Sharp Korn inequalities in thin domains: The first and a half Korn inequality

Davit Harutyunyan (University of Utah) joint with Yury Grabovsky (Temple University)

SIAM, Analysis of Partial Differential Equations, Decamber 7-10, Scottsdale, Arizona
12.07.2015

Korn's Inequalities

Assume $\Omega \subset \mathbb{R}^{n}$ is open, bounded, connected and Lipschitz and $u \in H^{1}\left(\Omega, \mathbb{R}^{n}\right)$, where $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\nabla u=\left(\frac{\partial u_{i}}{\partial x_{j}}\right)_{i, j=1}^{n}$.
Set

$$
e(u)=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right), \quad e_{i j}(u)=\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}} .
$$

Denote

$$
\operatorname{skew}\left(\mathbb{R}^{n}\right)=\left\{L=A x+b: A \in M^{n \times n}, A^{T}=-A, b \in \mathbb{R}^{n}\right\} .
$$

Assume V is a closed subspace of $H^{1}\left(\Omega, \mathbb{R}^{n}\right)$ such that

$$
V \cap \operatorname{skew}\left(\mathbb{R}^{n}\right)=\{0\} .
$$

Korn's Inequalities

Korn's First and Second Inequalities

1. There exists a constant K_{1} depending only on Ω such that

$$
K_{1}(\Omega) \int_{\Omega}|\nabla u|^{2} \leq\left(\int_{\Omega}|u|^{2}+\int_{\Omega}|e(u)|^{2}\right), \quad \text { for any } \quad u \in H^{1}\left(\Omega, \mathbb{R}^{n}\right)
$$

2. There exists a constant K_{2} depending only on Ω and V such that

$$
K_{2}(\Omega, V) \int_{\Omega}|\nabla u|^{2} \leq \int_{\Omega}|e(u)|^{2}, \quad \text { for any } \quad u \in V
$$

3. There exists a constant $K>0$ depending only on Ω such that for any $u \in H^{1}\left(\Omega, \mathbb{R}^{n}\right)$, there exists a skew-symmetric matrix A_{u} such that

$$
K(\Omega) \int_{\Omega}\left|\nabla u-A_{u}\right|^{2} \leq \int_{\Omega}|e(u)|^{2}
$$

Inequalities of Our Interest

We are interested in sharp Korn inequalities.

Question: How do $K_{1}(\Omega)$ and $K_{2}(V, \Omega)$ depend on Ω and V, when Ω is thin?

- Ω is a thin domain (strips, rods, shells,...) with thickness h, then $K_{1}(\Omega) \sim h^{\alpha}$ and $K_{2}(V, \Omega) \sim h^{\beta}$ as $h \rightarrow 0$. Find α and β.
- If for instance β is known and $K_{2}(V, \Omega) \approx C(V, \Omega) h^{\beta}$, when h is sufficiently small, then what is $C(V, \Omega)$?

Goal: Find the optimal constants in Korn's inequalities.

Examples

Example 1 (Zero boundary conditions). If
$V=\left\{u \in H^{1}\left(\Omega, \mathbb{R}^{n}\right): u(x)=0\right.$ on $\left.\partial \Omega\right\}$, then

$$
K_{2}(V, \Omega)=\frac{1}{2} .
$$

Example 2 (Thin rectangle). If $\Omega=[0, h] \times[0, /]$, $V=\left\{u \in H^{1}\left(\Omega, \mathbb{R}^{2}\right): u(x, 0)=u(x, l)=0\right\}$, then

$$
K_{2}(V, \Omega) \approx C h^{2} .
$$

Motivation

Why optimal constants?

The problem we were interested in: Buckling of cylindrical shells under axial compression, (2011).

- Critical buckling load, deformation modes?
- Koiter's formula (1945). $\lambda(h)=C h$, where h is the thickness of the shell, and C depends on the material. The buckling modes are given by "Koiter's circle".
- It was known, that the buckling load is highly sensitive to imperfections (shape, load).
- We aim to derive Koiter's formula and understand the sensitivity to imperfections applying the theory of buckling of slender structures, Grabovsky, Truskinovsky (2007).

