Optimal shape and location of sensors or actuators in PDE models

Y. Privat, E. Trélat ${ }^{1}$, E. Zuazua

${ }^{1}$ Univ. Paris 6 (Labo. J.-L. Lions) et Institut Universitaire de France

SIAM Conference on Analysis of Partial Differential Equations, 2015

What is the best shape and placement of sensors?

- Reduce the cost of instruments.
- Maximize the efficiency of reconstruction and estimations.

IUF)

E. Trélat

The observed system may be described by:

- wave equation \square
$\partial_{t t} y=\Delta y$ or
Schrödinger equation $i \partial_{t} y=\triangle y$
- general parabolic equations $\partial_{t} y=A y$ (e.g., heat or Stokes equations)
in some domain Ω, with either Dirichlet, Neumann, mixed, or Robin boundary conditions

For instance, when dealing with the heat equation:
What is the optimal shape and placement of a thermometer?

Waves propagating in a cavity:

$$
\begin{aligned}
& \partial_{t t} y-\Delta y=0 \\
& y(t, \cdot)_{\mid \partial \Omega}=0
\end{aligned}
$$

Observable $y(t, \cdot)_{\mid \omega}$

Observability inequality

The observability constant $C_{T}(\omega)$ is the largest nonnegative constant such that

$$
\forall\left(y^{0}, y^{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega) \quad C_{T}(\omega)\left\|\left(y^{0}, y^{1}\right)\right\|_{L^{2} \times H^{-1}}^{2} \leq \int_{0}^{T} \int_{\omega}|y(t, x)|^{2} d x d t
$$

The system is said observable on $[0, T]$ if $C_{T}(\omega)>0$ (otherwise, $C_{T}(\omega)=0$).

Waves propagating in a cavity:

$$
\begin{aligned}
& \partial_{t t} y-\Delta y=0 \\
& y(t, \cdot)_{\mid \partial \Omega}=0
\end{aligned}
$$

Observable $y(t, \cdot)_{\mid \omega}$

Observability inequality

The observability constant $C_{T}(\omega)$ is the largest nonnegative constant such that

$$
\forall\left(y^{0}, y^{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega) \quad C_{T}(\omega)\left\|\left(y^{0}, y^{1}\right)\right\|_{L^{2} \times H^{-1}}^{2} \leq \int_{0}^{T} \int_{\omega}|y(t, x)|^{2} d x d t
$$

Bardos-Lebeau-Rauch (1992): Observability holds if the pair (ω, T) satisfies the Geometric Control Condition (GCC) in Ω :

Every ray of geometrical optics that propagates in Ω and is reflected on its boundary $\partial \Omega$ intersects ω in time less than T.

Waves propagating in a cavity:

$$
\begin{aligned}
& \partial_{t t} y-\Delta y=0 \\
& y(t, \cdot)_{\mid \partial \Omega}=0
\end{aligned}
$$

Observable $y(t, \cdot)_{\mid \omega}$

Observability inequality

The observability constant $C_{T}(\omega)$ is the largest nonnegative constant such that

$$
\forall\left(y^{0}, y^{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega) \quad C_{T}(\omega)\left\|\left(y^{0}, y^{1}\right)\right\|_{L^{2} \times H^{-1}}^{2} \leq \int_{0}^{T} \int_{\omega}|y(t, x)|^{2} d x d t
$$

Q: What is the "best possible" subdomain ω of fixed given measure? (say, $|\omega|=L|\Omega|$ with $0<L<1$)
N.B.: we want to optimize not only the placement but also the shape of ω, over all possible measurable subsets.
(they do not have a prescribed shape, they are not necessarily BV, etc)

Related problems

1) What is the "best domain" for achieving HUM optimal control?

$$
y_{t t}-\Delta y=\chi_{\omega} u
$$

2) What is the "best domain" domain for stabilization (with localized damping)?

