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NLS and MI
• Nonlinear Schrödinger equation (NLS): (ν = ∓1: focusing/defocusing)

iqt + qxx − 2ν(|q|2 − q2
o)q = 0 .

• Background solution: q(x , t) = qo.
• Modulational instability (MI) [Benjamin-Feir in water waves]: in the focusing

case, the background is unstable to long wavelength perturbations.

• Linearized NLS: if q(x , t) = qo + v(x , t), with v(x , t) = O(ε), then
ivt + vxx − 2νq2

o(v + v∗) = O(ε) .

• Solve with Fourier transforms: v(x , t) =
1

2π
∫
R

eiζx v̂(ζ, t) dζ ,

v̂(ζ, t) =
[
cos(γt)− (2q2

o − ζ2)/(iγ) sin(γt)
]
v̂(ζ, 0) + (2iq2

o/γ) sin(γt)v̂∗(ζ, 0) ,

γ(ζ) = ζ

√
ζ2 + 4νq2

o .

• MI: if ν = −1, wavenumbers ζ <∈ (−2qo,qo)
are linearly unstable!

• Growth rate: |Im γ(ζ)| = |ζ|
√

4q2
o − ζ2. - 2 -1 0 1 2
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Nonlinear stage of MI?
• Linearization predicts that perturbations grow unbounded.

• But NLS is completely integrable, so one would expect that its solutions
don’t blow up.

• Once perturbations grow to O(1), linearization ceases to be valid.

• Key question: what describes the nonlinear stage of MI?
In other words: can one characterize the NLS dynamics once the
perturbations have become O(1)?

• Surprisingly, this problem has remained open for fifty years.

• For NLS w/ periodic BC, MI is described via homoclinic solutions, but there
are significant differences between the two scenarios.

• Zakharov-Gelash conjecture: MI is mediated by Akhmediev breathers.
Can we test it? Also, what happens as t →∞?

• Here: nonlinear stage of MI via IST.
One could think that IST for focusing NLS w/ NZBC is pointless b/c of MI.
But, in fact, MI is not an impediment to IST.
In fact, IST is the only tool to study the nonlinear stage of MI!
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IST for focusing NLS with NZBC: Preliminaries

• Focusing NLS: iqt + qxx + 2(|q|2−q2
o)q = 0:

Lax pair: φx = X φ & φt = T φ ,

X = ikσ3 + Q, T = −i(2k2+q2
o + Q2 + Qx )σ3 − 2kQ, Q&σ3 as before.

• NZBC: q(x , t)→ q± as x → ±∞, with |q±| = qo > 0.

Extra term in NLS added s.t. BC q± are independent of time: let q̃ = q e−2iq2
o t .

• Asymptotic scattering problem:
φx = X± φ, X± = ikσ3 + Q± = limx→±∞ X .

• The eigenvalues of X± are ±iλ, with λ2 = k2 + q2
o .

• Branch points: k ∈ C s.t. λ(k) = 0, i.e., k = ±iqo.

• Branch cut: i[−qo,qo].

• Standard approach: two-sheeted Riemann surface defined by λ(k),
uniformization variable z = k + λ.

• Then k ∈ CI 7→ |z|2 > qo, k ∈ CII 7→ |z|2 < qo.
Moreover, k = 1

2 (z − q2
o/z), λ = 1

2 (z + q2
o/z).
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IST without Riemann surface, Jost eigenfunctions

Re k

Im k

0

ä qo

-ä qo

kn

kn­

Note Imλ(k) >< 0 for Im k >< 0.

• Define λ(k) as a single-valued function ∀k ∈ C,
with a jump discontinuity across i[−qo,qo].

• On k ∈ i[−qo,qo], we define λ(k) to be
continuous from the right, i.e.,
λ(iki ) = limkr→0+ λ(kr + iki ).

• Eigenvector matrices:
E±(k) = I + i/(k + λ)σ3Q±

s.t. X±E± = E± iλσ3.

• Continuous spectrum: k ∈ C s.t. λ(k) ∈ R: Σ = R ∪ i[−qo,qo].

• Asymptotic time evolution: φt = T±φ, T± = −2kX±.

