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Savage-Hutter model J
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Original 1-D Savage-Hutter Model '89

Find

@ the height h: R x RT — R

@ the (depth-averaged) velocity u: R x RT — R
satisfying the system of conservation laws

8th + 8x(hu) = 0

Oc(hu) + Oy (hu? + BH?) = hg, (SH)
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Here 5(x), g(x, u) are defined by
B(x) = kcosg(x),
g(x,u) = sing(x) — sign(u)cos&(x)

where £(x)— inclination angle of bottom topography at point x.

-1 for u<0
sign(u) =< [-1,1] for u=0
1 for u>0
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Possible (physical) formation of steady states for
fluid
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Possible (physical) formation of steady states
granular material
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Steady state solution for Savage-Hutter

Consider static problem (v = 0) with £ =0
= Governing equation:
khy € [-1,1]

= h is Lipschitz with Lipschitz constant < %

Physically relevant solution!

Piotr Gwiazda Weak and measure-valued solutions



2d System

Och + div(hu) = 0,
d¢(hu) + div(hu @ u) + V(ah?) = h <_7|::| + f) 7

where )
Q= ([05 1]‘{0,1}) o
initial conditions

h(O, ) = ho, I.I(O7 ) = up.

The term ﬁ has to be understood as a multi-valued mapping,
which for non-zero velocities takes the value %| whereas for u = 0
takes the values in the whole closed unit ball.
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Finite time dissipation of kinetic energy for weak
admisible solution to Savage Huter model

Theorem (G., Swierczewska-Gwiazda, Wiedemann,
Nonlinarity 2015)

Let (h,u) be an admissible weak solution of the Savage-Hutter
equations with initial energy Ey and ||f||« < d. Then there exists
a time 0 < T < oo such that for almost every t > T, (h,u) is
stationary, i.e. u(t,x) = 0 for almost every t > T and x € Q,
Oth(t,x) =0 for almost every t > T, x € Q, and

e

h— —| < —.
7/ 2a| =~ 2a

‘ f

The finite-time runout of solutions is essentially used at the
modelling stage as providing data for calibration of the system.
This property was assumed in numerical simulations.
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Existence of weak solutions

Theorem (Feireisl, G., Swierczewska-Gwiazda to appear

Comm. PDE)

Let T > 0 and the initial data hg, ug be given. Suppose that

f e CY([0, T] x Q; R?).

Then the problem (S-H) admits infinitely many weak solutions in
(0, T) x Q. The weak solutions belong to the class

h, d:h,Vh e C([0, T] x Q),

u € Cuear([0, T]; L2(; R?)) N L2°((0, T) x Q; R?).
divu € C([0, T] x Q),B € L°°((0, T) x Q; R?)
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Admissible solutions

Definition

We say that [h, u, By] is an admissible weak solution to the
Savage-Hutter system if in addition the energy inequality holds for
aa. 7€ (0, 7).

1 T
Eiot(7) = / [h\u\2 + ahz} (1,-) dx +/ / hyBuy - u dx dt
QL2 0o Ja

1 T
g/ [h0|u0]2+ah(2)] dx+/ /hf-udx dt,
Ql2 o Ja
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Weak-strong uniqueness )
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Savage-Hutter. Weak-strong uniqueness

Theorem (Feireisl, G., Swierczewska-Gwiazda to appear in
Comm. PDE)

Let [h,u, By] be an admissible weak solution of the Savage-Hutter
system in (0, T) x Q. Let [H,U,By], H > 0 be a globally
Lipschitz (strong) solution of the same problem, with

ho = H(O, -), Ug = U(O, )

Then

h=H, u=Uae in(0,T)x Q.
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Measure-valued solutions )

Piotr Gwiazda Weak and measure-valued solutions



Weak-strong uniqueness for mvs

@ Y. Brenier, C. De Lellis, L. Székelyhidi, Jr., Weak-strong
uniqueness for measure-valued solutions. Comm. Math. Phys.
2011,

