Sharp Korn inequalities in thin domains: The *first* and a half Korn inequality

> Davit Harutyunyan (University of Utah) joint with Yury Grabovsky (Temple University)

SIAM, Analysis of Partial Differential Equations, Decamber 7-10, Scottsdale, Arizona

12.07.2015

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Korn's Inequalities

Assume $\Omega \subset \mathbb{R}^n$ is open, bounded, connected and Lipschitz and $u \in H^1(\Omega, \mathbb{R}^n)$, where $u = (u_1, u_2, ..., u_n)$ and $\nabla u = \left(\frac{\partial u_i}{\partial x_j}\right)_{i,j=1}^n$. Set

$$e(u) = \frac{1}{2}(\nabla u + (\nabla u)^T), \qquad e_{ij}(u) = \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}.$$

Denote

$$\operatorname{skew}(\mathbb{R}^n) = \{L = Ax + b : A \in M^{n \times n}, A^T = -A, b \in \mathbb{R}^n\}.$$

Assume V is a closed subspace of $H^1(\Omega, \mathbb{R}^n)$ such that

 $V \cap \operatorname{skew}(\mathbb{R}^n) = \{0\}.$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Korn's Inequalities

Korn's First and Second Inequalities

1. There exists a constant \mathcal{K}_1 depending only on Ω such that

$$\mathcal{K}_1(\Omega)\int_\Omega |
abla u|^2 \leq \Big(\int_\Omega |u|^2 + \int_\Omega |e(u)|^2\Big), \quad ext{for any} \quad u\in H^1(\Omega,\mathbb{R}^n)$$

2. There exists a constant \mathcal{K}_2 depending only on Ω and \mathcal{V} such that

$$\mathcal{K}_2(\Omega,\,V)\int_\Omega |
abla u|^2\leq \int_\Omega |e(u)|^2, \hspace{1em} ext{for any} \hspace{1em} u\in V$$

 There exists a constant K > 0 depending only on Ω such that for any u ∈ H¹(Ω, ℝⁿ), there exists a skew-symmetric matrix A_u such that

$$\mathcal{K}(\Omega)\int_{\Omega}|
abla u-A_u|^2\leq\int_{\Omega}|e(u)|^2$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Inequalities of Our Interest

We are interested in sharp Korn inequalities.

Question: How do $K_1(\Omega)$ and $K_2(V, \Omega)$ depend on Ω and V, when Ω is thin?

- Ω is a thin domain (strips, rods, shells,...) with thickness h, then $K_1(\Omega) \sim h^{\alpha}$ and $K_2(V, \Omega) \sim h^{\beta}$ as $h \to 0$. Find α and β .
- ▶ If for instance β is known and $K_2(V, \Omega) \approx C(V, \Omega)h^{\beta}$, when *h* is sufficiently small, then what is $C(V, \Omega)$?

Goal: Find the optimal constants in Korn's inequalities.

Examples

Example 1 (Zero boundary conditions). If $V = \{u \in H^1(\Omega, \mathbb{R}^n) : u(x) = 0 \text{ on } \partial\Omega\}$, then $K_2(V, \Omega) = \frac{1}{2}$.

Example 2 (Thin rectangle). If $\Omega = [0, h] \times [0, l]$, $V = \{u \in H^1(\Omega, \mathbb{R}^2) : u(x, 0) = u(x, l) = 0\}$, then $K_2(V, \Omega) \approx Ch^2$.

Motivation

Why optimal constants?

The problem we were interested in: Buckling of cylindrical shells under axial compression, (2011).

- Critical buckling load, deformation modes?
- Koiter's formula (1945). λ(h) = Ch, where h is the thickness of the shell, and C depends on the material. The buckling modes are given by "Koiter's circle".
- It was known, that the buckling load is highly sensitive to imperfections (shape, load).
- We aim to derive Koiter's formula and understand the sensitivity to imperfections applying the theory of buckling of slender structures, Grabovsky, Truskinovsky (2007).