Motivation

If

$$
C_{h}=\{(r, \theta, z): r \in[R, R+h], \quad \theta \in[0,2 \pi], \quad z \in[0, L]\},
$$

and

$$
u=u_{r} \bar{e}_{r}+u_{\theta} \bar{e}_{\theta}+u_{z} \bar{e}_{z},
$$

in cylindrical coordinates, the we impose the B.C.:

- Fixed bottom boundary conditions:

$$
u_{r}(r, \theta, 0)=u_{\theta}(r, \theta, 0)=u_{z}(r, \theta, 0)=u_{r}(r, \theta, L)=u_{\theta}(r, \theta, L)=0,
$$

V_{1},

- Breathing cylinder

$$
u_{\theta}(r, \theta, 0)=u_{z}(r, \theta, 0)=u_{\theta}(r, \theta, L)=0, u_{z}(r, \theta, L)=c,
$$

V_{2}.

Motivation, Problem

The theory of Grabovsky and Truskinovsky implies

$$
\lambda(h) \geq c K\left(C_{h}\right),
$$

where $K\left(C_{h}\right)$ is the optimal Korn's constant in the second Korn inequality for V_{1} or V_{2}.

Whether one has $K\left(V_{i}, C_{h}\right) \sim h$?
Answer: NO! $K\left(V_{i}, C_{h}\right) \sim h \sqrt{h}$.
Theorem (Grabovsky, H., 2012)
If

$$
\lim _{h \rightarrow 0} \frac{K\left(C_{h}\right)}{\lambda_{c l}(h)}=0
$$

then the constitutively linearized quotient captures both, the critical load and the buckling modes.

Korn's inequalities for perfect cylindrical shells

Theorem (Grabovsky, H., 2012)
There exist absolute constants $C_{i}>0, i=1,2$ such that for any $u \in V_{i}$, there holds

$$
\int_{C_{h}}|\nabla u|^{2} \leq \frac{C_{i}}{h \sqrt{h}} \int_{C_{h}}|e(u)|^{2} .
$$

These estimates are sharp, in the sense that the power of h is optimal. If $u=u_{r} \bar{e}_{r}+u_{\theta} \bar{e}_{\theta}+u_{z} \bar{e}_{z}$, then

$$
\nabla u=\left[\begin{array}{lll}
u_{r, r} & \frac{u_{r, \theta}-u_{\theta}}{r} & u_{r, z} \\
u_{\theta, r} & \frac{u_{\theta, \theta}+u_{r}}{r} & u_{\theta, z} \\
u_{z, r} & \frac{u_{z, \theta}}{r} & u_{z, z}
\end{array}\right] .
$$

Korn's inequalities for perfect cylindrical shells

Ansatz. We assume $R=1$, then

$$
\left\{\begin{array}{l}
\phi_{r}^{h}(r, \theta, z)=-W_{, \eta \eta}\left(\frac{\theta}{\sqrt[4]{h}}, z\right) \\
\phi_{\theta}^{h}(r, \theta, z)=r \sqrt[4]{h} W_{, \eta}\left(\frac{\theta}{\sqrt[4]{h}}, z\right)+\frac{r-1}{\sqrt[4]{h}} W_{, \eta \eta \eta}\left(\frac{\theta}{\sqrt[4]{h}}, z\right) \\
\phi_{z}^{h}(r, \theta, z)=(r-1) W_{, \eta \eta z}\left(\frac{\theta}{\sqrt[4]{h}}, z\right)-\sqrt{h} W_{, z}\left(\frac{\theta}{\sqrt[4]{h}}, z\right),
\end{array}\right.
$$

where the function $W(\eta, z)$ is a smooth compactly supported function on $(-1,1) \times(0, L)$, while the function $\phi^{h}(\theta, z)$ is extended as a 2π-periodic function in $\theta \in \mathbb{R}$.

