Regularity Properties of the Euler Equations in Lagrangian Variables

Vlad Vicol
(Princeton University)

joint with
Peter Constantin, Igor Kukavica, Jiahong Wu

2015 SIAM Conference on Analysis of PDEs
December 7, 2015. Scottsdale, AZ.

The Euler equations

- We consider the Cauchy problem for the ideal incompressible homogeneous Euler equations

$$
\left\{\begin{array}{l}
u_{t}+u \cdot \nabla u+\nabla p=0 \tag{E}\\
\nabla \cdot u=0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

where $(x, t) \in \mathbb{R}^{d} \times[0, \infty)$ or $\mathbb{T}^{d} \times[0, \infty)$ and $d \in\{2,3\}$.

- This Eulerian formulation (E) is due to Euler [1757].

Well-posedness

- If $u_{0} \in H^{s}$ with $s>d / 2+1$, or $u_{0} \in L^{2} \cap C^{1, \gamma}$ for some $\gamma \in(0,1)$, there exists a $T>0$ and a unique solution u bounded in the same class as the datum on $[0, T)$.
- $d=2$: Wolibner ['33], Hölder ['33]. Kato ['67].
- $d=3$: Lichstenstein ['30]. Kato ['72].

Well-posedness

- If $u_{0} \in H^{s}$ with $s>d / 2+1$, or $u_{0} \in L^{2} \cap C^{1, \gamma}$ for some $\gamma \in(0,1)$, there exists a $T>0$ and a unique solution u bounded in the same class as the datum on $[0, T)$.
- $d=2$: Wolibner ['33], Hölder ['33]. Kato ['67].
- $d=3$: Lichstenstein ['30]. Kato ['72].
- $d=$ 2: $T=\infty$, even for $\omega_{0} \in L^{1} \cap L^{\infty}$; Yudovich ['63].
- $d=3$: the classical solution may be extended past time T iff

$$
\int_{0}^{T}\|\omega(t)\|_{L \infty} d t<\infty
$$

where $\omega=\nabla \times u$ is the vorticity; Beale-Kato-Majda ['84].

- The local existence theorems are in classes which guarantee
u is Lipschitz continuous
up to logarithms, as long as the solution exists.

Lagrangian paths

- Given a Lipschitz velocity field $u(x, t)$ the Lagrangian path starting at "label" a is given by the solution of the ODE

$$
\frac{d X}{d t}(a, t)=u(X(a, t), t), \quad X(a, 0)=a .
$$

- Conservation of momentum becomes

$$
\partial_{t}^{2} X(a, t)+\left(\nabla_{x} p\right)(X(a, t), t)=0
$$

- Conservation of mass becomes

$$
\operatorname{det}\left(\nabla_{a} X\right)=1
$$

i.e., the map $a \mapsto X(a, t)$ is volume preserving.

- Lagrangian description of ideal fluids is also due to Euler [1757].
- When $u \in C^{1, \gamma} \cap L^{2}$ the two formulations are equivalent, and local existence and uniqueness results are "the same".

Any difference between Lagrangian and Eulerian?

- Consider u_{0} that is in $L^{2} \cap C^{1, \gamma}$.
- If we view the Eulerian solution as a function of time with values in $C^{1, \gamma}$, then this function is everywhere discontinuous for generic initial data: Cheskidov-Shvydkoy ['10], Misiolek-Yoneda ['12-'14].
- See also Masmoudi-Elgindi ['14], Bourgain-Li ['14] for ill-posedness in critical spaces.

Any difference between Lagrangian and Eulerian?

- Consider u_{0} that is in $L^{2} \cap C^{1, \gamma}$.
- If we view the Eulerian solution as a function of time with values in $C^{1, \gamma}$, then this function is everywhere discontinuous for generic initial data: Cheskidov-Shvydkoy ['10], Misiolek-Yoneda ['12-'14].
- See also Masmoudi-Elgindi ['14], Bourgain-Li ['14] for ill-posedness in critical spaces.
- On the other hand, the Lagrangian paths, viewed as functions of time with values in $C^{1, \gamma}$ are real-analytic (wrt t).