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Motivation

lf

$$C_h = \{(r, \theta, z) : r \in [R, R+h], \theta \in [0, 2\pi], z \in [0, L]\},\$$

and

$$u = u_r \bar{e}_r + u_\theta \bar{e}_\theta + u_z \bar{e}_z,$$

in cylindrical coordinates, the we impose the B.C.:

▶ Fixed bottom boundary conditions:

$$u_r(r,\theta,0) = u_\theta(r,\theta,0) = u_z(r,\theta,0) = u_r(r,\theta,L) = u_\theta(r,\theta,L) = 0,$$

$$V_1,$$
Breathing cylinder

Breathing cylinder

$$u_{\theta}(r,\theta,0) = u_z(r,\theta,0) = u_{\theta}(r,\theta,L) = 0, u_z(r,\theta,L) = c,$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 V_2 .

Motivation, Problem

The theory of Grabovsky and Truskinovsky implies

 $\lambda(h) \geq cK(C_h),$

where $K(C_h)$ is the optimal Korn's constant in the second Korn inequality for V_1 or V_2 .

Whether one has $K(V_i, C_h) \sim h$? Answer: NO! $K(V_i, C_h) \sim h\sqrt{h}$. Theorem (Grabovsky, H., 2012) If

$$\lim_{h\to 0}\frac{K(C_h)}{\lambda_{cl}(h)}=0,$$

then the constitutively linearized quotient captures both, the critical load and the buckling modes.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Korn's inequalities for perfect cylindrical shells

Theorem (Grabovsky, H., 2012)

There exist absolute constants $C_i > 0, i = 1, 2$ such that for any $u \in V_i$, there holds

$$\int_{C_h} |\nabla u|^2 \leq \frac{C_i}{h\sqrt{h}} \int_{C_h} |e(u)|^2.$$

These estimates are sharp, in the sense that the power of h is optimal. If $u = u_r \bar{e}_r + u_\theta \bar{e}_\theta + u_z \bar{e}_z$, then

$$\nabla u = \begin{bmatrix} u_{r,r} & \frac{u_{r,\theta} - u_{\theta}}{r} & u_{r,z} \\ u_{\theta,r} & \frac{u_{\theta,r} + u_r}{r} & u_{\theta,z} \\ u_{z,r} & \frac{u_{z,\theta}}{r} & u_{z,z} \end{bmatrix}.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Korn's inequalities for perfect cylindrical shells

Ansatz. We assume R = 1, then

$$\begin{cases} \phi_r^h(r,\theta,z) = -W_{,\eta\eta} \left(\frac{\theta}{\sqrt[4]{h}},z\right) \\ \phi_\theta^h(r,\theta,z) = r\sqrt[4]{h}W_{,\eta} \left(\frac{\theta}{\sqrt[4]{h}},z\right) + \frac{r-1}{\sqrt[4]{h}}W_{,\eta\eta\eta} \left(\frac{\theta}{\sqrt[4]{h}},z\right), \\ \phi_z^h(r,\theta,z) = (r-1)W_{,\eta\eta z} \left(\frac{\theta}{\sqrt[4]{h}},z\right) - \sqrt{h}W_{,z} \left(\frac{\theta}{\sqrt[4]{h}},z\right), \end{cases}$$

where the function $W(\eta, z)$ is a smooth compactly supported function on $(-1, 1) \times (0, L)$, while the function $\phi^h(\theta, z)$ is extended as a 2π -periodic function in $\theta \in \mathbb{R}$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Remarks on the Korn inequality, strategy

If $u = u_r \bar{e}_r + u_\theta \bar{e}_\theta + u_z \bar{e}_z$, then

$$\nabla u = \begin{bmatrix} u_{r,r} & \frac{u_{r,\theta} - u_{\theta}}{r} & u_{r,z} \\ u_{\theta,r} & \frac{u_{\theta,r} + u_r}{r} & u_{\theta,z} \\ u_{z,r} & \frac{u_{z,\theta}}{r} & u_{z,z} \end{bmatrix}.$$