$$
y_{t t}-\Delta y=-k \chi_{\omega} y_{t}
$$

Existing works by

- P. Hébrard, A. Henrot: theoretical and numerical results in 1D for optimal stabilization.
- A. Münch, P. Pedregal, F. Periago: numerical investigations (fixed initial data).
- S. Cox, P. Freitas, F. Fahroo, K. Ito, ...: variational formulations and numerics.
- M.I. Frecker, C.S. Kubrusly, H. Malebranche, S. Kumar, J.H. Seinfeld, ...: numerical investigations over a finite number of possible initial data.
- M. Demetriou, K. Morris, S.L. Padula, O. Sigmund, M. Van de Wal, ...: actuator placement (predefined set of possible candidates), Riccati approaches. - A. Armaou, M. Demetriou, K. Chen, C. Rowley, K. Morris, S. Yang, W. Kang, S. Kin L. Xu, ...: H_{2} optimization, frequency methods, LQ criteria, Gramian approaches.

The model

Observability inequality

$\forall y$ solution $\quad C_{T}(\omega)\left\|\left(y(0, \cdot), \partial_{t} y(0, \cdot)\right)\right\|_{L^{2} \times H^{-1}}^{2} \leq \int_{0}^{T} \int_{\omega}|y(t, x)|^{2} d x d t$
Let $L \in(0,1)$ and $T>0$ fixed.
It is a priori natural to model the problem as:

$$
\sup _{\substack{\omega \subset \Omega \\|\omega|=L|\Omega|}} C_{T}(\omega)
$$

with

$$
C_{T}(\omega)=\inf \left\{\left.\frac{\int_{0}^{T} \int_{\omega}|y(t, x)|^{2} d x d t}{\left\|\left(y(0, \cdot), \partial_{t} y(0, \cdot)\right)\right\|_{L^{2} \times H^{-1}}^{2}} \quad \right\rvert\, \quad\left(y(0, \cdot), \partial_{t} y(0, \cdot)\right) \in L^{2}(\Omega) \times H^{-1}(\Omega) \backslash\{(0,0)\}\right\}
$$

BUT...

The model

Observability inequality
$\forall y$ solution $\quad C_{T}(\omega)\left\|\left(y(0, \cdot), \partial_{t} y(0, \cdot)\right)\right\|_{L^{2} \times H^{-1}}^{2} \leq \int_{0}^{T} \int_{\omega}|y(t, x)|^{2} d x d t$
Let $L \in(0,1)$ and $T>0$ fixed.
It is a priori natural to model the problem as:

$$
\sup _{\substack{\omega \subset \Omega \\|\omega|=L|\Omega|}} C_{T}(\omega)
$$

BUT:
(1) Theoretical difficulty due to crossed terms in the spectral expansion (cf Ingham inequalities).
(2) In practice: many experiments, many measures. This deterministic constant is pessimistic: it gives an account for the worst case.
\longrightarrow optimize shape and location of sensors in average, over a large number of measurements
\longrightarrow define an averaged observability inequality

Randomized observability constant

Averaging over random initial data:

Randomized observability inequality (wave equation)

$$
C_{T, \text { rand }}(\omega)\left\|\left(y(0, \cdot), y_{t}(0, \cdot)\right)\right\|_{L^{2} \times H^{-1}}^{2} \leq \mathbb{E}\left(\int_{0}^{T} \int_{\omega}\left|y_{\nu}(t, x)\right|^{2} d x d t\right)
$$

where

$$
y_{\nu}(t, x)=\sum_{j=1}^{+\infty}\left(\beta_{1, j}^{\nu} a_{j} e^{i \lambda_{j} t}+\beta_{2, j}^{\nu} b_{j} e^{-i \lambda_{j} t}\right) \phi_{j}(x)
$$

with $\beta_{1, j}^{\nu}, \beta_{2, j}^{\nu}$ i.i.d. random variables (e.g., Bernoulli, Gaussian) of mean 0 (inspired from Burq-Tzvetkov, Invent. Math. 2008)
with $\left(\phi_{j}\right)_{j \in \mathbb{N}^{*}}$ Hilbert basis of eigenfunctions
Randomization