＂Smooth＂Sea

"Rough" Sea

Eulerian regularity

A Lagrangian path

Lagrangian analyticity for 3D Euler

- Chemin ['92], Gamblin ['94], Serfati ['95], Sueur ['11], Glass-Sueur-Takahashi ['12]: commutators, Littlewood-Paley.
- Shnirelman ['12]: Complexification of geodesic exponential map in SDiff.
- Frisch-Zheligovsky ['12-'13] "A Very Smooth Ride in a Rough Sea": Cauchy invariant gives local elliptic system in label variables. Special structure of 3D Euler.
- Nadirashvili ['13]: 2D elliptic theory yields that nondegenerate level sets of stream function in steady 2D Euler are analytic.
- Quantifying the distinct degrees of regularity for weak solutions of 3D Euler with respect to Eulerian and Lagrangian derivatives is crucial for the recent works on the Onsager conjecture: Isett ['12-'13], Buckmaster-DeLellis-Szekelyhidi ['13-'14].

Lagrangian analyticity in hydrodynamic systems

Question: is there anything robust about these results, or are all the results due to the special structure of the Euler equations?

Lagrangian analyticity in hydrodynamic systems

Question: is there anything robust about these results, or are all the results due to the special structure of the Euler equations?
Theorem (Constantin-V.-Wu ('14))
Consider a well-posed hydrodynamic equation (such as 2D/3D Euler, 2D Boussinesq, 2D SQG, 2D IPM, etc...) on a time interval [$0, T$) when the Eulerian velocities are $C^{1, \gamma}$, for some $\gamma \in(0,1)$.

Lagrangian analyticity in hydrodynamic systems

Question: is there anything robust about these results, or are all the results due to the special structure of the Euler equations?
Theorem (Constantin-V.-Wu ('14))
Consider a well-posed hydrodynamic equation (such as 2D/3D Euler, 2D Boussinesq, 2D SQG, 2D IPM, etc...) on a time interval [$0, T$) when the Eulerian velocities are $C^{1, \gamma}$, for some $\gamma \in(0,1)$.
Then, the Lagrangian particle trajectories $X(a, t)$ are real-analytic functions of time.

- The radius of analyticity in time on the interval $[0, t]$ depends on the chord-arc parameter of this interval:

$$
\lambda(t)=\exp \left(\int_{0}^{t}\|\nabla u(\tau)\|_{L_{x}} d \tau\right) .
$$

- Recall: as long as $u \in L_{t}^{1} \operatorname{Lip}_{x}$, we have the chord-arc condition

$$
\lambda(t)^{-1} \leq \frac{|a-b|}{|X(a, t)-X(b, t)|} \leq \lambda(t) .
$$

- Proof also applies to smooth 2D vortex patches. In contrast, for generic vorticity in the Yudovich class, only Gevrey-3 regularity in time appears to be known: Gamblin ['94], Sueur ['11].
- Reformulation as closed Lagrangian system. The Lagrangian path, X, obeys

$$
\frac{d X}{d t}(a, t)=\frac{1}{4 \pi} \int \frac{X(a, t)-X(b, t)}{|X(a, t)-X(b, t)|^{3}} \times\left(\nabla_{b} X(b, t) \omega_{0}(b)\right) d b .
$$

and

$$
\begin{aligned}
\frac{d\left(\nabla_{a} X\right)}{d t}(a, t)= & \left(\nabla_{a} X\right)(a, t) \int K(X(a, t)-X(b, t))\left(\nabla_{b} X(b, t) \omega_{0}(b)\right) d b \\
& +\frac{1}{2}\left(\nabla_{a} X(a, t) \omega_{0}(a)\right) \times\left(\nabla_{a} X\right)(a, t) .
\end{aligned}
$$

with kernel K is given by

$$
(K(x) y)_{i j}=\frac{3}{8 \pi} \frac{(x \times y)_{i} x_{j}+(x \times y)_{j} x_{i}}{|x|^{5}} .
$$