Prove the inequality block by block, which means fixing r, θ and z and proving 2D inequalities. For r, θ , z = const, we have the blocks

$$\begin{bmatrix} - & - & - \\ - & \frac{u_{\theta,\theta}+u_r}{r} & u_{\theta,z} \\ - & \frac{u_{z,\theta}^r}{r} & u_{z,z} \end{bmatrix}, \begin{bmatrix} u_{r,r} & - & u_{r,z} \\ - & - & - \\ u_{z,r} & - & u_{z,z} \end{bmatrix}, \begin{bmatrix} u_{r,r} & \frac{u_{r,\theta}-u_{\theta}}{r} & - \\ u_{\theta,r} & \frac{u_{\theta,\theta}+u_r}{r} & - \\ - & - & - \end{bmatrix},$$

respectively.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

Available Tools

We needed Korn's inequalities with constants decaying like $h\sqrt{h}$ or slower!

For instance the cross section $\theta = \text{const}$ gives a Korn's second inequality on a thin rectangle:

$$\begin{bmatrix} u_{r,r} & - & u_{r,z} \\ - & - & - \\ u_{z,r} & - & u_{z,z} \end{bmatrix}$$

What is available?

- $\theta = \text{const}$ gives a thin rectangle, Korn's second inequality on rectangles, $K \sim h^2$ **Ryzhak 2001?**: not applicable.
- ▶ z = const gives a thin annulus, again optimal constant scales like h^2 , **Dafermos 1968, for normalization conditions**: not applicable.
- Uniform Korn-Poincaré inequality in thin domains, Lewicka, Müller 2011, tangential boundary conditions: not applicable.

New inequalities are needed.

A Korn type inequality

Standard approach: It is sufficient to prove a second Korn inequality subject to Dirichlet type boundary conditions for harmonic displacements.

Theorem (Grabovsky, H., 2012) Suppose w(x, y) is harmonic in $[0, h] \times [0, L]$, and satisfies w(x, 0) = w(x, L). Then

$$\|w_y\|^2 \leq \frac{2\sqrt{3}}{h} \|w\| \|w_x\| + \|w_x\|^2.$$

The equality is attained at

$$w(x) = \cosh\left(\frac{\pi}{L}\left(x - \frac{h}{2}\right)\right)\sin\left(\frac{\pi y}{L}\right),$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

The first and a half Korn inequality for rectangles

Theorem (Grabobsky, H., 2012)

Suppose that the vector field $U = (u, v) \in H^1(\Omega, \mathbb{R}^2)$, where $\Omega = [0, h] \times [0, L]$, satisfies u(x, 0) = u(x, L). Then for any $h \in (0, 1)$ and any L > 0 there holds:

$$\|\nabla U\|^2 \leq 100 \left(\frac{\|u\| \cdot \|e(U)\|}{h} + \|e(U)\|^2
ight).$$

There are no boundary conditions imposed on v(x, y).

 This implies both the first (via Schwartz inequality) and the second (via Friedrichs inequality) Korn inequalities.

> The scaling of the constant is as needed.

The first and a half Korn inequality for cylindrical shells

Theorem (Grabobsky, H., 2012)

Suppose $U \in V_1$ or $U \in V_2$. Then there exists a universal constant C > 0 such, that for any $h \in (0,1)$ and any L > 0 there holds:

$$\|\nabla U\|^2 \leq C\left(\frac{\|u_r\|\cdot\|e(U)\|}{h} + \|e(U)\|^2\right).$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

• This implies the second Korn inequality, but with h^2 .

• Combine with $||u_r||^3 \leq C ||\nabla U||^2 \cdot ||e(U)||$.

