic
functions of time.
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I The radius of analyticity in time on the interval [0, t ] depends on
the chord-arc parameter of this interval:

λ(t) = exp

(∫ t

0
‖∇u(τ)‖L∞

x
dτ

)
.

I Recall: as long as u ∈ L1
t Lipx , we have the chord-arc condition

λ(t)−1 ≤ |a− b|
|X (a, t)− X (b, t)|

≤ λ(t).

I Proof also applies to smooth 2D vortex patches. In contrast, for
generic vorticity in the Yudovich class, only Gevrey-3 regularity in
time appears to be known: Gamblin [’94], Sueur [’11].



I Reformulation as closed Lagrangian system. The Lagrangian
path, X , obeys

dX
dt

(a, t) =
1

4π

∫
X (a, t)− X (b, t)
|X (a, t)− X (b, t)|3

× (∇bX (b, t)ω0(b))db.

and

d(∇aX )

dt
(a, t) = (∇aX )(a, t)

∫
K (X (a, t)− X (b, t)) (∇bX (b, t)ω0(b)) db

+
1
2

(∇aX (a, t)ω0(a))× (∇aX )(a, t).

with kernel K is given by

(K (x)y)ij =
3

8π
(x × y)i xj + (x × y)j xi

|x |5
.

I Key observations: initial datum just appears as a parameter; and
the equations are closed ODEs with values in C1,γ .
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I Recall: If K is real-analytic and X ∈ C0 is a solution of

dX
dt

= K (X )

then in fact X is real-analytic with respect to t .
I Proof: keep track of proper Cauchy inequalities

|∂n
t X | ≤ (−1)n−1

(
1/2
n

)
(2C)n

Rn−1 n!

by means of the Faá di Bruno formula (or method of majorants).

I Instead, for a large class of inviscid hydrodynamical models:

d
dt

[X ,∇X ] (a)

= P1(X (a),∇X (a))

×p.v .
∫
K(X (a)− X (b))P2(X (b),∇X (b))P3(u0(b),∇u0(b))db

where Pi are polynomials, and K are Calderon-Zygmund kernels.
I C-Z operators remain OK after composition with C1,γ maps.
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Fully Lagrangian formulation of the Euler equations
I The Lagrangian velocity v and the pressure q are obtained by

composing with X

v(a, t) = u(X (a, t), t), q(a, t) = p(X (a, t), t).

I Denote the matrix inverse of the Jacobian of the particle map as

Y (a, t) = (∇aX (a, t))−1.

I The Lagrangian formulation of Euler is given in components by
∂tv i + Y j

i ∂jq = 0
Y k

i ∂k v i = 0
∂tY k

i = −Y k
l (∇v)l

jY
j
i

(L)

used summation convention on repeated indices, and ∂k = ∂ak .
I The evolution of Y follows from det(∇X ) = 1 and ∇a(∂tX = v).
I The closed system for (v ,q,Y ) is supplemented with initial datum

v(a,0) = v0(a) = u0(a), Y (a,0) = I.



Any difference between Lagrangian and Eulerian?
I Consider u0 that is real-analytic wrt x .
I Then as long as the smooth solution exists (i.e. does not blow up

in L1
t Lipx ), it remains real-analytic wrt x .

I Bardos-Benachour-Zerner [’76], Bardos-Benachour [’77],
Alinhac-Metivier [’86], Levermore-Oliver [’97], Kukavica-V.
[’09-’11], Zheligovsky [’11], Sueur [’11], Glass-Sueur-Takahashi
[’12], Sawada [’13].

I Best lower bounds on the uniform spatial analyticity radius τ(t)
are given explicitly in terms of the chord-arc parameter

τ(t) ≥ τ0

λ(t)
= τ0 exp

(
−
∫ t

0
‖∇u(s)‖L∞ds

)

I Analyticity with respect to label a follows (with possibly different
convergence radius) due to composition of real-analytic
functions, and Cauchy-Kowalevski.

I Analyticity in time in this case follows directly from the equations:
∂tu = real-analytic function.
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Constantin-Kukavica-V. (’15)

I In the Lagrangian formulation, one may solve the equations
locally in time, at fixed analyticity radius.

I In Eulerian variables, it may deteriorate instantaneously.

I The Lagrangian formulation allows solvability in highly
anisotropic classes, e.g. functions which have analyticity in one
variable, but are not analytic in the others.