Remarks on the Korn inequality, strategy

If $u=u_{r} \bar{e}_{r}+u_{\theta} \bar{e}_{\theta}+u_{z} \bar{e}_{z}$, then

$$
\nabla u=\left[\begin{array}{lll}
u_{r, r} & \frac{u_{r, \theta}-u_{\theta}}{r} & u_{r, z} \\
u_{\theta, r} & \frac{u_{\theta, \theta}+u_{r}}{r} & u_{\theta, z} \\
u_{z, r} & \frac{u_{z, \theta}}{r} & u_{z, z}
\end{array}\right] .
$$

Prove the inequality block by block, which means fixing r, θ and z and proving $2 D$ inequalities. For $r, \theta, z=$ const, we have the blocks

$$
\left[\begin{array}{ccc}
- & - & - \\
- & \frac{u_{\theta, \theta}+u_{r}}{r} & u_{\theta, z} \\
- & \frac{u_{z, \theta}}{r} & u_{z, z}
\end{array}\right], \quad\left[\begin{array}{ccc}
u_{r, r} & - & u_{r, z} \\
- & - & - \\
u_{z, r} & - & u_{z, z}
\end{array}\right], \quad\left[\begin{array}{ccc}
u_{r, r} & \frac{u_{r, \theta}-u_{\theta}}{r} & - \\
u_{\theta, r} & \frac{u_{\theta, \theta}+u_{r}}{r} & - \\
- & - & -
\end{array}\right],
$$

respectively.

Available Tools

We needed Korn's inequalities with constants decaying like $h \sqrt{h}$ or slower!
For instance the cross section $\theta=$ const gives a Korn's second inequality on a thin rectangle:

$$
\left[\begin{array}{ccc}
u_{r, r} & - & u_{r, z} \\
- & - & - \\
u_{z, r} & - & u_{z, z}
\end{array}\right]
$$

What is available?

- $\theta=$ const gives a thin rectangle, Korn's second inequality on rectangles, $K \sim h^{2}$ Ryzhak 2001?: not applicable.
- $z=$ const gives a thin annulus, again optimal constant scales like h^{2}, Dafermos 1968, for normalization conditions: not applicable.
- Uniform Korn-Poincaré inequality in thin domains, Lewicka, Müller 2011, tangential boundary conditions: not applicable.
New inequalities are needed.

A Korn type inequality

Standard approach: It is sufficient to prove a second Korn inequality subject to Dirichlet type boundary conditions for harmonic displacements.

Theorem (Grabovsky, H., 2012)
Suppose $w(x, y)$ is harmonic in $[0, h] \times[0, L]$, and satisfies $w(x, 0)=w(x, L)$. Then

$$
\left\|w_{y}\right\|^{2} \leq \frac{2 \sqrt{3}}{h}\|w\|\left\|w_{x}\right\|+\left\|w_{x}\right\|^{2} .
$$

The equality is attained at

$$
w(x)=\cosh \left(\frac{\pi}{L}\left(x-\frac{h}{2}\right)\right) \sin \left(\frac{\pi y}{L}\right),
$$

The first and a half Korn inequality for rectangles

Theorem (Grabobsky, H., 2012)
Suppose that the vector field $U=(u, v) \in H^{1}\left(\Omega, \mathbb{R}^{2}\right)$, where $\Omega=[0, h] \times[0, L]$, satisfies $u(x, 0)=u(x, L)$. Then for any $h \in(0,1)$ and any $L>0$ there holds:

$$
\|\nabla U\|^{2} \leq 100\left(\frac{\|u\| \cdot\|e(U)\|}{h}+\|e(U)\|^{2}\right)
$$

There are no boundary conditions imposed on $v(x, y)$.

- This implies both the first (via Schwartz inequality) and the second (via Friedrichs inequality) Korn inequalities.
- The scaling of the constant is as needed.

The first and a half Korn inequality for cylindrical shells

Theorem (Grabobsky, H., 2012)
Suppose $U \in V_{1}$ or $U \in V_{2}$. Then there exists a universal constant $C>0$ such, that for any $h \in(0,1)$ and any $L>0$ there holds:

$$
\|\nabla U\|^{2} \leq C\left(\frac{\left\|u_{r}\right\| \cdot\|e(U)\|}{h}+\|e(U)\|^{2}\right) .
$$

- This implies the second Korn inequality, but with h^{2}.
- Combine with $\left\|u_{r}\right\|^{3} \leq C\|\nabla U\|^{2} \cdot\|e(U)\|$.

