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What is the best shape and placement of sensors?

- Reduce the cost of instruments.
- Maximize the efficiency of reconstruction and estimations.

—
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Modeling

The observed system may be described by:

@ wave equation | Oy = Ay

or

Schrédinger equation | id;y = Ay
@ general parabolic equations | 9;y = Ay | (e.g., heat or Stokes equations)

in some domain €, with either Dirichlet, Neumann, mixed, or Robin boundary conditions

For instance, when dealing with the heat equation:

What is the optimal shape and placement of
a thermometer?
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Modeling

oy — Ay =0 Ob
Waves propagating in a cavity: servable
propagating Y y(t,)jon =0 Yt )
frappefl rays

@ .

w

Observability inequality

The observability constant Cr(w) is the largest nonnegative constant such that

;
YO0,y € Q) x HHQ)  Cr@)(0 ¥ )IPey pyr < /0 /w Y (t, X)[? dx dit

The system is said observable on [0, T] if Cr(w) > 0 (otherwise, Cr(w) = 0).

uome

@ @ Fsmp
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Modeling

oy — Ay =0 Ob
Waves propagating in a cavity: servable
propagating Y y(t,)jon =0 Yt )
Trappefl rays
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Observability inequality

The observability constant Cr(w) is the largest nonnegative constant such that

;
YO0,y € Q) x HHQ)  Cr@)(0 ¥ )IPey pyr < /0 /w Y (t, X)[? dx dit

v

Bardos-Lebeau-Rauch (1992): Observability holds if the pair (w, T) satisfies the
Geometric Control Condition (GCC) in Q: nc

Every ray of geometrical optics that propagates in Q and is reflected on its MP
boundary 0%2 intersects w in time less than T.
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Modeling

oy — Ay =0 o
Waves propagating in a cavity: bservable
propagating Y y(t,)jon =0 Yt )
frappefl rays
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Observability inequality

The observability constant Cr(w) is the largest nonnegative constant such that

;
YO0,y € Q) x HHQ)  Cr@)(0 ¥ )IPey pyr < /0 / Y (t, X)[? dx dit

Q: What is the "best possible” subdomain w of fixed given measure? (say, |w| = L|Q| with0 < L < 1) J

N.B.: we want to optimize not only the placement but also the shape of w, ;
@ over all possible measurable subsets. @ FSMP

(they do not have a prescribed shape, they are not necessarily BV, etc)
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Modeling

Related problems

1) What is the "best domain” for achieving HUM optimal control?

Yit — Ay = xwU

2) What is the "best domain” domain for stabilization (with localized damping)?

Yit — Ay = —kxw i

Existing works by

- P. Hébrard, A. Henrot: theoretical and numerical results in 1D for optimal stabilization.
- A. Munch, P. Pedregal, F. Periago: numerical investigations (fixed initial data).

- S. Cox, P. Freitas, F. Fahroo, K. lto, ...: variational formulations and numerics.

- M.I. Frecker, C.S. Kubrusly, H. Malebranche, S. Kumar, J.H. Seinfeld, ...: numerical
investigations over a finite number of possible initial data.

- M. Demetriou, K. Morris, S.L. Padula, O. Sigmund, M. Van de Wal, ...: actuator
placement (predefined set of possible candidates), Riccati approaches. UemcC

- A. Armaou, M. Demetriou, K. Chen, C. Rowley, K. Morris, S. Yang, W. Kang, S. King, FSMP
L. Xu, ...: Hp optimization, frequency methods, LQ criteria, Gramian approaches. :
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Modeling
The model

Observability inequality

.
vy soluion  Cr(@)(/0. ). Ay N1 < [ [ it aeet

Let L € (0,1) and T > O fixed.

It is a priori natural to model the problem as: sup Cr(w)
i<l
with
T 2
. Y8, X)| dx dt _
Cr(w) = inf Jo J. 5 | (¥(0,-),3¥(0,-)) € L(Q) x H~'(2) \ {(0,0)}
”(y(07 ')7 8[}/(07 '))HLZXH—1

® @ FsmP
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Modeling

The model

®
JiL

Observability inequality

.
vy soluion  Cr() (/0. ). 000, Ee,1 < [ [ it aeet

Let L € (0,1) and T > O fixed.

It is a priori natural to model the problem as: sup Cr(w)

wC
[w|=L[Q]

BUT:
0 Theoretical difficulty due to crossed terms in the spectral expansion (cf Ingham
inequalities).