I In the Eulerian formulation, the equations are ill-posed in such
functions spaces.
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Norms for real-analytic and Gevrey functions
I Fix r > d/2, so that H r (Rd ) is an algebra.
I For a Gevrey-index s ≥ 1 and Gevrey-radius δ > 0, we denote

the isotropic Gevrey norm by

‖f‖Gs,δ =
∑
β≥0

δ|β|

|β|!s ‖∂
β f‖H r =

∑
m≥0

δm

m!s

∑
|β|=m

‖∂β f‖H r


where β ∈ Nd

0 is a multi-index.

I When s = 1 this norm corresponds to the space of real-analytic
functions, and δ represents the uniform radius of analyticity of f .

I The `1 norm in m is essential→Wiener algebra.
I See Oliver-Titi [’01] for an equivalent Fourier description.
I Similarly, given a coordinate j ∈ {1, . . . ,d}, we define the

anisotropic s-Gevrey norm with radius δ > 0 by

‖f‖G(j)
s,δ

=
∑
m≥0

δm

m!s ‖∂
m
j f‖H r .
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Persistence of Lagrangian analyticity radius

Theorem (Constantin-Kukavica-V. (’15))
Assume that v0 ∈ L2 and

∇v0 ∈ Gs,δ

for some Gevrey-index s ≥ 1 and a Gevrey-radius δ > 0.
Then there exists T > 0 and a unique solution v ∈ C([0,T ]; H r+1),
Y ∈ C([0,T ],H r ) of the Lagrangian Euler system (L), which moreover
satisfies

∇v ,Y ∈ L∞([0,T ],Gs,δ).



Instantaneous decay of Eulerian analyticity radius
Theorem (Constantin-Kukavica-V. (’15))
There exist smooth periodic functions f ,g such that

‖u0‖G1,1 <∞

and such that the unique solution u of the Euler equations (E)
measured in the Eulerian variables obeys

‖u(t)‖G1,1 =∞

as soon as t > 0.

I Let f ,g be two 2π-periodic functions. The function

u(x1, x2, x3, t) = (f (x2),0,g(x1 − tf (x2)))

is an exact solution of the Euler equations (E) on T3, with datum

u0(x1, x2, x3) = (f (x2),0,g(x1)).

and vanishing pressure. Di Perna-Majda [’87]; Bardos-Titi [’10].
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Proof
I Simply letting

f (y) = sin(y) and g(y) =
1

sinh(1)2 + sin(y)2

does not work, since then u0 6∈ G1,1 (`1 vs `∞ in derivative order).

I Instead, start with 1/(1 + y2); integrate four times (so that the
holomorphic extension is C2 up to Im(z) = 1); cut off in Gaussian
way at infinity; periodize.

I As soon as we turn on time, the holomorphic extension of the
function

∂3
x1

u3(x1, x2, x3, t) = ∂3
x1

(g(x1 − tf (x2)))

has a singularity in the complex plane at

z1 = 0− (1− t)i
z2 = 0 + i log 2.

I Thus, u(t) 6∈ G1,δ(t), for any δ(t) > 1− t .
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1
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−1
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Solvability in anisotropic Lagrangian Gevrey classes

Theorem (Constantin-Kukavica-V. (’14))
Fix a direction j ∈ {1, . . . ,d}, assume that v0 ∈ H r+1 and that

∇v0 ∈ G(j)
s,δ

for some index s ≥ 1 and radius δ > 0. Then there exists T > 0 and a
unique solution v ∈ C([0,T ],H r+1), Y ∈ C([0,T ],H r ) of the
Lagrangian Euler system (L), which moreover satisfies

∇v ,Y ∈ L∞([0,T ],G(j)
s,δ).

I At low regularity, i.e. Hölder classes, the equivalent question is
the propagation of smoothness along vector fields transported by
the Euler flow: “striated regularity”. Bae-Kelliher [’15], following
earlier works of Chemin [’93], Gamblin-Saint Raymond [’95],
Danchin [’99], in spaces with negative degrees of smoothness.
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I At low regularity, i.e. Hölder classes, the equivalent question is
the propagation of smoothness along vector fields transported by
the Euler flow: “striated regularity”. Bae-Kelliher [’15], following
earlier works of Chemin [’93], Gamblin-Saint Raymond [’95],
Danchin [’99], in spaces with negative degrees of smoothness.



Ill-posedness for anisotropic Eulerian real-analyticity

Theorem (Constantin-Kukavica-V. (’15))
There exists T > 0 and an initial datum u0 ∈ C∞(R2) for which u0 and
ω0 are real-analytic in x1, uniformly with respect to x2, such that the
unique C([0,T ]; H r ) solution ω(t) of the Cauchy problem for the Euler
equations (E) is not real-analytic in x1, for any t ∈ (0,T ].

I The fact that the Eulerian version of the theorem does not hold
should not be so surprising: isotropy and time-reversibility of the
Euler equations.