Extensions

An extension to \mathbb{R}^{n} for thin domains with nonconstant thickness.
Assume the operator

$$
L(u)=\sum_{i, j=1}^{n} a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}
$$

with constant coefficients satisfies

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \geq \lambda|x|^{2} \quad \text { for all } \quad x \in \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

where $\lambda>0$, and,

$$
\begin{equation*}
\sum_{i=1}^{n}\left|a_{i j}\right| \leq \Lambda \quad \text { for all } \quad 1 \leq j \leq n \tag{2}
\end{equation*}
$$

Extensions

For $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, let $x^{\prime}=\left(x_{2}, \ldots, x_{n}\right)$.
Theorem (H., 2014)
Let $\omega \subset \mathbb{R}^{n-1}$ be a bounded and simply-connected Lipschitz domain, let $x_{1}=\varphi\left(x^{\prime}\right): \omega \rightarrow \mathbb{R}$ be a positive Lipschitz function with
$H=\sup _{x^{\prime} \in \omega} \varphi\left(x^{\prime}\right)$ and $h=\inf _{x^{\prime} \in \omega} \varphi\left(x^{\prime}\right)>0$. Denote
$\Omega=\left\{x \in \mathbb{R}^{n}: x^{\prime} \in \omega, 0<x_{1}<\varphi\left(x^{\prime}\right)\right\}$ and assume that the operator $L(u)=\sum_{i, j=1}^{n} a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}$ with constant coefficients satisfies conditions (1) and (2). Then there exists a constant C depending on n, Λ, λ, $L=\operatorname{Lip}(\varphi)$ and the ratio $m=H / h$ such that any $u \in C^{3}(\bar{\Omega})$ solution of $L(u)=0$ satisfying the boundary conditions $u(x)=0$ on the portion $\Gamma=\left\{x \in \partial \Omega: x^{\prime} \in \partial \omega\right\}$ of the boundary of Ω fulfills the inequality

$$
\|\nabla u\|^{2} \leq C\left(\frac{\|u\| \cdot\left\|u_{x_{1}}\right\|}{h}+\left\|u_{x_{1}}\right\|^{2}\right)
$$

$$
C=C(n, \lambda, \Lambda, L, m)
$$

Extensions

Theorem (H., 2014)

Let $I>0$, let $\varphi_{1} \in C^{1}[0, I]$ and let φ_{2} and φ_{1}^{\prime} be Lipschitz functions defined on $[0, l]$. Assume furthermore that $0<h=\min _{y \in[0, I]}\left(\varphi_{2}(y)-\varphi_{1}(y)\right)$ and $H=\min _{y \in[0, I]}\left(\varphi_{2}(y)-\varphi_{1}(y)\right)$. Denote $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: y \in(0, I), \varphi_{1}(y)<x<\varphi_{2}(y)\right\}$. Then there exists a constant C depending on $m=H / h, \rho_{1}=\left\|\varphi_{1}^{\prime}\right\|_{L^{\infty}(\Omega)}$, $\rho_{2}=\left\|\varphi_{2}^{\prime}\right\|_{L^{\infty}(\Omega)}$ and $\rho_{1}^{\prime}=\left\|\varphi_{1}^{\prime \prime}\right\|_{L^{\infty}(\Omega)}$ such that if the first component of the displacement $U=(u, v) \in W^{1,2}(\Omega)$ satisfies the boundary conditions $u(x)=0$ on the boundary portion $\Gamma=\{(x, y) \in \partial \Omega: y=0$ or $y=I\}$ in the trace sense, then the strong second Korn inequality holds:

$$
\begin{gathered}
\|\nabla U\|^{2} \leq\left(\frac{\|u\| \cdot\|e(U)\|}{h}+\|e(U)\|^{2}\right) \\
C=C\left(m, \rho_{1}, \rho_{2}, \rho_{1}^{\prime}\right)
\end{gathered}
$$

The estimate is sharp.

Extensions

Theorem (H., 2014)
Let $L>0, \varphi_{1}, \varphi_{2}, \Omega, h, H, m, \rho_{1}, \rho_{2}$ and ρ_{1}^{\prime} be as in the previous theorem. Then there exists a constant C depending on m, ρ_{1}, ρ_{2} and ρ_{1}^{\prime} such that if the first component u of the displacement $U=(u, v) \in W^{1,2}(\Omega)$ is L-periodic, then the second Korn inequality holds:

$$
\begin{gathered}
\|\nabla U\|^{2} \leq\left(\frac{\|u\| \cdot\|e(U)\|}{h}+\|e(U)\|^{2}\right) \\
C=C\left(m, \rho_{1}, \rho_{2}, \rho_{1}^{\prime}\right)
\end{gathered}
$$

L-periodicity is the periodicity of both the function and the gradient.