Incompressible Euler -oscillation and concentration measure, general
hyperbolic systems - only oscillation measure, both in weak
formulation and entropy inequality

@ S. Demoulini, D. M. A. Stuart, A. E. Tzavaras, Weak-strong
uniqueness of dissipative measure-valued solutions for
polyconvex elastodynamics. Arch. Ration. Mech. Anal. 2012
In weak formulation only oscillation measure, in entropy inequality
there appears non-negative concentration measure

e P. G, A. S;Wierczewska—Gwiazda, E. Wiedemann, Weak-Strong
Uniqueness for Measure-Valued Solutions of Some
Compressible Fluid Models, Nonlinearity, 2015
Oscillatory and vector-valued concentration measure both in weak
formulation and entropy inequality
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Generalized Young measures

A (generalized) Young measure on RY with parameters in RY x R*
is a triple (vx,r, m,v2%), where
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Generalized Young measures

A (generalized) Young measure on RY with parameters in RY x R*
is a triple (vx,r, m,v2%), where

o vy € P(RY) for a.e. (x,t) € RY x RT (oscillation measure)

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak
solutions of the incompressible fluid equations, Comm. Math. Phys.
1987.

J. J. Alibert and G. Bouchitté, Non-uniform integrability and generalized

Young measures, J. Convex Anal. 1997.
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Generalized Young measures

A (generalized) Young measure on RY with parameters in RY x R*
is a triple (vx,r, m,v2%), where
o vy € P(RY) for a.e. (x,t) € RY x RT (oscillation measure)
e m < M*(RY x R*) (concentration measure)

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak
solutions of the incompressible fluid equations, Comm. Math. Phys.
1987.

J. J. Alibert and G. Bouchitté, Non-uniform integrability and generalized

Young measures, J. Convex Anal. 1997.
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Generalized Young measures

A (generalized) Young measure on RY with parameters in RY x R*
is a triple (vx,r, m,v2%), where
o vy € P(RY) for a.e. (x,t) € RY x RT (oscillation measure)
e m < M*(RY x R*) (concentration measure)
o v € P(S%7Y) for mae. (x,t) € RY x RY
(concentration-angle measure)

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak
solutions of the incompressible fluid equations, Comm. Math. Phys.
1987.

J. J. Alibert and G. Bouchitté, Non-uniform integrability and generalized

Young measures, J. Convex Anal. 1997.
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Compressible Euler equations

Formulation (CE)

deh + div(hu) = 0
O¢(hu) + div(hu ® u) + V(kh") = hG.

Here, h: [0, T] x T" - R, u: [0, T] x T" — R", and
G:[0,T] xT"—-R", v>1.

The global existence of measure-valued solutions was proved by
Neustupa in '93 (see also Kroner & Zajaczkowski '96 for polytropic
fluid). However he used a different formulation, as the formalism
of Alibert-Bouchitté '97 was not yet available. One can however
rewrite the solutions of Neustupa in the form presented here.
Neustupa’s solutions can be seen to be admissible, as they can be
obtained e.g. from an artificial viscosity approximation.
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Measure-valued solutions to compressible Euler

system

@ We need a slight refinement which allows us to treat
sequences whose components have different growth.

o Let (uk, wik)k be a sequence such that (uk) is bounded in
LP(;R") and (wy) is bounded in LI(;R™) (1 < p,q < 00).
Define the nonhomogeneous unit sphere

Spt = {(B1, B2) € R 1 |81 + |87 = 1},
Then, there exists a a subsequence and measures
v e LZ(QPRT™),me MH(Q), v™° e L(Q,mP(S,m )

such that in the sense of measures

f(x, un(x), wa(x))dx = / f(x, A1, A2)dv (A1, A2)dx
R/+m

+/: £(x, B1, B2)dve”(B1, B2) m.
Spra
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This is valid for all integrands f whose p-g-recession function
exists and is continuous on £ x Sﬁ,fq’”_l. The p-g-recession
function is defined as
_ f(x',s98,, sPp3,
f>(x, 81, B2) := lim (', 5961, 52).