• Jost eigenfunctions φ±: simultaneous solutions of both parts of Lax pair s.t.

φ±(x , t , k) = E±(k) eiθ(x,t,k)σ3 + o(1), x → ±∞, k ∈ Σ.

phase function:
θ(x , t , k) = λ (x − 2kt).

• Rigorously: define φ± via Neumann series for Volterra integral equations.
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Scattering matrix/analyticity/symmetries/discrete spectrum
• Scattering matrix: detφ± = det E± = 1+q2

o/z
2 6= 0, so

φ−(x , t , k) = φ+(x , t , k) A(k) k ∈ Σ \ {±iqo} .
Note A(k) and the norming constants are independent of time.

• Analyticity: (Recall Im λ >< 0 for Im k >< 0)

φ+,1, φ−,2, a22: C+ \ i[0,qo],
φ−,1, φ+,2, a11: C− \ i[−qo,0].

Re k

Im k

0

ä qo

-ä qo

kn

kn­

• Symmetry: (k , λ) 7→ (k∗, λ∗), which yields

a11(k) = a∗22(k∗), a12(k) = −a∗21(k∗), k ∈ Σ,

plus Schwartz extension when applicable.

• Discrete spectrum: k1, . . . , kN ∈ C+ \ i[0,qo] s.t. a22(kn) = 0:

φ+,1(x , t , zn) = bn φ−,2(x , t , zn) . (bound states)

• Symmetries⇒ discrete eigenvalues appear in symmetric pairs kn & k∗n .
(as in the IVP),

plus corresponding symmetries for the norming constants.
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Re k

Im k

0

ä qo

-ä qo

kn

kn­

• Symmetry: (k , λ) 7→ (k∗, λ∗), which yields

a11(k) = a∗22(k∗), a12(k) = −a∗21(k∗), k ∈ Σ,

plus Schwartz extension when applicable.

• Discrete spectrum: k1, . . . , kN ∈ C+ \ i[0,qo] s.t. a22(kn) = 0:

φ+,1(x , t , zn) = bn φ−,2(x , t , zn) . (bound states)

• Symmetries⇒ discrete eigenvalues appear in symmetric pairs kn & k∗n .
(as in the IVP),

plus corresponding symmetries for the norming constants.
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Inverse problem: Sectionally meromorphic matrices

• Formulate inverse problem as a matrix Riemann-Hilbert problem (RHP).

• Sectionally meromorphic matrices:

M(x , t , k) =

{(
φ+,1 , φ−,2/a22

)
e−iθσ3 , k ∈ C+ \ i[0,qo],(

φ−,1/a11 , φ+,2
)

e−iθσ3 , k ∈ C− \ i[−qo,0].

• Asymptotics: M → I as k →∞.

• Next, need a jump condition for the RHP.

• For k ∈ R, use scattering relation φ− = φ+ A (as usual):
M+ = M−V k ∈ R ,

Jump matrix:
V (x , t , k) = I − eiθσ3

(
0 −ρ̃
ρ ρρ̃

)
e−iθσ3 , k ∈ R.

Reflection coefficients:
ρ(k) = a21/a11, ρ̃(k) = a12/a22 = −ρ∗(k).

• Notation:
- subscripts ±: normalization as x → ±∞.
- superscripts ±: projection from the left/right of Σ.
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Inverse problem: RHP and reconstruction formula
• To obtain the jump condition for the RHP for k ∈ i[−qo, qo], one must relate

the limits of the analytic eigenfunctions to the left and the right of Σ:

V (x , t , k) =
i

k − λ

(
−ρ̃ e2iθ 1− ρρ̃

1 ρ e−2iθ

)
diag(q∗+, q+), k ∈ i[0, qo],

with a similar result on k ∈ i[−qo, 0].

• As usual, the RHP reduces to a closed linear system of algebraic-integral equations:
- subtract the asymptotic behavior as k →∞ and the pole contributions at the

discrete eigenvalues, apply Cauchy projectors, use Plemelj’s formulae,
- evaluate regular columns at discrete spectrum and use residue conditions.

