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Korn's Inequalities

Assume Ω ⊂ Rn is open, bounded, connected and Lipschitz and
u ∈ H1(Ω,Rn), where u = (u1, u2, ..., un) and ∇u =

(
∂ui
∂xj

)n
i,j=1

.

Set

e(u) =
1

2
(∇u + (∇u)T ), eij(u) =

∂ui
∂xj

+
∂uj
∂xi

.

Denote

skew(Rn) = {L = Ax + b : A ∈ Mn×n,AT = −A, b ∈ Rn}.

Assume V is a closed subspace of H1(Ω,Rn) such that

V ∩ skew(Rn) = {0}.



Korn's Inequalities

Korn's First and Second Inequalities

1. There exists a constant K1 depending only on Ω such that

K1(Ω)

∫
Ω

|∇u|2 ≤
(∫

Ω

|u|2 +

∫
Ω

|e(u)|2
)
, for any u ∈ H1(Ω,Rn)

2. There exists a constant K2 depending only on Ω and V such that

K2(Ω,V )

∫
Ω

|∇u|2 ≤
∫

Ω

|e(u)|2, for any u ∈ V

.

3. There exists a constant K > 0 depending only on Ω such that for
any u ∈ H1(Ω,Rn), there exists a skew-symmetric matrix Au such
that

K (Ω)

∫
Ω

|∇u − Au|2 ≤
∫

Ω

|e(u)|2



Inequalities of Our Interest

We are interested in sharp Korn inequalities.

Question: How do K1(Ω) and K2(V ,Ω) depend on Ω and V , when Ω is

thin?

I Ω is a thin domain (strips, rods, shells,...) with thickness h, then
K1(Ω) ∼ hα and K2(V ,Ω) ∼ hβ as h→ 0. Find α and β.

I If for instance β is known and K2(V ,Ω) ≈ C (V ,Ω)hβ , when h is
su�ciently small, then what is C (V ,Ω)?

Goal: Find the optimal constants in Korn's inequalities.



Examples

Example 1 (Zero boundary conditions). If

V = {u ∈ H1(Ω,Rn) : u(x) = 0 on ∂Ω}, then

K2(V ,Ω) =
1

2
.

Example 2 (Thin rectangle). If Ω = [0, h]× [0, l ],

V = {u ∈ H1(Ω,R2) : u(x , 0) = u(x , l) = 0}, then

K2(V ,Ω) ≈ Ch2.



Motivation

Why optimal constants?

The problem we were interested in: Buckling of cylindrical shells
under axial compression, (2011).

I Critical buckling load, deformation modes?

I Koiter's formula (1945). λ(h) = Ch, where h is the thickness of
the shell, and C depends on the material. The buckling modes are
given by "Koiter's circle".

I It was known, that the buckling load is highly sensitive to
imperfections (shape, load).

I We aim to derive Koiter's formula and understand the sensitivity to
imperfections applying the theory of buckling of slender structures,
Grabovsky, Truskinovsky (2007).



Motivation

If
Ch = {(r , θ, z) : r ∈ [R,R + h], θ ∈ [0, 2π], z ∈ [0, L]},

and
u = ur ēr + uθ ēθ + uz ēz ,

in cylindrical coordinates, the we impose the B.C.:

I Fixed bottom boundary conditions:

ur (r , θ, 0) = uθ(r , θ, 0) = uz(r , θ, 0) = ur (r , θ, L) = uθ(r , θ, L) = 0,

V1,

I Breathing cylinder

uθ(r , θ, 0) = uz(r , θ, 0) = uθ(r , θ, L) = 0, uz(r , θ, L) = c ,

V2.



Motivation, Problem

The theory of Grabovsky and Truskinovsky implies

λ(h) ≥ cK (Ch),

where K (Ch) is the optimal Korn's constant in the second Korn inequality
for V1 or V2.

Whether one has K (Vi ,Ch) ∼ h?

Answer: NO! K (Vi ,Ch) ∼ h
√
h.

Theorem (Grabovsky, H., 2012)
If

lim
h→0

K (Ch)

λcl(h)
= 0,

then the constitutively linearized quotient captures both, the critical load
and the buckling modes.



Korn's inequalities for perfect cylindrical shells

Theorem (Grabovsky, H., 2012)
There exist absolute constants Ci > 0, i = 1, 2 such that for any u ∈ Vi ,
there holds ∫

Ch

|∇u|2 ≤ Ci

h
√
h

∫
Ch

|e(u)|2.

These estimates are sharp, in the sense that the power of h is optimal.

If u = ur ēr + uθ ēθ + uz ēz , then

∇u =

ur ,r ur,θ−uθ
r ur ,z

uθ,r
uθ,θ+ur

r uθ,z
uz,r

uz,θ
r uz,z

 .