X! —x sPa
(81,85)—=(B1,82)
S5—00
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Remark about evolutionary problems with bounded

energy

If Q = [0, T] x Q for some measurable Q c R” (or Q = T"), and if
the sequence (u,, wy), is bounded in L([0, T]; LP(2) x L9(S2)),
then the corresponding concentration measure m admits a
disintegration of the form

m = my(dx) ® dt,

where t — m; is bounded and measurable viewed as a map from

[0, T] into MT(Q).
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Measure-valued solutions to compressible Euler
system

We say that (v, m, ™) is a measure-valued solution of CE with
initial data (ho, ug) if for every 7 € [0, T], v € C}([0, T] x T™; R),
¢ € CY([0, T] x T";R") it holds that
/ Otbh + V) - hudxdt + [ 4(x,0)ho — 1 (x, T)h(x, T)dx = 0,
0 Tn Tn
/ 0t - hu + V¢ : hu® u+ divph’ — ¢ - hGdxdt
0o JTn

+/ #(x,0) - houp — &(x, T) - hu(x, 7)dx = 0.
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Admissibility of measure-valued solutions to

compressible Euler system

Let us set

Y (t, x)dx

1—
Emys(t) == /n §h|u|2(t,x) + po—

for almost every t, and

1 1
EO = /n Eho‘uO|2(X) + ﬁhg(x)dx

We then say that a measure-valued solution is admissible if

t
Emvs(t) < Eo +/ / hG - u(s, x)dxds
0 n

for almost all t.
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Where

)\ ®)\/ > <B/®IB/7VOC>m
W\z v) + (|8, v>)m
hG = (M G,v) = hG.
If the solution is generated by some approximation sequences, then
the black terms on right-hand side correspond to the biting limit of

sequences whereas the blue ones corespond to concentration
measure

18" ® B, v>°yml|lrv < C||(tr(8’ ® B'), v>°)m|ITv
= C|{|8')%, v*>*)m|Tv
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Savage-Hutter system

Existence of measure-valued solutions to S-H system - G. '05 J

Result is similar but slightly more complicated: Be careful! Young
measures + multivalued function
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Weak-Strong Uniqueness

Theorem (G., Swierczewska-Gwiazda, Wiedemann, 2015)

Let G € L>=([0, T]; L2(T")) and suppose

H e Whe([0, T] x T"), U € C([0, T] x T") is a solution of CE
with initial data hg > ¢ > 0, hy € LY(T"), ho|uo|? € L(T"), and
H(x,t) > ¢ > 0 for some constant ¢ and all (t,x) € [0, T] x T". If
(v, m,v>°) is an admissible measure-valued solution with the same
initial data, then

for a.e. t,x, and m = 0.

Vt,x = 5(H(t,X)» H(t7x)U(t,X))

Savage-Hutter

An analogue result holds for the Savage-Hutter system

Piotr Gwiazda Weak and measure-valued solutions



References:

o P. G. An existence result for a model of granular material with
non-constant density, Asympt. Anal. 30 (2002), no. 1, 43-60

@ P. G. On measure valued solution to 2d gravity driven
avalanche flow model. Math. Methods Appl. Sci. 28, No. 18,
(2005)

e P. G A. S,wierczewska—Gwiazda, E. Wiedemann Weak-Strong
Uniqueness for Measure-Valued Solutions of Some
Compressible Fluid Models, Nonlinearity, 2015

@ E. Feireisl, P. G., A. Swierczewska-Gwiazda On weak solutions
to the 2D Savage-Hutter model of the motion of a gravity
driven avalanche flow, to appear in Comm. PDE,
arXiv:1502.06223

Piotr Gwiazda Weak and measure-valued solutions



INSTITUTE OF MATHEMATICS

Polish Academy of Sciences

STEFAN BANACH
International Mathematical Center

SIMONS SEMESTER in BANACH CENTER CrossFields PDEs,
WARSAW, 1.12.2016 — 31.03.2017