• Reconstruction formula: Compute the asymptotics of M(x , t , k) as k →∞ and
compare with asymptotics of φ±(x , t , k):

q(x , t) = −2i lim
k→∞

[kM12(x , t , k)].

• Can also obtain trace formulae and the so-called “theta” condition [which yields
arg(q+/q−) from discrete eigenvalues and reflection coefficient].

• Reflectionless potentials: determinantal solution form.

• Rich family of soliton solutions: Kuznetsov-Ma, Peregrine, Akhmediev,
Watanabe-Tajiri. . .
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Explore MI with IST
• Test: piecewise constant, box-like IC,

q(x ,0) =

{
1 |x | > L ,
b eiα |x | < L .

1 1bãä Α

-L L

x

qHx,0L

• Scattering problem is a first-order system of
ODEs with piecewise-constant coefficients:

• Can compute solutions in each sub-domain,
then impose continuity at x = ±L to obtain Jost eigenfunctions ∀x ∈ R.

• Can compute full scattering matrix analytically; look for discrete eigenvals.

• Theorem: If b > 1 and cosα > 1/b, no threshold for discrete eigenvalues.
(All eigs lie in iR+; proof uses evaluation of a11(k) on ∂CI plus Rouché’s theorem.)

• Corollary: no area theorem is possible for focusing NLS w/NZBC.
(This is like KdV and defocusing NLS w/NZBC, and unlike focusing NLS w/ZBC.)

• Theorem: If 0 < b < 1 and cosα > b, no discrete eigenvalues exist.

• Therefore solitons cannot be the main medium for MI.
(b/c there is a nbhd of the constant solution with no discrete spectrum,
whereas all perturbations of the background are linearly unstable)
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Small-deviation limit of IST

• Restrict the ICs s.t. q(x , t)→ qo as x → ±∞ (i.e., set q± = qo).

• Also, let q(x , t) = qo + v(x , t), with v(x ,0) = O(ε) as before.

• Neglecting possible contributions from the continuous spectrum,
q(x , t) = qo −

1
2π
∫
Σ

e2iθ(x,t,z) a12(z) dz + O(ε2) ,

a12(z) =
1

q2
o + z2

∫
R

e−2iλ(z)y (−z2v(y , 0) + q2
ov∗(y , 0)) dy + O(ε2) .

(Here we used the formulation of IST with uniformization.)

0+0-

ä qo

-ä qo

¥II Re z

Im z

zn

zn­

2
-qo �zn

-qo
2

�zn­

• Recall z = k + λ, k = 1
2 (z − q2

o/z), λ = 1
2 (z + q2

o/z).

• Perform the change of variable

z = λ+
√
λ2 − q2

o or z = λ−
√
λ2 − q2

o

as appropriate on the various portions of the contour.

• The resulting expression coincides exactly with that from linearization.

• That is, IST nonlinearizes the Fourier transform — as expected.
• But note IST is likely more accurate than linearization, because the latter neglects

the possible contributions of the discrete spectrum.
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What does this mean for MI?

• The Jost solutions are nonlinear analogues of Fourier modes.

• Recall: the asymptotic behavior of the Jost solutions as x → ±∞ is

φ±(x , t , k) = E±(k) eiθ(x,t,k)σ3 + o(1), θ(x , t , k) = λ(k) x − ω(k) t .

• The spatial behavior is governed by λ(k) =
√

k2 + q2
o , and

λ(k) ∈ R ∀k ∈ R ∪ i[−qo,qo].

• But the time dependence is governed by ω(k) = 2kλ(k), and
ω(k) ∈ iR ∀k ∈ i[−qo,qo]!

Therefore, these Jost solutions grow exponentially in time!

• In fact, the growth rate of these Jost solutions is exactly that of the
unstable Fourier modes.

• So, the Jost solutions on the branch cut are precisely the nonlinearization
of the unstable Fourier modes.
(Alternatively, if one defines the Jost solutions with constant BCs, the reflection
coefficient depends on time, and on the cut it grows exponentially.
This is similar to Maxwell-Bloch equations in the unstable case.)
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Nonlinear stage of MI and long-time asymptotics

Re k

Im k

0

ä qo

-ä qo

kn

kn­

• We have identified the instability mechanism within
the context of IST: exponentially growing jumps in
the RHP when k ∈ i[−qo,qo].