Korn's inequalities for perfect cylindrical shells

Ansatz. We assume R = 1, then
φhr (r , θ, z) = −W,ηη

(
θ
4
√
h
, z
)

φhθ(r , θ, z) = r 4
√
hW,η

(
θ
4
√
h
, z
)

+ r−1
4
√
h
W,ηηη

(
θ
4
√
h
, z
)
,

φhz (r , θ, z) = (r − 1)W,ηηz

(
θ
4
√
h
, z
)
−
√
hW,z

(
θ
4
√
h
, z
)
,

where the function W (η, z) is a smooth compactly supported function on
(−1, 1)× (0, L), while the function φh(θ, z) is extended as a 2π-periodic
function in θ ∈ R.



Remarks on the Korn inequality, strategy

If u = ur ēr + uθ ēθ + uz ēz , then

∇u =

ur ,r ur,θ−uθ
r ur ,z

uθ,r
uθ,θ+ur

r uθ,z
uz,r

uz,θ
r uz,z

 .
Prove the inequality block by block, which means �xing r , θ and z and
proving 2D inequalities. For r , θ, z = const, we have the blocks− − −

− uθ,θ+ur
r uθ,z

− uz,θ
r uz,z

 ,
ur ,r − ur ,z
− − −
uz,r − uz,z

 ,
ur ,r ur,θ−uθ

r −
uθ,r

uθ,θ+ur
r −

− − −

 ,
respectively.



Available Tools

We needed Korn's inequalities with constants decaying like h
√
h or

slower!
For instance the cross section θ = const gives a Korn's second inequality
on a thin rectangle: ur ,r − ur ,z

− − −
uz,r − uz,z

 .
What is available?

I θ = const gives a thin rectangle, Korn's second inequality on
rectangles, K ∼ h2 Ryzhak 2001?: not applicable.

I z = const gives a thin annulus, again optimal constant scales like
h2, Dafermos 1968, for normalization conditions: not applicable.

I Uniform Korn-Poincaré inequality in thin domains, Lewicka, Müller
2011, tangential boundary conditions: not applicable.

New inequalities are needed.



A Korn type inequality

Standard approach: It is su�cient to prove a second Korn inequality
subject to Dirichlet type boundary conditions for harmonic displacements.

Theorem (Grabovsky, H., 2012)
Suppose w(x , y) is harmonic in [0, h]× [0, L], and satis�es
w(x , 0) = w(x , L). Then

‖wy‖2 ≤
2
√
3

h
‖w‖‖wx‖+ ‖wx‖2.

The equality is attained at

w(x) = cosh

(
π

L

(
x − h

2

))
sin
(πy

L

)
,



The �rst and a half Korn inequality for rectangles

Theorem (Grabobsky, H., 2012)
Suppose that the vector �eld U = (u, v) ∈ H1(Ω,R2), where
Ω = [0, h]× [0, L], satis�es u(x , 0) = u(x , L). Then for any h ∈ (0, 1) and
any L > 0 there holds:

‖∇U‖2 ≤ 100

(
‖u‖ · ‖e(U)‖

h
+ ‖e(U)‖2

)
.

There are no boundary conditions imposed on v(x , y).

I This implies both the �rst (via Schwartz inequality) and the second
(via Friedrichs inequality) Korn inequalities.

I The scaling of the constant is as needed.



The �rst and a half Korn inequality for cylindrical shells

Theorem (Grabobsky, H., 2012)
Suppose U ∈ V1 or U ∈ V2. Then there exists a universal constant C > 0
such, that for any h ∈ (0, 1) and any L > 0 there holds:

‖∇U‖2 ≤ C

(
‖ur‖ · ‖e(U)‖

h
+ ‖e(U)‖2

)
.

I This implies the second Korn inequality, but with h2.

I Combine with ‖ur‖3 ≤ C‖∇U‖2 · ‖e(U)‖.



Extensions

An extension to Rn for thin domains with nonconstant thickness.

Assume the operator

L(u) =
n∑

i,j=1

aij
∂2u

∂xi∂xj

with constant coe�cients satis�es

n∑
i,j=1

aijxixj ≥ λ|x |2 for all x ∈ Rn, (1)

where λ > 0, and,

n∑
i=1

|aij | ≤ Λ for all 1 ≤ j ≤ n. (2)



Extensions

For x = (x1, x2, . . . , xn), let x ′ = (x2, . . . , xn).

Theorem (H., 2014)
Let ω ⊂ Rn−1 be a bounded and simply-connected Lipschitz domain, let
x1 = ϕ(x ′) : ω → R be a positive Lipschitz function with
H = supx′∈ω ϕ(x ′) and h = infx′∈ω ϕ(x ′) > 0. Denote
Ω = {x ∈ Rn : x ′ ∈ ω, 0 < x1 < ϕ(x ′)} and assume that the operator

L(u) =
∑n

i,j=1 aij
∂2u
∂xi∂xj

with constant coe�cients satis�es conditions (1)

and (2). Then there exists a constant C depending on n, Λ, λ,
L = Lip(ϕ) and the ratio m = H/h such that any u ∈ C 3(Ω̄) solution of
L(u) = 0 satisfying the boundary conditions u(x) = 0 on the portion
Γ = {x ∈ ∂Ω : x ′ ∈ ∂ω} of the boundary of Ω ful�lls the inequality

‖∇u‖2 ≤ C

(
‖u‖ · ‖ux1‖

h
+ ‖ux1‖2

)
.