- generates a full measure set of initial data
- does not regularize

Randomized observability constant

Theorem

$\forall \omega$ measurable

$$
C_{T, \text { rand }}\left(\chi_{\omega}\right)=T \inf _{j \in \mathbb{N}^{*}} \gamma_{j} \int_{\omega} \phi_{j}(x)^{2} d x
$$

with

$$
\gamma_{j}= \begin{cases}1 / 2 & \text { for the wave equation } \\ 1 & \text { for the Schrödinger equation } \\ \frac{e^{2 \lambda_{j}^{2} T}-1}{2 \lambda_{j}^{2}} & \text { for the heat equation }\end{cases}
$$

with $\left(\phi_{j}\right)_{j \in \mathbb{N}^{*}}$ a fixed Hilbert basis of eigenfunctions of \triangle

Remark

There holds $C_{T, \text { rand }}\left(\chi_{\omega}\right) \geqslant C_{T}\left(\chi_{\omega}\right)$.
For the wave equation, the randomized observability constant is a spectral quantity ignoring the rays' contribution.
(\rightarrow spectral criterion $=$ half of the truth!)
There are examples where the inequality is strict:

- in 1D: $\Omega=(0, \pi), T \neq k \pi$.
- in multi-D: Ω stadium-shaped, ω containing the wings.

Randomized observability constant

Theorem

$\forall \omega$ measurable

$$
C_{T, \text { rand }}\left(\chi_{\omega}\right)=T \inf _{j \in \mathbb{N}^{*}} \gamma_{j} \int_{\omega} \phi_{j}(x)^{2} d x
$$

with

$$
\gamma_{j}= \begin{cases}1 / 2 & \text { for the wave equation } \\ 1 & \text { for the Schrödinger equation } \\ \frac{e^{2 \lambda_{j}^{2} T}-1}{2 \lambda_{j}^{2}} & \text { for the heat equation }\end{cases}
$$

with $\left(\phi_{j}\right)_{j \in \mathbb{N}^{*}}$ a fixed Hilbert basis of eigenfunctions of \triangle

Conclusion: we model the problem as

$$
\sup _{\substack{\omega \subset \Omega \\|\omega|=L|\Omega|}} \inf _{j \in \mathbb{N}^{*}} \gamma_{j} \int_{\omega} \phi_{j}(x)^{2} d x
$$

Fondation Sciences
Mathematiques do Pars
E. Trélat Optimal shape and location of sensors

$$
\sup _{\substack{\omega \subset \Omega \\|\omega|=L|\Omega|}} \inf _{j \in \mathbb{N}^{*}} \gamma_{j} \int_{\omega} \phi_{j}(x)^{2} d x
$$

To solve the problem, we distinguish between:
parabolic equations (e.g., heat, Stokes)

Remarks

- requires some knowledge on the asymptotic behavior of ϕ_{j}^{2}
- $\mu_{j}=\phi_{j}^{2} d x$ is a probability measure
\Rightarrow strong difference between $\gamma_{j} \sim e^{\lambda_{j} T}$ (parabolic) and $\gamma_{j}=1$ (hyperbolic)

Parabolic equations

(e.g.: heat, Stokes, anomalous diffusions)

We assume that Ω is piecewise C^{1}

Theorem

There exists a unique optimal domain ω^{*}

- Quite difficult proof, requiring in particular: Hartung minimax theorem; fine lower estimates of ϕ_{j}^{2} by J. Apraiz, L. Escauriaza, G. Wang, C. Zhang (JEMS 2014)
- Algorithmic construction of the best observation set ω^{*} : to be followed (further)