- Reformulation as closed Lagrangian system. The Lagrangian path, X, obeys

$$
\frac{d X}{d t}(a, t)=\frac{1}{4 \pi} \int \frac{X(a, t)-X(b, t)}{|X(a, t)-X(b, t)|^{3}} \times\left(\nabla_{b} X(b, t) \omega_{0}(b)\right) d b .
$$

and

$$
\begin{aligned}
\frac{d\left(\nabla_{a} X\right)}{d t}(a, t)= & \left(\nabla_{a} X\right)(a, t) \int K(X(a, t)-X(b, t))\left(\nabla_{b} X(b, t) \omega_{0}(b)\right) d b \\
& +\frac{1}{2}\left(\nabla_{a} X(a, t) \omega_{0}(a)\right) \times\left(\nabla_{a} X\right)(a, t) .
\end{aligned}
$$

with kernel K is given by

$$
(K(x) y)_{i j}=\frac{3}{8 \pi} \frac{(x \times y)_{i} x_{j}+(x \times y)_{j} x_{i}}{|x|^{5}} .
$$

- Key observations: initial datum just appears as a parameter; and the equations are closed ODEs with values in $C^{1, \gamma}$.
- Recall: If K is real-analytic and $X \in C^{0}$ is a solution of

$$
\frac{d X}{d t}=K(X)
$$

then in fact X is real-analytic with respect to t.

- Proof: keep track of proper Cauchy inequalities

$$
\left|\partial_{t}^{n} X\right| \leq(-1)^{n-1}\binom{1 / 2}{n} \frac{(2 C)^{n}}{R^{n-1}} n!
$$

by means of the Faá di Bruno formula (or method of majorants).

- Recall: If K is real-analytic and $X \in C^{0}$ is a solution of

$$
\frac{d X}{d t}=K(X)
$$

then in fact X is real-analytic with respect to t.

- Proof: keep track of proper Cauchy inequalities

$$
\left|\partial_{t}^{n} X\right| \leq(-1)^{n-1}\binom{1 / 2}{n} \frac{(2 C)^{n}}{R^{n-1}} n!
$$

by means of the Faá di Bruno formula (or method of majorants).

- Instead, for a large class of inviscid hydrodynamical models:

$$
\begin{aligned}
& \frac{d}{d t}[X, \nabla X](a) \\
& =\mathcal{P}_{1}(X(a), \nabla X(a)) \\
& \quad \times p . v . \int \mathcal{K}(X(a)-X(b)) \mathcal{P}_{2}(X(b), \nabla X(b)) \mathcal{P}_{3}\left(u_{0}(b), \nabla u_{0}(b)\right) d b
\end{aligned}
$$

where \mathcal{P}_{i} are polynomials, and \mathcal{K} are Calderon-Zygmund kernels.

- C-Z operators remain OK after composition with $C^{1, \gamma}$ maps.

Fully Lagrangian formulation of the Euler equations

- The Lagrangian velocity v and the pressure q are obtained by composing with X

$$
v(a, t)=u(X(a, t), t), \quad q(a, t)=p(X(a, t), t)
$$

- Denote the matrix inverse of the Jacobian of the particle map as

$$
Y(a, t)=\left(\nabla_{a} X(a, t)\right)^{-1} .
$$

- The Lagrangian formulation of Euler is given in components by

$$
\left\{\begin{array}{l}
\partial_{t} v^{i}+Y_{i}^{j} \partial_{j} q=0 \tag{L}\\
Y_{i}^{k} \partial_{k} v^{i}=0 \\
\partial_{t} Y_{i}^{k}=-Y_{I}^{k}(\nabla v)_{j}^{l} Y_{i}^{j}
\end{array}\right.
$$

used summation convention on repeated indices, and $\partial_{k}=\partial_{a_{k}}$.

- The evolution of Y follows from $\operatorname{det}(\nabla X)=1$ and $\nabla_{a}\left(\partial_{t} X=v\right)$.
- The closed system for (v, q, Y) is supplemented with initial datum

$$
v(a, 0)=v_{0}(a)=u_{0}(a), \quad Y(a, 0)=I .
$$

Any difference between Lagrangian and Eulerian?

- Consider u_{0} that is real-analytic wrt x.
- Then as long as the smooth solution exists (i.e. does not blow up in $L_{t}^{1} \mathrm{Lip}_{x}$), it remains real-analytic wrt x.