An extension to \mathbb{R}^n for thin domains with nonconstant thickness.

Assume the operator

$$L(u) = \sum_{i,j=1}^{n} a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j}$$

with constant coefficients satisfies

$$\sum_{i,j=1}^{n} a_{ij} x_i x_j \ge \lambda |x|^2 \quad \text{for all} \quad x \in \mathbb{R}^n, \tag{1}$$

where $\lambda > 0$, and,

$$\sum_{i=1}^{n} |a_{ij}| \le \Lambda \quad \text{for all} \quad 1 \le j \le n. \tag{2}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

For
$$x = (x_1, x_2, ..., x_n)$$
, let $x' = (x_2, ..., x_n)$.

Theorem (H., 2014)

Let $\omega \subset \mathbb{R}^{n-1}$ be a bounded and simply-connected Lipschitz domain, let $x_1 = \varphi(x') : \omega \to \mathbb{R}$ be a positive Lipschitz function with $H = \sup_{x' \in \omega} \varphi(x')$ and $h = \inf_{x' \in \omega} \varphi(x') > 0$. Denote $\Omega = \{x \in \mathbb{R}^n : x' \in \omega, 0 < x_1 < \varphi(x')\}$ and assume that the operator $L(u) = \sum_{i,j=1}^n a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j}$ with constant coefficients satisfies conditions (1) and (2). Then there exists a constant C depending on n, Λ, λ , $L = \operatorname{Lip}(\varphi)$ and the ratio m = H/h such that any $u \in C^3(\overline{\Omega})$ solution of L(u) = 0 satisfying the boundary conditions u(x) = 0 on the portion $\Gamma = \{x \in \partial\Omega : x' \in \partial\omega\}$ of the boundary of Ω fulfills the inequality

$$\|\nabla u\|^2 \le C\left(\frac{\|u\| \cdot \|u_{x_1}\|}{h} + \|u_{x_1}\|^2\right)$$

 $C = C(n, \lambda, \Lambda, L, m).$

Theorem (H., 2014)

Let l > 0, let $\varphi_1 \in C^1[0, l]$ and let φ_2 and φ'_1 be Lipschitz functions defined on [0, l]. Assume furthermore that $0 < h = \min_{y \in [0, l]}(\varphi_2(y) - \varphi_1(y))$ and $H = \min_{y \in [0, l]}(\varphi_2(y) - \varphi_1(y))$. Denote $\Omega = \{(x, y) \in \mathbb{R}^2 : y \in (0, l), \varphi_1(y) < x < \varphi_2(y)\}$. Then there exists a constant C depending on m = H/h, $\rho_1 = \|\varphi'_1\|_{L^{\infty}(\Omega)}$, $\rho_2 = \|\varphi'_2\|_{L^{\infty}(\Omega)}$ and $\rho'_1 = \|\varphi''_1\|_{L^{\infty}(\Omega)}$ such that if the first component of the displacement $U = (u, v) \in W^{1,2}(\Omega)$ satisfies the boundary conditions u(x) = 0 on the boundary portion $\Gamma = \{(x, y) \in \partial\Omega : y = 0 \text{ or } y = l\}$ in the trace sense, then the strong second Korn inequality holds:

$$\|\nabla U\|^{2} \leq \left(\frac{\|u\| \cdot \|e(U)\|}{h} + \|e(U)\|^{2}\right).$$

$$C = C(m, \rho_1, \rho_2, \rho_1').$$

ション ふゆ く 山 マ チャット しょうくしゃ

The estimate is sharp.

Theorem (H., 2014)

Let L > 0, φ_1 , φ_2 , Ω , h, H, m, ρ_1 , ρ_2 and ρ'_1 be as in the previous theorem. Then there exists a constant C depending on m, ρ_1 , ρ_2 and ρ'_1 such that if the first component u of the displacement $U = (u, v) \in W^{1,2}(\Omega)$ is L-periodic, then the second Korn inequality holds:

$$\|\nabla U\|^2 \leq \left(\frac{\|u\| \cdot \|e(U)\|}{h} + \|e(U)\|^2\right).$$

$$C = C(m, \rho_1, \rho_2, \rho'_1).$$

L-periodicity is the periodicity of both the function and the gradient.