Wave and Schrödinger equations

Optimal value

Under appropriate spectral assumptions:

$$
\sup _{\substack{\omega \omega \Omega \\|\omega|=L|\Omega|}} \inf _{j \in \mathbb{N}^{*}} \int_{\omega} \phi_{j}(x)^{2} d x=L
$$

- Proof: 1) convexification (relaxation), 2) no-gap (not obvious because not lsc).
- Main spectral assumption: QUE (Quantum Unique Ergodicity): the whole sequence $\phi_{j}^{2} d x \rightharpoonup \frac{d x}{|\Omega|}$ vaguely. true in 1D, but in multi-D?

Wave and Schrödinger equations

Optimal value

Under appropriate spectral assumptions:

$$
\sup _{\substack{\omega \omega \Omega \\|\omega|=L|\Omega|}} \inf _{j \in \mathbb{N}^{*}} \int_{\omega} \phi_{j}(x)^{2} d x=L
$$

Relationship to quantum chaos theory:
what are the possible (weak) limits of the probability measures $\mu_{j}=\phi_{j}^{2} d x$? (quantum limits, or semi-classical measures)

- See also Shnirelman theorem: ergodicity implies Quantum Ergodicity (QE; but possible gap to QUE!)
- If QUE fails, we may have scars
- QUE conjecture (negative curvature)

Wave and Schrödinger equations

Optimal value

Under appropriate spectral assumptions:

$$
\sup _{\substack{\omega \omega \Omega \\|\omega|=L|\Omega|}} \inf _{j \in \mathbb{N}^{*}} \int_{\omega} \phi_{j}(x)^{2} d x=L
$$

Remark: The above result holds true as well in the disk. Hence the spectral assumptions are not sharp.
(proof: requires the knowledge of all quantum limits in the disk, Privat Hillairet Trélat)

$$
\mu_{j_{k}} \rightharpoonup \delta_{r=1}
$$

UPMC
(this is one QL: whispering galleries)

Wave and Schrödinger equations

Optimal value

Under appropriate spectral assumptions:

$$
\sup _{\substack{\omega \in \Omega \\|\omega|=L|\Omega|}} \inf _{j \in \mathbb{N}^{*}} \int_{\omega} \phi_{j}(x)^{2} d x=L
$$

- Supremum reached? Open problem in general.
- in 1D: reached $\Leftrightarrow L=1 / 2$ (infinite number of optimal sets)
- in 2D square: reached over Cartesian products $\Leftrightarrow L \in\{1 / 4,1 / 2,3 / 4\}$

- Construction of a maximizing sequence (by a kind of homogenization)

Fondation Sciences
Mathématiques do Paris

Spectral approximation

Following Hébrard-Henrot (SICON 2005), we consider the finite-dimensional spectral approximation:

$$
\sup _{\substack{\omega \subset \Omega \\|\omega|=L|\Omega|}} \min _{1 \leq j \leq N} \gamma_{j} \int_{\omega} \phi_{j}^{2}(x) d x
$$

Theorem

The problem has a unique solution ω^{N}.
Moreover, ω^{N} is semi-analytic and thus has a finite number of connected components.

Fondation Sciences
Mathématiounes do Parts

Wave and Schrödinger equations

The complexity of ω^{N} is increasing with N. Spillover phenomenon: the best domain ω^{N} for the N first modes is the worst possible for the $N+1$ first modes.

$\Omega=(0, \pi)^{2}$
$L=0.2$
$4,25,100,500$ eigenmodes

Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

Under a slight spectral assumption: (satisfied, e.g., by $(-\Delta)^{\alpha}$ with $\alpha>1 / 2$)

The sequence of optimal sets ω^{N} is stationary:

$$
\exists N_{0} \mid \forall N \geq N_{0} \quad \omega^{N}=\omega^{N_{0}}=\omega^{*}
$$

with ω^{*} the optimal set for all modes. In particular, ω^{*} is semi-analytic and thus has a finite number of connected components.