Any difference between Lagrangian and Eulerian?

- Consider u_{0} that is real-analytic wrt x.
- Then as long as the smooth solution exists (i.e. does not blow up in $L_{t}^{1} \mathrm{Lip}_{x}$), it remains real-analytic wrt x.
- Bardos-Benachour-Zerner ['76], Bardos-Benachour ['77], Alinhac-Metivier ['86], Levermore-Oliver ['97], Kukavica-V. ['09-'11], Zheligovsky ['11], Sueur ['11], Glass-Sueur-Takahashi ['12], Sawada ['13].
- Best lower bounds on the uniform spatial analyticity radius $\tau(t)$ are given explicitly in terms of the chord-arc parameter

$$
\tau(t) \geq \frac{\tau_{0}}{\lambda(t)}=\tau_{0} \exp \left(-\int_{0}^{t}\|\nabla u(s)\|_{L_{\infty}} d s\right)
$$

- Analyticity with respect to label a follows (with possibly different convergence radius) due to composition of real-analytic functions, and Cauchy-Kowalevski.
- Analyticity in time in this case follows directly from the equations: $\partial_{t} u=$ real-analytic function.

Constantin-Kukavica-V. ('15)

- In the Lagrangian formulation, one may solve the equations locally in time, at fixed analyticity radius.
- In Eulerian variables, it may deteriorate instantaneously.

Constantin-Kukavica-V. ('15)

- In the Lagrangian formulation, one may solve the equations locally in time, at fixed analyticity radius.
- In Eulerian variables, it may deteriorate instantaneously.
- The Lagrangian formulation allows solvability in highly anisotropic classes, e.g. functions which have analyticity in one variable, but are not analytic in the others.
- In the Eulerian formulation, the equations are ill-posed in such functions spaces.

Norms for real-analytic and Gevrey functions

- Fix $r>d / 2$, so that $H^{r}\left(\mathbb{R}^{d}\right)$ is an algebra.
- For a Gevrey-index $s \geq 1$ and Gevrey-radius $\delta>0$, we denote the isotropic Gevrey norm by

$$
\|f\|_{G_{s, \delta}}=\sum_{\beta \geq 0} \frac{\delta^{|\beta|}}{|\beta|!^{s}}\left\|\partial^{\beta} f\right\|_{H^{r}}=\sum_{m \geq 0} \frac{\delta^{m}}{m!^{s}}\left(\sum_{|\beta|=m}\left\|\partial^{\beta} f\right\|_{H^{r}}\right)
$$

where $\beta \in \mathbb{N}_{0}^{d}$ is a multi-index.

Norms for real-analytic and Gevrey functions

- Fix $r>d / 2$, so that $H^{r}\left(\mathbb{R}^{d}\right)$ is an algebra.
- For a Gevrey-index $s \geq 1$ and Gevrey-radius $\delta>0$, we denote the isotropic Gevrey norm by

$$
\|f\|_{G_{s, \delta}}=\sum_{\beta \geq 0} \frac{\delta^{|\beta|}}{|\beta|!^{s}}\left\|\partial^{\beta} f\right\|_{H^{r}}=\sum_{m \geq 0} \frac{\delta^{m}}{m!^{s}}\left(\sum_{|\beta|=m}\left\|\partial^{\beta} f\right\|_{H^{r}}\right)
$$

where $\beta \in \mathbb{N}_{0}^{d}$ is a multi-index.

- When $s=1$ this norm corresponds to the space of real-analytic functions, and δ represents the uniform radius of analyticity of f.
- The ℓ^{1} norm in m is essential \rightarrow Wiener algebra.
- See Oliver-Titi ['01] for an equivalent Fourier description.