Q In practice: many experiments, many measures. This deterministic constant is
pessimistic: it gives an account for the worst case.

ne

—— optimize shape and location of sensors in average, over a large number of MnC
measurements

MP

— define an averaged observability inequality
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Modeling

Randomized observability constant

Averaging over random initial data:

Randomized observability inequality (wave equation)

.
Crrana(@) V0, ), 10, NIyt < E( L \yu(r,x)Fdxdt)

where
—+oo

Yot x) = Z (,/ﬂ’»laje’“/' + ,/g’_jbje*“/') (%)
j=1
with 3;/_/, ,'ig_j i.i.d. random variables (e.g., Bernoulli, Gaussian) of mean 0
(inspired from Burg-Tzvetkov, Invent. Math. 2008)

with (¢;)jen= Hilbert basis of eigenfunctions

Randomization e generates a full measure set of initial data UPmC
lari }
@ e does not regularize @ FsMp
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Modeling

Randomized observability constant

Vw measurable Crrand(Xw) = T inf ’Yj/ <751_()()2 dx
’ jEN* w
with 1/2 for the wave equation
o 1 for the Schrodinger equation
V= 2227
% for the heat equation
J

with (¢;)jen= a fixed Hilbert basis of eigenfunctions of A

There holds Cr rana(Xw) = Cr(xw)-

For the wave equation, the randomized observability constant is a spectral quantity ignoring the rays’ contribution.
(— spectral criterion = half of the truth!)

There are examples where the inequality is strict: nc
@ in1D: Q= (0, n), T # k.
@ @ in multi-D: Q stadium-shaped, w containing the wings. MP
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Modeling

Randomized observability constant

Vw measurable

Crumie) = T .5 [ 4100 o

with 1/2
1

2227
e /A

2

2)\j

Y =

for the wave equation

for the Schrodinger equation

for the heat equation

with (¢;)jen= a fixed Hilbert basis of eigenfunctions of A

Conclusion: we model the problem as sup &f* 'Yj/ qu(x)z ax
w

wC J
[w|=L]Q

uome
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To solve the problem, we distinguish between:

parabolic equations (e.g., heat, Stokes) J # wave or Schrédinger equations J

@ requires some knowledge on the asymptotic behavior of qu?
Q@ ui= qﬁ]? dx is a probability measure .
= strong difference between ~; ~ eN’ (parabolic) and ~; = 1 (hyperbolic) nc

® = rSMP
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’ Parabolic equations ‘

(e.g.: heat, Stokes, anomalous diffusions)

We assume that Q is piecewise C!

There exists a unique optimal domain w*

@ Quite difficult proof, requiring in particular: Hartung minimax theorem; fine lower
estimates of ¢/? by J. Apraiz, L. Escauriaza, G. Wang, C. Zhang (JEMS 2014)

@ Algorithmic construction of the best observation set w*: to be followed (further)
u=mc

@ @ Fsmp
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’Wave and Schrodinger equations ‘

Optimal value

Under appropriate spectral assumptions:
inf i(x)2dx =L
sup I&*/ ¢j(x)= dx

wCQ
lw|=LI2]

@ Proof: 1) convexification (relaxation), 2) no-gap (not obvious because not Isc).

@ Main spectral assumption:
QUE (Quantum Unique Ergodicity): the whole sequence ¢j? ax — %(' vaguely.

true in 1D, but in multi-D?

uome

@ @ Fsmp
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’ Wave and Schrodinger equations ‘

Optimal value
Under appropriate spectral assumptions:

su inf/ (x)2dx =L
wcg IGN* u¢]( )
lwl=L|Q|

Relationship to quantum chaos theory:

what are the possible (weak) limits of the probability measures p; = qu? ax?
(quantum limits, or semi-classical measures)

@ See also Shnirelman theorem: ergodicity implies
Quantum Ergodicity (QE; but possible gap to QUE!)

@ If QUE fails, we may have scars

Q @ QUE conjecture (negative curvature)
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’Wave and Schrodinger equations ‘

Optimal value
Under appropriate spectral assumptions:

su inf/ (x)2dx =L
wcri?l IGN* w ¢]( )
|w|=L|Q|

Remark: The above result holds true as well in
the disk. Hence the spectral assumptions are
not sharp.

(proof: requires the knowledge of all quantum
limits in the disk, Privat Hillairet Trélat)

Hje = Or=1 Upmc
@ (this is one QL: whispering galleries) @ EFSMP
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’Wave and Schrodinger equations ‘

Optimal value

Under appropriate spectral assumptions:

su inf/ (x)2dx =L
wcg N/ ¢j( )
|w|=L|Q|

@ Supremum reached? Open problem in general.
@ in 1D: reached < L = 1/2 (infinite number of optimal sets)
@ in 2D square: reached over Cartesian products < L € {1/4,1/2,3/4}

Conjecture: Not reached for generic domains Q2 and generic values of L.