Fondation Sciences
Mathematiques do Part

Wave and Schrödinger equations

The complexity of ω^{N} is increasing with N. Spillover phenomenon: the best domain ω^{N} for the N first modes is the worst possible for the $N+1$ first modes.

$$
\Omega=\text { unit disk }
$$

$$
L=0.2
$$

1,25,100,400 eigenmodes

Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

Under a slight spectral assumption: (satisfied, e.g., by $(-\Delta)^{\alpha}$ with $\alpha>1 / 2$)

The sequence of optimal sets ω^{N} is stationary:

$$
\exists N_{0} \mid \forall N \geq N_{0} \quad \omega^{N}=\omega^{N_{0}}=\omega^{*}
$$

with ω^{*} the optimal set for all modes. In particular, ω^{*} is semi-analytic and thus has a finite number of connected components.

Wave and Schrödinger equations

The complexity of ω^{N} is increasing with N. Spillover phenomenon: the best domain ω^{N} for the N first modes is the worst possible for the $N+1$ first modes.

Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

Under a slight spectral assumption: (satisfied, e.g., by $(-\Delta)^{\alpha}$ with $\alpha>1 / 2$)

The sequence of optimal sets ω^{N} is stationary:

$$
\exists N_{0} \mid \forall N \geq N_{0} \quad \omega^{N}=\omega^{N_{0}}=\omega^{*}
$$

with ω^{*} the optimal set for all modes. In particular, ω^{*} is semi-analytic and thus has a finite number of connected components.

$$
\Omega=(0, \pi)^{2}
$$

$1,4,9,16,25,36$ eigenmodes
$L=0.2, T=0.05$
\rightarrow optimal thermometer in a square

Conclusion and perspectives

- Same kind of analysis for the optimal design of the control domain.
- Intimate relations between domain optimization and quantum chaos (quantum ergodicity properties).
- Optimal design for boundary observability (P. Jounieaux' PhD):

$$
\sup _{|\omega|=L|\partial \Omega|} \inf _{j \in \mathbb{N}^{*}} \gamma_{j} \int_{\omega} \frac{1}{\lambda_{j}}\left(\frac{\partial \phi_{j}}{\partial \nu}\right)^{2} d \mathcal{H}^{n-1}
$$

- Strategies to avoid spillover?
- Discretization issues: do the numerical optimal designs converge to the continuous optimal design as the mesh size tends to 0 ?

Y. Privat, E. Trélat, E. Zuazua,

- Optimal observation of the one-dimensional wave equation, J. Fourier Analysis Appl. (2013).
- Optimal location of controllers for the one-dimensional wave equation, Ann. Inst. H. Poincaré (2013).
- Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete Contin. Dyn. Syst. (2015).
- Optimal shape and location of sensors for parabolic equations with random initial data, Arch. Ration. Mech. Anal. (2015).
- Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic Fongsens sconess domains, to appear in J. Europ. Math. Soc. (2015).

Conclusion and perspectives

- What can be said for the classical (deterministic) observability constant?

A result for the wave observability constant:
(Humbert Privat Trélat, ongoing)

$$
\begin{aligned}
& \qquad \lim _{T \rightarrow+\infty} \frac{C_{T}(\omega)}{T}=\frac{1}{2} \min (\underbrace{\inf _{j \in \mathbb{N}^{*}} \int_{\omega} \phi_{j}^{2} d x}_{\text {spectral }} \underbrace{\lim _{T \rightarrow+\infty\{\gamma \text { ray }\}} \inf _{T \rightarrow 0} \frac{1}{T} \int_{0}^{T} \chi_{\omega}(\gamma(t)) d t}_{\text {geometric (rays) }}) \\
& \text { Two quantities: } \\
& \left.\qquad \begin{array}{l}
\downarrow
\end{array}\right) \\
& \text { randomized obs. constant }
\end{aligned}
$$