Norms for real-analytic and Gevrey functions

- Fix $r>d / 2$, so that $H^{r}\left(\mathbb{R}^{d}\right)$ is an algebra.
- For a Gevrey-index $s \geq 1$ and Gevrey-radius $\delta>0$, we denote the isotropic Gevrey norm by

$$
\|f\|_{G_{s, \delta}}=\sum_{\beta \geq 0} \frac{\delta^{|\beta|}}{|\beta|!^{s}}\left\|\partial^{\beta} f\right\|_{H^{r}}=\sum_{m \geq 0} \frac{\delta^{m}}{m!^{s}}\left(\sum_{|\beta|=m}\left\|\partial^{\beta} f\right\|_{H^{r}}\right)
$$

where $\beta \in \mathbb{N}_{0}^{d}$ is a multi-index.

- When $s=1$ this norm corresponds to the space of real-analytic functions, and δ represents the uniform radius of analyticity of f.
- The ℓ^{1} norm in m is essential \rightarrow Wiener algebra.
- See Oliver-Titi ['01] for an equivalent Fourier description.
- Similarly, given a coordinate $j \in\{1, \ldots, d\}$, we define the anisotropic s-Gevrey norm with radius $\delta>0$ by

$$
\|f\|_{G_{s, \delta}^{()}}=\sum_{m \geq 0} \frac{\delta^{m}}{m!s^{!}}\left\|\partial_{j}^{m} f\right\|_{H^{r}}
$$

Persistence of Lagrangian analyticity radius

Theorem (Constantin-Kukavica-V. ('15))
Assume that $v_{0} \in L^{2}$ and

$$
\nabla v_{0} \in G_{s, \delta}
$$

for some Gevrey-index $s \geq 1$ and a Gevrey-radius $\delta>0$. Then there exists $T>0$ and a unique solution $v \in C\left([0, T] ; H^{r+1}\right)$, $Y \in C\left([0, T], H^{r}\right)$ of the Lagrangian Euler system (L), which moreover satisfies

$$
\nabla v, Y \in L^{\infty}\left([0, T], G_{s, \delta}\right)
$$

Instantaneous decay of Eulerian analyticity radius

Theorem (Constantin-Kukavica-V. ('15))
There exist smooth periodic functions f, g such that

$$
\left\|u_{0}\right\|_{G_{1,1}}<\infty
$$

and such that the unique solution u of the Euler equations (E) measured in the Eulerian variables obeys

$$
\|u(t)\|_{G_{1,1}}=\infty
$$

as soon as $t>0$.

Instantaneous decay of Eulerian analyticity radius

Theorem (Constantin-Kukavica-V. ('15))
There exist smooth periodic functions f, g such that

$$
\left\|u_{0}\right\|_{G_{1,1}}<\infty
$$

and such that the unique solution u of the Euler equations (E) measured in the Eulerian variables obeys

$$
\|u(t)\|_{G_{1,1}}=\infty
$$

as soon as $t>0$.

- Let f, g be two 2π-periodic functions. The function

$$
u\left(x_{1}, x_{2}, x_{3}, t\right)=\left(f\left(x_{2}\right), 0, g\left(x_{1}-t f\left(x_{2}\right)\right)\right)
$$

is an exact solution of the Euler equations (E) on \mathbb{T}^{3}, with datum

$$
u_{0}\left(x_{1}, x_{2}, x_{3}\right)=\left(f\left(x_{2}\right), 0, g\left(x_{1}\right)\right)
$$

and vanishing pressure. Di Perna-Majda ['87]; Bardos-Titi ['10].

Proof

- Simply letting

$$
f(y)=\sin (y) \quad \text { and } \quad g(y)=\frac{1}{\sinh (1)^{2}+\sin (y)^{2}}
$$

does not work, since then $u_{0} \notin G_{1,1}\left(\ell^{1}\right.$ vs ℓ^{∞} in derivative order).

Proof

- Simply letting

$$
f(y)=\sin (y) \quad \text { and } \quad g(y)=\frac{1}{\sinh (1)^{2}+\sin (y)^{2}}
$$

does not work, since then $u_{0} \notin G_{1,1}$ (ℓ^{1} vs ℓ^{∞} in derivative order).

- Instead, start with $1 /\left(1+y^{2}\right)$; integrate four times (so that the holomorphic extension is C^{2} up to $\operatorname{Im}(z)=1$); cut off in Gaussian way at infinity; periodize.