I By contrast, the fact that the Lagrangian formulation keeps the
memory of initial anisotropy is a bit more puzzling.

I Navier-Stokes ≈ Euler + Prandtl?
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The Lagrangian vorticity in 2D

I For d = 2 the Lagrangian scalar vorticity

ζ(a, t) = ω(X (a, t), t)

is conserved in time
ζ(a, t) = ω0(a)

for t ≥ 0.

I The Lagrangian velocity v can then be computed from the
Lagrangian vorticity ζ using the elliptic curl-div system

εijY k
i ∂k v j = Y k

1 ∂k v2 − Y k
2 ∂k v1 = ζ = ω0

Y k
i ∂k v i = Y k

1 ∂k v1 + Y k
2 ∂k v2 = 0

where εij is the sign of the permutation (1,2) 7→ (i , j).
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is conserved in time
ζ(a, t) = ω0(a)

for t ≥ 0.
I The Lagrangian velocity v can then be computed from the

Lagrangian vorticity ζ using the elliptic curl-div system

εijY k
i ∂k v j = Y k

1 ∂k v2 − Y k
2 ∂k v1 = ζ = ω0

Y k
i ∂k v i = Y k

1 ∂k v1 + Y k
2 ∂k v2 = 0

where εij is the sign of the permutation (1,2) 7→ (i , j).



The Cauchy identities for Lagrangian vorticity in 3D
I For d = 3 the vorticity vector is not conserved along particle

trajectories, and instead we have the vorticity transport formula

ζ i (a, t) = ∂k X i (a, t)ωk
0 (a).

I Thus, in three dimensions, the elliptic curl-div system becomes

εijk Y l
j ∂lvk = ζ i = ∂k X iωk

0

Y k
i ∂k v i = 0

I In order to make use of the above identity, we need to
reformulate it so that the right side is time-independent, as in 2D.

I Multiplying the equation for the Lagrangian curl with Y m
i and

summing in i , we get

εijk Y m
i Y l

j ∂lvk = ωm
0

which is the form of the Cauchy [1827] identity containing only Y .
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Proof of Lagrangian persistence

I Fix s ≥ 1 and δ > 0 so that ‖∇v0‖Gs,δ ≤ M, that is

Ωm :=
∑
|α|=m

‖∂α∇v0‖H r

obeys ∑
m≥0

Ωm
δm

m!s ≤ M

I Fix T > 0, to be chosen later sufficiently small in terms of M and
s, and for m ≥ 0 define

Vm= Vm(T ) = sup
t∈[0,T ]

∑
|α|=m

‖∂α∇v(t)‖H r ,

Zm= Zm(T ) = sup
t∈[0,T ]

t−1/2
∑
|α|=m

‖∂α(Y (t)− I)‖H r .
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Velocity estimates

I In order to estimate ∇v and its derivatives, we use the
three-dimensional div-curl system we conclude that for α ∈ N3

0:

‖∂α∇v‖H r ≤ C‖∂αωm
0 ‖H r + C‖∂α(εijk (δim − Y m

i )(δjl − Y l
j )∂lvk )‖H r

+ C‖∂α(εmjk (δjl − Y l
j )∂lvk )‖H r + C‖∂α(εijk (δim − Y m

i )∂jvk )‖H r

+ C‖∂α((δik − Y k
i )∂k v i )‖H r .

I Summing the above inequality over all multi-indices with |α| = m
and taking a supremum over t ∈ [0,T ] we arrive at

Vm ≤ CΩm + CTZmZ0V0 + CTZ 2
0 Vm + CT 1/2Z0Vm + CT 1/2ZmV0

+ CT 1/2
∑

0<j<m

(
m
j

)
ZjVm−j + CT

∑
0<(j,k)<m

(
m
j k

)
ZjZk Vm−j−k

for all m ≥ 0.



Flow map estimates

I In order to bound Zm we appeal to the evolution for Y (t)− I:

I − Y (t) =

∫ t

0
(Y − I) : ∇v : (Y − I) dτ +

∫ t

0
(Y − I) : ∇v dτ

+

∫ t

0
∇v : (Y − I) dτ +

∫ t

0
∇v dτ

I We obtain

Zm ≤ CT 1/2(TZ 2
0 Vm + TZmZ0V0 + T 1/2Z0Vm + T 1/2ZmV0 + Vm)

+ CT 3/2
∑

0<|(j,k)|<m

(
m
j k

)
ZjZk Vm−j−k + CT

m−1∑
j=1

(
m
j

)
ZjVm−j

for all m ≥ 0.
I Summing over m completes the proof.



Thank you!