Recent progress

Consider a shell in the (r, θ, z) variables (θ and z are the principal directions):

$$C_h = \left[-\frac{h}{2}, \frac{h}{2}\right] \times [0, s] \times [0, L],$$

with $\kappa_z = 0$. (this yields a zero Gaussian curvature). If $U = (u_r, u_{\theta}, u_z)$, then

$$\nabla U = \begin{bmatrix} u_{r,r} & \frac{1}{A_{\theta}}u_{r,\theta} - \kappa_{\theta}u_{\theta} & \frac{1}{A_{z}}u_{r,z} \\ u_{\theta,r} & \frac{1}{A_{\theta}}u_{\theta,\theta} + \frac{A_{\theta,z}}{A_{\theta}A_{z}}u_{z} + \kappa_{\theta}u_{r} & \frac{1}{A_{z}}u_{\theta,z} \\ u_{z,z} & \frac{1}{A_{\theta}}u_{z,\theta} - \frac{A_{\theta,z}}{A_{\theta}A_{z}}u_{\theta} & \frac{1}{A_{z}}u_{z,z} \end{bmatrix}.$$

Assume

$$|\mathcal{K} = \sup |\kappa_{ heta}| < \infty, \quad \mathcal{K}_1 = \sup |\kappa_{ heta, heta}| < \infty,$$

 $0 < a_{ heta} \leq A_{ heta} \leq b_{ heta}, \quad 0 < a_z \leq A_z \leq b_z, \quad |\nabla A_z|, |\nabla A_{ heta}| \leq A.$

where $a_{\theta}, a_z, b_{\theta}, b_z, A$ are constants.

This includes cut cones and straight cylinders with arbitrary cross sections.

The spaces V_1 and V_2 are the same as before. C will be a constant depending only on the constants $K, k, K_1, a_z, a_\theta, b_z, b_\theta$ and A.

Theorem (Grabovsky, H., 2015)

For any $h \in (0,1)$ and any $U \in V_i$, there holds:

$$\|\nabla U\|^2 \leq C\left(\frac{\|u_r\| \cdot \|e(U)\|}{h} + \|e(U)\|^2 + \|u_r\|^2\right).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem (Grabovsky, H., 2015) If $\kappa_{\theta} > 0$, then for any $h \in (0,1)$ and any $U \in V_i$, there holds:

$$\|\nabla U\|^2 \leq \frac{C}{h\sqrt{h}} \|e(U)\|^2.$$

If $\kappa_{\theta} = 0$ in a box $[\theta_1, \theta_2] \times [z_1, z_2]$, then

$$\|\nabla U\|^2 \leq \frac{C}{h^2} \|e(U)\|^2.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Work in progress

Assume Ω_h is a shell of revolution given by

$$C_h = \left[r(z) - \frac{h}{2}, r(z) + \frac{h}{2}\right] \times [0, 2\pi] \times [0, L].$$

Then (conjecture)

▶ If $\kappa_z < 0$, then for any $h \in (0,1)$ and any $U \in V_i$, there holds:

$$\|\nabla U\|^2 \leq \frac{C}{h^{4/3}} \|e(U)\|^2.$$

• If $\kappa_z > 0$, then

$$\|\nabla U\|^2 \leq \frac{C}{h} \|e(U)\|^2.$$

Theorem (Grabovsky, H., 2015) For any $h \in (0,1)$ and any $U \in V_i$, there holds:

$$\|\nabla U\|^2 \leq C\left(\frac{\|U\| \cdot \|e(U)\|}{h} + \|e(U)\|^2 + \|U\|^2\right).$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