Proof

- Simply letting

$$
f(y)=\sin (y) \quad \text { and } \quad g(y)=\frac{1}{\sinh (1)^{2}+\sin (y)^{2}}
$$

does not work, since then $u_{0} \notin G_{1,1}$ (ℓ^{1} vs ℓ^{∞} in derivative order).

- Instead, start with $1 /\left(1+y^{2}\right)$; integrate four times (so that the holomorphic extension is C^{2} up to $\operatorname{Im}(z)=1$); cut off in Gaussian way at infinity; periodize.
- As soon as we turn on time, the holomorphic extension of the function

$$
\partial_{x_{1}}^{3} u_{3}\left(x_{1}, x_{2}, x_{3}, t\right)=\partial_{x_{1}}^{3}\left(g\left(x_{1}-t f\left(x_{2}\right)\right)\right)
$$

has a singularity in the complex plane at

$$
\begin{aligned}
& z_{1}=0-(1-t) i \\
& z_{2}=0+i \log 2 .
\end{aligned}
$$

- Thus, $u(t) \notin G_{1, \delta(t)}$, for any $\delta(t)>1-t$.

Proof

Proof

Solvability in anisotropic Lagrangian Gevrey classes

Theorem (Constantin-Kukavica-V. ('14))
Fix a direction $j \in\{1, \ldots, d\}$, assume that $v_{0} \in H^{r+1}$ and that

$$
\nabla v_{0} \in G_{s, \delta}^{(j)}
$$

for some index $s \geq 1$ and radius $\delta>0$. Then there exists $T>0$ and a unique solution $v \in C\left([0, T], H^{r+1}\right), Y \in C\left([0, T], H^{r}\right)$ of the Lagrangian Euler system (L), which moreover satisfies

$$
\nabla v, Y \in L^{\infty}\left([0, T], G_{s, \delta}^{(j)}\right)
$$

Solvability in anisotropic Lagrangian Gevrey classes

Theorem (Constantin-Kukavica-V. ('14))
Fix a direction $j \in\{1, \ldots, d\}$, assume that $v_{0} \in H^{r+1}$ and that

$$
\nabla v_{0} \in G_{s, \delta}^{(j)}
$$

for some index $s \geq 1$ and radius $\delta>0$. Then there exists $T>0$ and a unique solution $v \in C\left([0, T], H^{r+1}\right), Y \in C\left([0, T], H^{r}\right)$ of the Lagrangian Euler system (L), which moreover satisfies

$$
\nabla v, Y \in L^{\infty}\left([0, T], G_{s, \delta}^{(j)}\right)
$$

- At low regularity, i.e. Hölder classes, the equivalent question is the propagation of smoothness along vector fields transported by the Euler flow: "striated regularity". Bae-Kelliher ['15], following earlier works of Chemin ['93], Gamblin-Saint Raymond ['95], Danchin ['99], in spaces with negative degrees of smoothness.

III-posedness for anisotropic Eulerian real-analyticity

Theorem (Constantin-Kukavica-V. ('15))
There exists $T>0$ and an initial datum $u_{0} \in C^{\infty}\left(\mathbb{R}^{2}\right)$ for which u_{0} and ω_{0} are real-analytic in x_{1}, uniformly with respect to x_{2}, such that the unique $C\left([0, T] ; H^{r}\right)$ solution $\omega(t)$ of the Cauchy problem for the Euler equations (E) is not real-analytic in x_{1}, for any $t \in(0, T]$.

III-posedness for anisotropic Eulerian real-analyticity

Theorem (Constantin-Kukavica-V. ('15))
There exists $T>0$ and an initial datum $u_{0} \in C^{\infty}\left(\mathbb{R}^{2}\right)$ for which u_{0} and ω_{0} are real-analytic in x_{1}, uniformly with respect to x_{2}, such that the unique $C\left([0, T] ; H^{r}\right)$ solution $\omega(t)$ of the Cauchy problem for the Euler equations (E) is not real-analytic in x_{1}, for any $t \in(0, T]$.

- The fact that the Eulerian version of the theorem does not hold should not be so surprising: isotropy and time-reversibility of the Euler equations.
- By contrast, the fact that the Lagrangian formulation keeps the memory of initial anisotropy is a bit more puzzling.
- Navier-Stokes \approx Euler + Prandtl?