C = C (n, λ,Λ, L,m).



Extensions

Theorem (H., 2014)
Let l > 0, let ϕ1 ∈ C 1[0, l ] and let ϕ2 and ϕ′1 be Lipschitz functions
de�ned on [0, l ]. Assume furthermore that
0 < h = miny∈[0,l ](ϕ2(y)− ϕ1(y)) and H = miny∈[0,l ](ϕ2(y)− ϕ1(y)).
Denote Ω = {(x , y) ∈ R2 : y ∈ (0, l), ϕ1(y) < x < ϕ2(y)}. Then there
exists a constant C depending on m = H/h, ρ1 = ‖ϕ′1‖L∞(Ω),
ρ2 = ‖ϕ′2‖L∞(Ω) and ρ′1 = ‖ϕ′′1‖L∞(Ω) such that if the �rst component of
the displacement U = (u, v) ∈W 1,2(Ω) satis�es the boundary conditions
u(x) = 0 on the boundary portion Γ = {(x , y) ∈ ∂Ω : y = 0 or y = l}
in the trace sense, then the strong second Korn inequality holds:

‖∇U‖2 ≤
(
‖u‖ · ‖e(U)‖

h
+ ‖e(U)‖2

)
.

C = C (m, ρ1, ρ2, ρ
′
1).

The estimate is sharp.



Extensions

Theorem (H., 2014)
Let L > 0, ϕ1, ϕ2, Ω, h, H, m, ρ1, ρ2 and ρ′1 be as in the previous
theorem. Then there exists a constant C depending on m, ρ1, ρ2 and ρ′1
such that if the �rst component u of the displacement
U = (u, v) ∈W 1,2(Ω) is L-periodic, then the second Korn inequality
holds:

‖∇U‖2 ≤
(
‖u‖ · ‖e(U)‖

h
+ ‖e(U)‖2

)
.

C = C (m, ρ1, ρ2, ρ
′
1).

L−periodicity is the periodicity of both the function and the gradient.



Recent progress

Consider a shell in the (r , θ, z) variables (θ and z are the principal
directions):

Ch =

[
−h

2
,
h

2

]
× [0, s]× [0, L],

with κz = 0. (this yields a zero Gaussian curvature). If U = (ur , uθ, uz),
then

∇U =

ur ,r
1
Aθ

ur ,θ − κθuθ 1
Az
ur ,z

uθ,r
1
Aθ

uθ,θ +
Aθ,z
AθAz

uz + κθur
1
Az
uθ,z

uz,z
1
Aθ

uz,θ − Aθ,z
AθAz

uθ
1
Az
uz,z

 .
Assume

K = sup |κθ| <∞, K1 = sup |κθ,θ| <∞,

0 < aθ ≤ Aθ ≤ bθ, 0 < az ≤ Az ≤ bz , |∇Az |, |∇Aθ| ≤ A.

where aθ, az , bθ, bz ,A are constants.

This includes cut cones and straight cylinders with arbitrary cross
sections.



Recent progress

The spaces V1 and V2 are the same as before. C will be a constant
depending only on the constants K , k ,K1, az , aθ, bz , bθ and A.

Theorem (Grabovsky, H., 2015)
For any h ∈ (0, 1) and any U ∈ Vi , there holds:

‖∇U‖2 ≤ C

(
‖ur‖ · ‖e(U)‖

h
+ ‖e(U)‖2 + ‖ur‖2

)
.



Recent progress

Theorem (Grabovsky, H., 2015)
If κθ > 0, then for any h ∈ (0, 1) and any U ∈ Vi , there holds:

‖∇U‖2 ≤ C

h
√
h
‖e(U)‖2.

If κθ = 0 in a box [θ1, θ2]× [z1, z2], then

‖∇U‖2 ≤ C

h2
‖e(U)‖2.



Work in progress
Assume Ωh is a shell of revolution given by

Ch =

[
r(z)− h

2
, r(z) +

h

2

]
× [0, 2π]× [0, L].

Then (conjecture)

I If κz < 0, then for any h ∈ (0, 1) and any U ∈ Vi , there holds:

‖∇U‖2 ≤ C

h4/3
‖e(U)‖2.

I If κz > 0, then

‖∇U‖2 ≤ C

h
‖e(U)‖2.

Theorem (Grabovsky, H., 2015)
For any h ∈ (0, 1) and any U ∈ Vi , there holds:

‖∇U‖2 ≤ C

(
‖U‖ · ‖e(U)‖

h
+ ‖e(U)‖2 + ‖U‖2

)
.