• Since the solution of NLS remains bounded,
this means that IST contains an automatic
mechanism for the saturation of the instability.

• Goal: understand this mechanism and characterize
the nonlinear stage of MI.

• Approach: study the long-time asymptotics of solutions of focusing NLS
with NZBC via IST.

• Long time asymp. for NLS with ZBC: Ablowitz-Segur, Zakharov-Manakov (1976)
(GLM, WKB, similarity solns, multiple scales, etc.)

• Here: Deift-Zhou nonlinear steepest descent method for oscillatory RHPs.
• RHPs with exponentiallly growing jumps not unprecedented.

[Deift-Kamvissis-Kricherbauer-Zhou, 1996; Buckingham-Venakides, 2007;
Boutet de Monvel-Kotlyarov-Shepelsky, 2011; Jenkins-McLaughlin, 2014.]
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Long-time asymptotics for focusing NLS w/ NZBC

• Recall: the idea behind the Deift-Zhou method is to modify the RHP by
appropriate changes of dependent variables and contour deformations to
“peel” away the oscillating/growing terms, reducing the problem to:
- a “model” (or asymptotic) RHP that can be solved exactly, and

which yields the leading-order behavior of the solution; plus
- an “error” RHP that allows one to rigorously estimate the corrections.

• As usual, we compute the long-time asymptotics along directions x = ξt ,
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Long-time asymptotics: outline
Plots: Regions of the k -plane where Im[θ(k , ξ)] > 0 (gray) or Im[θ(k , ξ)] < 0 (white)
as a function of ξ = x/t .
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Long-time asymptotics: main results
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• |ξ| > ξ∗ (k± ∈ R): plane wave region,

q(x , t) = q± e2ig∞ + O(1/t1/2).

• |ξ| < ξ∗ (k± ∈ C \ R):
modulated elliptic wave region,

q(x , t) =
Θ(S + w∞)Θ( 1

2 )

Θ(S − 1
2 )Θ(w∞)

e2i(g∞−G∞t)

+O(1/t1/2),

Θ(z) = θ3(πz,eiπτ ),
S(x , t) = (C/2K (m)) (x − 2αret − X ),

C =
√
α2

re + (qo + αim)2,
m = 4qoαim/C2,
α = αre + iαim determined in terms of ξ

via a single implicit equation,
τ , w∞, g∞, G∞, X determined explicitly

in terms of α and the reflection coefficient.
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Long-time asymptotics: genus-1 region

• Reduction to slowly modulated elliptic solution in the genus-1 region:

|qasymp(x , t)|2 = (qo + αim)2 − 4qoαim sn2[C(x − 2αret − X ); m
]
,

m = 4qoαim/C2 = elliptic parameter, C =
√
α2

re + (qo + αim)2 as before.

• Plots: |qasymp(x , t)| as a function of ξ for qo = 1 in the genus-1 region 0 < ξ < 4
√

2.
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• Note the envelope is stationary in the ξt-frame.

• On the other hand, one can show that the oscillations become stationary
in the xt-frame as t →∞!

• In fact, for fixed x , all the peaks become sech solitons as t →∞!
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Universal nature of the nonlinear stage of MI
• Kamchatnov (2000): a modulated elliptic solution using Whitham’s equations.

El et al. (1993): motion of the branch points for the modulated solution.
But those results were not rigorous, had no phase or translation parameters,
had no connection to ICs, no error estimates.

• Here:
- we identified the mechanism for MI within the context of the IST,
- we computed rigorously the long-time asymptotics of a broad class of ICs,
- we proved that the solution of NLS remains bounded at all times,
- we obtained precise error estimates,
- we established the universal nature of the asymptotic stage of MI.

• Next: detailed comparison with numerics.
There is an intermediate range of times for which one sees
the asymptotic behavior but no catastrophic roundoff.

Right:
Density plot from numerical simulations of NLS with a
small Gaussian perturbation of the constant background.
Red lines:
analytically predicted boundaries x = ±4

√
2qo t .

[numerics by Sitai Li]

• Experiments?
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