Proof

Proof

Proof

The Lagrangian vorticity in 2D

- For $d=2$ the Lagrangian scalar vorticity

$$
\zeta(a, t)=\omega(X(a, t), t)
$$

is conserved in time

$$
\zeta(a, t)=\omega_{0}(a)
$$

for $t \geq 0$.

The Lagrangian vorticity in 2D

- For $d=2$ the Lagrangian scalar vorticity

$$
\zeta(a, t)=\omega(X(a, t), t)
$$

is conserved in time

$$
\zeta(a, t)=\omega_{0}(a)
$$

for $t \geq 0$.

- The Lagrangian velocity v can then be computed from the Lagrangian vorticity ζ using the elliptic curl-div system

$$
\begin{aligned}
\varepsilon_{i j} Y_{i}^{k} \partial_{k} v^{j} & =Y_{1}^{k} \partial_{k} v^{2}-Y_{2}^{k} \partial_{k} v^{1} \\
Y_{i}^{k} \partial_{k} v^{i} & =Y_{1}^{k} \partial_{k} v^{1}+Y_{2}^{k} \partial_{k} v^{2}
\end{aligned}=0
$$

where $\varepsilon_{i j}$ is the sign of the permutation $(1,2) \mapsto(i, j)$.

The Cauchy identities for Lagrangian vorticity in 3D

- For $d=3$ the vorticity vector is not conserved along particle trajectories, and instead we have the vorticity transport formula

$$
\zeta^{i}(a, t)=\partial_{k} X^{i}(a, t) \omega_{0}^{k}(a) .
$$

The Cauchy identities for Lagrangian vorticity in 3D

- For $d=3$ the vorticity vector is not conserved along particle trajectories, and instead we have the vorticity transport formula

$$
\zeta^{i}(a, t)=\partial_{k} X^{i}(a, t) \omega_{0}^{k}(a) .
$$

- Thus, in three dimensions, the elliptic curl-div system becomes

$$
\begin{aligned}
\varepsilon_{i j k} Y_{j}^{\prime} \partial_{l} v^{k} & =\zeta^{i}=\partial_{k} X^{i} \omega_{0}^{k} \\
Y_{i}^{k} \partial_{k} v^{i} & =0
\end{aligned}
$$

The Cauchy identities for Lagrangian vorticity in 3D

- For $d=3$ the vorticity vector is not conserved along particle trajectories, and instead we have the vorticity transport formula

$$
\zeta^{i}(a, t)=\partial_{k} X^{i}(a, t) \omega_{0}^{k}(a)
$$

- Thus, in three dimensions, the elliptic curl-div system becomes

$$
\begin{aligned}
\varepsilon_{i j k} Y_{j}^{\prime} \partial_{l} v^{k} & =\zeta^{i}=\partial_{k} X^{i} \omega_{0}^{k} \\
Y_{i}^{k} \partial_{k} v^{i} & =0
\end{aligned}
$$

- In order to make use of the above identity, we need to reformulate it so that the right side is time-independent, as in 2D.
- Multiplying the equation for the Lagrangian curl with Y_{i}^{m} and summing in i, we get

$$
\varepsilon_{i j k} Y_{i}^{m} Y_{j}^{\prime} \partial_{l} v^{k}=\omega_{0}^{m}
$$

which is the form of the Cauchy [1827] identity containing only Y.

Proof of Lagrangian persistence

- Fix $s \geq 1$ and $\delta>0$ so that $\left\|\nabla v_{0}\right\|_{G_{s, \delta}} \leq M$, that is

$$
\Omega_{m}:=\sum_{|\alpha|=m}\left\|\partial^{\alpha} \nabla v_{0}\right\|_{H^{r}}
$$

obeys

$$
\sum_{m \geq 0} \Omega_{m} \frac{\delta^{m}}{m!^{s}} \leq M
$$

Proof of Lagrangian persistence

- Fix $s \geq 1$ and $\delta>0$ so that $\left\|\nabla v_{0}\right\|_{G_{s, \delta}} \leq M$, that is