@ Construction of a maximizing sequence (by a kind of homogenization)

uome

@ @ Fsmp
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Solving

Spectral approximation

Following Hébrard-Henrot (SICON 2005), we consider the finite-dimensional spectral
approximation:

; 2
su min ~(x) dx
o E Y 7’/w¢’( )
lw|=L|Q]|

The problem has a unique solution wN.
Moreover, wN is semi-analytic and thus has a finite number of connected components.

uome

E. Trélat Optimal shape and location of sensors



’ Wave and Schrodinger equations ‘ Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

The complexity of w/ is increasing with N.
Under a slight spectral assumption:

Spillover phenomenon: the best domain w" (satisfied, e.g., by (—A)* with & > 1/2)

for the N first modes is the worst possible

forthe N + 1 first modes. The sequence of optimal sets wV is

In particular, w™ is semi-analytic and thus has a finite
number of connected components.

—— stationary:
oo Q
100 Q N [YN > Ng N =who =
1 00000
10 0 with w* the optimal set for all modes.
1+ O O o

PR
4,25,100, 500 eigenmodes
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’ Wave and Schrodinger equations ‘

The complexity of w/ is increasing with N.

Spillover phenomenon: the best domain w"
for the N first modes is the worst possible
for the N + 1 first modes.

@il ooz

1,25, 100, 400 eigenmodes

'.,’ll E. Trélat

Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

Under a slight spectral assumption:
(satisfied, e.g., by (—A)* with « > 1/2)

The sequence of optimal sets w™ is
stationary:

INg [N > Ny Wl =M = o

with w* the optimal set for all modes.
In particular, w* is semi-analytic and thus has a finite

number of connected components.

)
J

@ Fsmp
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’ Wave and Schrodinger equations ‘ Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

The complexity of w/ is increasing with N.
Under a slight spectral assumption:
Spillover phenomenon: the best domain w" (satisfied, e.g., by (—A)* with & > 1/2)

for the N first modes is the worst possible

forthe N + 1 first modes. The sequence of optimal sets wV is

stationary:
INg [N > Ny Wl =M = o

with w* the optimal set for all modes.

In particular, w* is semi-analytic and thus has a finite

number of connected components.

J— D ) — no fractal set!

Q= (0,7)?
1,4,9, 16, 25, 36 eigenmodes -
uPmc
- L=0.2,T=0.05 .
@S FSMP

— optimal thermometer in a square
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Solving

Conclusion and perspectives

@ Same kind of analysis for the optimal design of the control domain.

@ Intimate relations between domain optimization and quantum chaos (quantum
ergodicity properties).
@ Optimal design for boundary observability (P. Jounieaux’ PhD):

: 1 (9 —1
sup inf —y-/ ( ) ar”
lwi=Ljog| €8 T ), A\ ov

@ Strategies to avoid spillover?

@ Discretization issues: do the numerical optimal designs converge to the
continuous optimal design as the mesh size tends to 07

@ Y. Privat, E. Trélat, E. Zuazua,

(*)] Optimal observation of the one-dimensional wave equation, J. Fourier Analysis Appl. (2013).

o Optimal location of controllers for the one-dimensional wave equation, Ann. Inst. H. Poincaré (2013).

o Complexity and regularity of maximal energy domains for the wave equation with fixed initial data -~
Discrete Contin. Dyn. Syst. (2015). Y [ﬂ []\j

o Optimal shape and location of sensors for parabolic equations with random initial data, "

- Arch. Ration. Mech. Anal. (2015). ® SMP

Optimal observability of the multi-dimensional wave and Schrédinger equations in quantum ergodic
domains, to appear in J. Europ. Math. Soc. (2015).
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Solving
Conclusion and perspectives

@ What can be said for the classical (deterministic) observability constant?

A result for the wave observability constant:
(Humbert Privat Trélat, ongoing)

. Cr(w) 1 . . / > . ) 1 /T
| = - inf - dx, _lim inf — w(y(1)) dt
T—LTOO T 2 min JjeN* J o d)] T—+o00 {~yray} T 0 = (’Y( ))
Two quantities: spectral geometric (rays)

!

randomized obs. constant

uome
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Modeling
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Remark: another way of arriving at the criterion (wave equation)

Averaging in time:
Time asymptotic observability inequality:

1 T
Coe (e 0. IO N Bes < im [0 [ iyt ot

li
— 400

with

1 T L Iyt x) 2 dxat

lim — 3
T—too T [I(7(0,), 110, NIIZ, s

1 1
If the eigenvalues of A4 are simple then Coo (xw) = > &f / ¢>,-(x)2 dx = 5J(Xw).
JjeEN*J o,

CoolXw) = inf{ | (0, ), %20, ) € L2 x H"\ {(o,on} :

Remarks
1
(* I} <—inf/ i(x)? dx.
so(xw) < 5 It [ 4i() nc
' Cr(xw) ' NP
@ limsup 222 < Coo(Xw)- There are examples where the inequality is strict. MP
T—+4oo
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Solving

A remark for fixed initial data

If we maximize w — fOT [, ly(t, x)|2 dx at with fixed initial data, then, using a
decreasing rearrangement argument:

There always exists (at least) one optimal set w.
The regularity of w depends on the initial data: it may be a Cantor set of
positive measure, even for C*° data.

@5 (L)

0 o s @y g

— In our model, we consider an infimum over all initial data. .

@ @ Fsmp
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Solving

A remark on the class of subdomains

Let A > 0 fixed. If we restrict the search to

{wCQ | |w=L<Q and Po(w)< A} (perimeter)
or

{wcQ | |w=LQ] and [xwlsyv@) <A} (total variation)
or

{wCQ | |w =L and w satisfies the 1/A-cone property}
or

w ranges over some finite-dimensional (or "compact”) prescribed set...

then there always exists (at least) one optimal set w.

— but then...
- the complexity of w may increase with A
- we want to know if there is a "very best” set (over all possible measurable) UFEWC

@ @ FsSMp
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Solving

Remedies (wave and Schrodinger equations)

1. Existence of a maximizer J

Ensured if ¢, is replaced with any of the following choices:

V. ={xw €U | Po(w) < A} (perimeter)
Vi = {xw €U | lIxwllBv(@) < A} (total variation)
Vi = {xw € U] | w satisfies the 1/A-cone property }

where A > 0 is fixed.

uome
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Modeling Solving

Remedies (wave and Schrodinger equations)

2. Weighted observability inequality

.
Cr.o () (1059 e mr + ol M) < [ [ it of? ot

where o > 0: weight.

Note that Ct »(xw) < Cr(xw)-

Randomization = 2 Ct 5 rand(Xw) = TJo(Xw), Where

Jole) = int o) [ 6007 o,

A2
i i = 7]
with o; o A,-Z .
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Solving

Remedies (wave and Schrodinger equations)

Theorem
Assume that L>°-QUE holds. If 0y < L < 1 then there exists N € N* such that

q 2 A 2
sup inf a»/q&- = max inf cr/qbv < o1 <L
xoevy €Nt T T e 1<j<n ), ’

for every n > N. In particular there is a unique solution x ~. Moreover if M is analytic
then w" is semi-analytic and has a finite number of connected components.

@ The condition oy < L < 1 seems optimal (see numerical simulations).

@ This result holds as well in any torus, or in the Euclidean n-dimensional square
for Dirichlet or mixed Dirichlet-Neumann conditions.

uome

@ @ FsSMp
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Modeling

Solving

An additional remark

Anomalous diffusion equations, Dirichlet: oty + (=A)*y =0 (a > 0 arbitrary)
with a surprising result:

In the square Q = (0, 7)2, with the usual basis (products of sine): the optimal domain
w* has a finite number of connected components, Va > 0.

In the disk Q = {x € R? | ||x|| < 1}, with the usual basis (Bessel functions), the
optimal domain w* is radial, and

@ o> 1/2 = w* = finite number of concentric rings (and d(w, 92) > 0)

@ o < 1/2 = w* =infinite number of concentric rings accumulating at 0!
(or & = 1/2 and T small enough)

The proof is long and very technical. It uses in particular the knowledge of quantum limits in the disk. J
(L. Hillairet, Y. Privat, E.Trélat) ™"
| Fsmp
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1,4,9, 16, 25, 36 eigenmodes

L=02T=005a=1
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1, 4,125,100, 144, 225 eigenmodes

L=02,T=0.05a=0.15
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Modeling

Comparison

Xw €U JENT

sup inf y,-/ ¢

square

disk

wave or Schrodinger

relaxed solution a = L
JwiorLe {3,353}

/A otherwise (conjecture)

relaxed solution a = L
JwiorLe {1,353}

/A otherwise (conjecture)

diffusion (—A)~

Jlw VL VYa>0

#c.c.(w) < o0

Jlw (radial) VL Va >0
if & > 1/2 then #c.c.(w) < +oo

if « < 1/2then #c.c.(w) = +oo

Solving

MP
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