Opening event: Winter School, 5 - 9.12.2016, Bedlewo )

Organizers

@ Eduard Feireisl
@ Piotr Gwiazda
@ Piotr Mucha

@ Agnieszka Swierczewska-Gwiazda

Piotr Gwiazda Weak and measure-valued solutions



Thank you for your attention
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Application of the method of convex integration to

S-H system

Oth + div(hu) = 0,
d¢(hu) + div(hu @ u) + V(ah?) = h (_,Y|L‘| + f) ,

@ hy € C2(Q), up € C2(Q; R2), ho > 0in Q.
@ using the standard Helmholtz decomposition, we may write

houg = vo+Vo+V Wy, divvg =0, / Vo dx =0, / vo dx =0,
Q Q

@ We look for solutions in the form

hu=v+V4+VVU, J

where
divv =0, /\U(t,-):O, /v(t,-):0, V = V(t) € R
Q Q



Continuity equation

deh+ AW =0in (0, T) x Q, h(0,-) = ho, W(0,-) = V. ’

We can choose h = h(t,x) € C3([0, T] x Q) such that

h(0,-) = ho, 0:h(0,-) = =AWy, h(t,-) >0,

/ h(t, ) dx = / ho dx for all t € [0, T],
Q Q

and compute

—AV(t,-) = Oh(t,-), / V(t,-) dx =0.
Q
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Consequently, the original problem reduces to finding the functions
v, V satisfying (weakly)

(V+V+VV)®(v+V+ V)
h

v+V+VV
_p( o YV VY
(7|v+v+vw+ >

Dev+0:V+div < + (ah* + 0,V) H>

divv =0, /v(t,-) dx =0,
Q

V(O, ) = Vo, V(O) = Vo.
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We denote
= 1v+V+VVpP
2 h
the kinetic energy density associated with the Savage-Hutter
system.

Analogously, we rewrite the system in the form

<(v+v+vw)®(v+v+vw) _1\v+v+va2ﬂ>

0v+0:V+div p > p

h\ /2
+V (E =N+ ah® + 0,V) = —y <2E> (v+V + VV) + hf,

where A = A(t) is a spatially homogeneous function to be
determined below. Finally, for

E=A—ah®>-0,V,

the above equation reduces.
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We denote
= 1v+V+VVpP
2 h
the kinetic energy density associated with the Savage-Hutter
system.

Analogously, we rewrite the system in the form

2
Opv-+0:V+div (VHVFVV@(v+V+VY) Tjv+V+ VY2
h 5 :
h 1/2
=7 (21:_) (v+V+VV)+ hf,

where A = A(t) is a spatially homogeneous function to be
determined below. Finally, for

E=NA—ah®>—0,V,

the above equation reduces.
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@ Determine V as the unique solution of the ODE
1 p\ /2

— — d
5] /Q’Y <2E) .

b\ 12
ol <2E> (v+ VV) + hf

0V — Vv

7

- = dx, V(0) = V.
1l Jo ©)

e Finally, we find a tensor M = M|v] such that

M(t, x) € Rszyxnio, for any t, x, and

1/2
divM = —y (2hE> (v+ V[v] + VV)

1 h\ 2 1
4+ 7() v+ V[v] + V¥ dx+hf—/ hf dx,
o Jo7\26) VHVRIFVY) 9 Ja
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Finally we write S-H system in a concise form

(V+VNM+VV)@(V+V+VV) 1v+V[v]+VV?

5tv—|—div h 5 h

I—-M[v]| =0

divv =0

and proceed with the method of convex integration.
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Short summary of these results (incompressible

Euler)

@ De Lellis, Székelyhidi 2010 showed that weak solutions need
not to be unique

@ Wiedemann 2011: for any initial data vy € L? there exists
infinitely many weak solutions

@ Székelyhidi, Wiedemann 2012: if we require the energy to be
non-increasing, then a global existence and non-uniqueness
result is known for an L?—dense subset of initial data

@ Weak-strong uniqueness
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Application of the method of convex integration to

S-H system

Oth + div(hu) = 0,
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Q Q
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Consequently, the original problem reduces to finding the functions
v, V satisfying (weakly)
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We denote
= 1v+V+VVpP
2 h
the kinetic energy density associated with the Savage-Hutter
system.