Fondation Sciences
Mathèmatiques do Paris

Remark: another way of arriving at the criterion (wave equation)

Averaging in time:
Time asymptotic observability inequality:

$$
C_{\infty}\left(\chi_{\omega}\right)\left\|\left(y(0, \cdot), y_{t}(0, \cdot)\right)\right\|_{L^{2} \times H^{-1}}^{2} \leq \lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} \int_{\omega}\left|y(t, x)^{2}\right| d x d t
$$

with

$$
C_{\infty}\left(\chi_{\omega}\right)=\inf \left\{\left.\lim _{T \rightarrow+\infty} \frac{1}{T} \frac{\int_{0}^{T} \int_{\omega}|y(t, x)|^{2} d x d t}{\left\|\left(y(0, \cdot), y_{t}(0, \cdot)\right)\right\|_{L^{2} \times H^{-1}}^{2}} \right\rvert\,\left(y(0, \cdot), y_{t}(0, \cdot)\right) \in L^{2} \times H^{-1} \backslash\{(0,0)\}\right\} .
$$

Theorem

If the eigenvalues of \triangle_{g} are simple then $C_{\infty}\left(\chi_{\omega}\right)=\frac{1}{2} \inf _{j \in \mathbb{N}^{*}} \int_{\omega} \phi_{j}(x)^{2} d x=\frac{1}{2} J\left(\chi_{\omega}\right)$.

Remarks

- $C_{\infty}\left(\chi_{\omega}\right) \leq \frac{1}{2} \inf _{j \in \mathbb{N}^{*}} \int_{\omega} \phi_{j}(x)^{2} d x$.
- $\limsup _{T \rightarrow+\infty} \frac{C_{T}\left(\chi_{\omega}\right)}{T} \leq C_{\infty}\left(\chi_{\omega}\right)$. There are examples where the inequality is strict.

A remark for fixed initial data

If we maximize $\omega \mapsto \int_{0}^{T} \int_{\omega}|y(t, x)|^{2} d x d t$ with fixed initial data, then, using a decreasing rearrangement argument:

There always exists (at least) one optimal set ω.
The regularity of ω depends on the initial data: it may be a Cantor set of positive measure, even for C^{∞} data.

\rightarrow In our model, we consider an infimum over all initial data.

A remark on the class of subdomains

Let $A>0$ fixed. If we restrict the search to

$$
\left\{\omega \subset \Omega \quad|\quad| \omega|=L| \Omega \mid \quad \text { and } \quad P_{\Omega}(\omega) \leq A\right\} \quad \text { (perimeter) }
$$

or

$$
\left\{\omega \subset \Omega \quad|\quad| \omega|=L| \Omega \mid \quad \text { and } \quad\left\|\chi_{\omega}\right\|_{B V(\Omega)} \leq A\right\} \quad \text { (total variation) }
$$

or

$$
\{\omega \subset \Omega \quad|\quad| \omega|=L| \Omega \mid \quad \text { and } \quad \omega \text { satisfies the } 1 / A \text {-cone property }\}
$$

or
ω ranges over some finite-dimensional (or "compact") prescribed set...
then there always exists (at least) one optimal set ω.
\rightarrow but then...

- the complexity of ω may increase with A
- we want to know if there is a "very best" set (over all possible measurable) UحMC

Remedies (wave and Schrödinger equations)

1. Existence of a maximizer

Ensured if \mathcal{U}_{L} is replaced with any of the following choices:

$$
\begin{array}{ll}
\mathcal{V}_{L}=\left\{\chi_{\omega} \in \mathcal{U}_{L} \mid P_{\Omega}(\omega) \leq A\right\} & \text { (perimeter) } \\
\mathcal{V}_{L}=\left\{\chi_{\omega} \in \mathcal{U}_{L} \mid\left\|\chi_{\omega}\right\|_{B V(\Omega)} \leq A\right\} & \text { (total variation) } \\
\mathcal{V}_{L}=\left\{\chi_{\omega} \in \mathcal{U}_{L} \mid \omega \text { satisfies the } 1 / A \text {-cone property }\right\}
\end{array}
$$

where $A>0$ is fixed.