Recent progress

Consider a shell in the (r, θ, z) variables (θ and z are the principal directions):

$$
C_{h}=\left[-\frac{h}{2}, \frac{h}{2}\right] \times[0, s] \times[0, L],
$$

with $\kappa_{z}=0$. (this yields a zero Gaussian curvature). If $U=\left(u_{r}, u_{\theta}, u_{z}\right)$, then

$$
\nabla U=\left[\begin{array}{ccc}
u_{r, r} & \frac{1}{A_{\theta}} u_{r, \theta}-\kappa_{\theta} u_{\theta} & \frac{1}{A_{z}} u_{r, z} \\
u_{\theta, r} & \frac{1}{A_{\theta}} u_{\theta, \theta}+\frac{A_{\theta, z}}{A_{\theta} A_{2}} u_{z}+\kappa_{\theta} u_{r} & \frac{1}{A_{z}} u_{\theta, z} \\
u_{z, z} & \frac{1}{A_{\theta}} u_{z, \theta}-\frac{A}{A_{\theta}, z} A_{z} & \frac{1}{A_{z}} u_{z, z}
\end{array}\right] .
$$

Assume

$$
\begin{gathered}
K=\sup \left|\kappa_{\theta}\right|<\infty, \quad K_{1}=\sup \left|\kappa_{\theta, \theta}\right|<\infty, \\
0<a_{\theta} \leq A_{\theta} \leq b_{\theta}, \quad 0<a_{z} \leq A_{z} \leq b_{z}, \quad\left|\nabla A_{z}\right|,\left|\nabla A_{\theta}\right| \leq A .
\end{gathered}
$$

where $a_{\theta}, a_{z}, b_{\theta}, b_{z}, A$ are constants.
This includes cut cones and straight cylinders with arbitrary cross sections.

Recent progress

The spaces V_{1} and V_{2} are the same as before. C will be a constant depending only on the constants $K, k, K_{1}, a_{z}, a_{\theta}, b_{z}, b_{\theta}$ and A.
Theorem (Grabovsky, H., 2015)
For any $h \in(0,1)$ and any $U \in V_{i}$, there holds:

$$
\|\nabla U\|^{2} \leq C\left(\frac{\left\|u_{r}\right\| \cdot\|e(U)\|}{h}+\|e(U)\|^{2}+\left\|u_{r}\right\|^{2}\right) .
$$

Recent progress

Theorem (Grabovsky, H., 2015)
If $\kappa_{\theta}>0$, then for any $h \in(0,1)$ and any $U \in V_{i}$, there holds:

$$
\|\nabla U\|^{2} \leq \frac{C}{h \sqrt{h}}\|e(U)\|^{2} .
$$

If $\kappa_{\theta}=0$ in a box $\left[\theta_{1}, \theta_{2}\right] \times\left[z_{1}, z_{2}\right]$, then

$$
\|\nabla U\|^{2} \leq \frac{C}{h^{2}}\|e(U)\|^{2} .
$$

Work in progress

Assume Ω_{h} is a shell of revolution given by

$$
C_{h}=\left[r(z)-\frac{h}{2}, r(z)+\frac{h}{2}\right] \times[0,2 \pi] \times[0, L] .
$$

Then (conjecture)

- If $\kappa_{z}<0$, then for any $h \in(0,1)$ and any $U \in V_{i}$, there holds:

$$
\|\nabla U\|^{2} \leq \frac{C}{h^{4 / 3}}\|e(U)\|^{2}
$$

- If $\kappa_{z}>0$, then

$$
\|\nabla U\|^{2} \leq \frac{C}{h}\|e(U)\|^{2}
$$

Theorem (Grabovsky, H., 2015)
For any $h \in(0,1)$ and any $U \in V_{i}$, there holds:

$$
\|\nabla U\|^{2} \leq C\left(\frac{\|U\| \cdot\|e(U)\|}{h}+\|e(U)\|^{2}+\|U\|^{2}\right) .
$$