Analogously, we rewrite the system in the form
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where A = A(t) is a spatially homogeneous function to be
determined below. Finally, for
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the above equation reduces.
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the kinetic energy density associated with the Savage-Hutter
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Finally we write S-H system in a concise form

(V+VNM+VV)@(V+V+VV) 1v+V[v]+VV?

5tv—|—div h 5 h

I—-M[v]| =0

divv =0
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Subsolutions

The set of subsolutions )

Xo - the set of velocity fields such that
Otw +divF =0in (0, T) x Q for some F

A | T VIW V) f (wH VW] +VV¥) _ 5 ] < £-5

in (0, T) x Q for some § > 0,

where E is the kinetic energy introduced before.
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@ Recall that
E=NA-—ah®>—9,V.

The first observation is that the set Xj is non-empty provided
A(t) >N >0in [0, T]

@ Take the closure X of the set of subsolutions Xj.
© Show that Xp has infinite cardinality.
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@ The first observation is that the set Xy is non-empty provided
A(t) >N >0in [0, T]

and /g is large enough. Here “large enough” means in terms
of the initial data, f, and the time T.

)\max (VO i V[VO] i V\U) (f (VO * V[VO] * VW) - M[VO] < E-9

= A —ah®— W — 4.
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Infinitely many solutions

We introduce the functional

,[V]:/OT/Q B‘VJFV[V}]JFVW —E] dx dt

I : Xo — (—00,0] is a lower semi-continuous functional with
respect to the topology of the space Cyeak([0, T]; L2(2; R?)).
Consequently, by virtue of Baire category argument, the set of
points of continuity of / in Xg has infinite cardinality.
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Lemma

Let UC Rx RN, N =2,3 be a bounded open set. Suppose that

g e C(U;RY), W e C(U; RNXM), e,re C(U), r>0,e<einU

are given such that

N
E)\max [yGng — W} <einU.

Then there exist sequences
w, € C(U; RY), G, e C2(U; RZN), n=0,1,...
such that w, — 0 weakly in L2(U; RN) and
dewp, +divW, =0, divw, =0 in RV,

N (g+Wn)®(g+Wn)

>y )\max

—(W+Gp)| <einU,
r
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Origins of the system

Swarming = Aggregation of agents of similar size and body type
generally moving in a coordinated way. Highly developed social
organization: insects (ants, bees ...), fish, birds, micro-organisms.

rep.pdf
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Basic particle model

i
dt
dV,'
E: v,-—av,-|v,-\2 —ZVXK( — Xj +Z¢ _X_I(J_Vi)

propulsion—{friction J#i

>

-

attraction—repulsion alignment

where i € {1,...,n} and a > 0.
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@ Consider the limit of the empirical measure associated to the
above system

1 n
() = =D Sy
=1

defined as a probability measure in phase space
(x,v) € RN x RN,

@ Under certain assumptions on K and %, it is proven that
wn(t) converges as n — oo to a solution of a Vlasov-like
kinetic equation

Ocf + v - Vif +divy (FIFIf + (1 — a|v?) vf) =0
with F[f] being the nonlocal force field given by
F[f] :—VK*g—i-/ Y(x — y)(w — v)f(t, x, w)dw dy
RN JRN

and

o(t,x) := f(t,x,v)dv.
RN



By imposing the so-called hydrodynamic or mono-kinetic ansatz,
i.e., looking for distributional solutions to

O:f + v - Vif +divy (F[f]f + (1 — alv[’) vf) =0,

of the form
folt %, v) = (£, X)0(v — u(t, %))

one deduces that the pair (o(t, x), u(t, x)) must satisfy the
hydrodynamic equations with H(s) = as?
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