$$
\Omega_{m}:=\sum_{|\alpha|=m}\left\|\partial^{\alpha} \nabla v_{0}\right\|_{H^{r}}
$$

obeys

$$
\sum_{m \geq 0} \Omega_{m} \frac{\delta^{m}}{m!^{s}} \leq M
$$

- Fix $T>0$, to be chosen later sufficiently small in terms of M and s, and for $m \geq 0$ define

$$
\begin{aligned}
& V_{m}=V_{m}(T)=\sup _{t \in[0, T]} \sum_{|\alpha|=m}\left\|\partial^{\alpha} \nabla v(t)\right\|_{H^{r}}, \\
& Z_{m}=Z_{m}(T)=\sup _{t \in[0, T]} t^{-1 / 2} \sum_{|\alpha|=m}\left\|\partial^{\alpha}(Y(t)-I)\right\|_{H^{r}}
\end{aligned}
$$

Velocity estimates

- In order to estimate ∇v and its derivatives, we use the three-dimensional div-curl system we conclude that for $\alpha \in \mathbb{N}_{0}^{3}$:

$$
\begin{aligned}
\left\|\partial^{\alpha} \nabla v\right\|_{H^{r}} & \leq C\left\|\partial^{\alpha} \omega_{0}^{m}\right\|_{H^{r}}+C\left\|\partial^{\alpha}\left(\varepsilon_{i j k}\left(\delta_{i m}-Y_{i}^{m}\right)\left(\delta_{j l}-Y_{j}^{\prime}\right) \partial_{l} v^{k}\right)\right\|_{H^{r}} \\
& +C\left\|\partial^{\alpha}\left(\varepsilon_{m j k}\left(\delta_{j l}-Y_{j}^{\prime}\right) \partial_{l} v^{k}\right)\right\|_{H^{r}}+C\left\|\partial^{\alpha}\left(\varepsilon_{i j k}\left(\delta_{i m}-Y_{i}^{m}\right) \partial_{j} v^{k}\right)\right\|_{H^{r}} \\
& +C\left\|\partial^{\alpha}\left(\left(\delta_{i k}-Y_{i}^{k}\right) \partial_{k} v^{i}\right)\right\|_{H^{r}} .
\end{aligned}
$$

- Summing the above inequality over all multi-indices with $|\alpha|=m$ and taking a supremum over $t \in[0, T]$ we arrive at

$$
\begin{aligned}
V_{m} \leq & C \Omega_{m}+C T Z_{m} Z_{0} V_{0}+C T Z_{0}^{2} V_{m}+C T^{1 / 2} Z_{0} V_{m}+C T^{1 / 2} Z_{m} V_{0} \\
& +C T^{1 / 2} \sum_{0<j<m}\binom{m}{j} Z_{j} V_{m-j}+C T \sum_{0<(j, k)<m}\binom{m}{j k} Z_{j} Z_{k} V_{m-j-k}
\end{aligned}
$$

for all $m \geq 0$.

Flow map estimates

- In order to bound Z_{m} we appeal to the evolution for $Y(t)-I$:

$$
\begin{aligned}
I-Y(t)= & \int_{0}^{t}(Y-I): \nabla v:(Y-I) d \tau+\int_{0}^{t}(Y-I): \nabla v d \tau \\
& +\int_{0}^{t} \nabla v:(Y-I) d \tau+\int_{0}^{t} \nabla v d \tau
\end{aligned}
$$

- We obtain

$$
\begin{aligned}
& Z_{m} \leq C T^{1 / 2}\left(T Z_{0}^{2} V_{m}+T Z_{m} Z_{0} V_{0}+T^{1 / 2} Z_{0} V_{m}+T^{1 / 2} Z_{m} V_{0}+V_{m}\right) \\
& +C T^{3 / 2} \sum_{0<|(j, k)|<m}\binom{m}{j k} Z_{j} Z_{k} V_{m-j-k}+C T \sum_{j=1}^{m-1}\binom{m}{j} Z_{j} V_{m-j}
\end{aligned}
$$

for all $m \geq 0$.

- Summing over m completes the proof.

Thank you!