Remedies (wave and Schrödinger equations)

2. Weighted observability inequality

$$
C_{T, \sigma}\left(\chi_{\omega}\right)\left(\left\|\left(y^{0}, y^{1}\right)\right\|_{L^{2} \times H^{-1}}^{2}+\sigma\left\|y^{0}\right\|_{H^{-1}}^{2}\right) \leq \int_{0}^{T} \int_{\omega}|y(t, x)|^{2} d x d t
$$

where $\sigma \geq 0$: weight.

Note that $C_{T, \sigma}\left(\chi_{\omega}\right) \leq C_{T}\left(\chi_{\omega}\right)$.
Randomization $\Rightarrow 2 C_{T, \sigma, \text { rand }}\left(\chi_{\omega}\right)=T J_{\sigma}\left(\chi_{\omega}\right)$, where

$$
J_{\sigma}\left(\chi_{\omega}\right)=\inf _{j \in \mathbb{N}^{*}} \sigma_{j} \int_{\omega} \phi_{j}(x)^{2} d x
$$

with $\sigma_{j}=\frac{\lambda_{j}^{2}}{\sigma+\lambda_{j}^{2}}$.

Remedies (wave and Schrödinger equations)

Theorem

Assume that L^{∞}-QUE holds. If $\sigma_{1}<L<1$ then there exists $N \in \mathbb{N}^{*}$ such that

$$
\sup _{\chi_{\omega} \in \mathcal{U}_{L}} \inf _{j \in \mathbb{N}^{*}} \sigma_{j} \int_{\omega} \phi_{j}^{2}=\max _{\chi \omega \in \mathcal{U}_{L}} \inf _{1 \leq j \leq n} \sigma_{j} \int_{\omega} \phi_{j}^{2} \leq \sigma_{1}<L
$$

for every $n \geq N$. In particular there is a unique solution $\chi_{\omega^{N}}$. Moreover if M is analytic then ω^{N} is semi-analytic and has a finite number of connected components.

- The condition $\sigma_{1}<L<1$ seems optimal (see numerical simulations).
- This result holds as well in any torus, or in the Euclidean n-dimensional square for Dirichlet or mixed Dirichlet-Neumann conditions.

$L=0.4$

$L=0.6$
$L=0.9$

PmC
FSMP
Fondation Sciences
Mathematiques do Paris

An additional remark

Anomalous diffusion equations, Dirichlet:

$$
\partial_{t} y+(-\triangle)^{\alpha} y=0 \quad(\alpha>0 \text { arbitrary })
$$ with a surprising result:

In the square $\Omega=(0, \pi)^{2}$, with the usual basis (products of sine): the optimal domain ω^{*} has a finite number of connected components, $\forall \alpha>0$.

In the disk $\Omega=\left\{x \in \mathbb{R}^{2} \mid\|x\|<1\right\}$, with the usual basis (Bessel functions), the optimal domain ω^{*} is radial, and

- $\alpha>1 / 2 \Rightarrow \omega^{*}=$ finite number of concentric rings (and $d(\omega, \partial \Omega)>0$)
- $\alpha<1 / 2 \Rightarrow \omega^{*}=$ infinite number of concentric rings accumulating at $\partial \Omega$! (or $\alpha=1 / 2$ and T small enough)

The proof is long and very technical. It uses in particular the knowledge of quantum limits in the disk.
$\Omega=$ unit disk $\quad 1,4,9,16,25,36$ eigenmodes
$L=0.2, T=0.05, \alpha=1$

Fondation Sciences
$\Omega=$ unit disk $\quad 1,4,25,100,144,225$ eigenmodes
$L=0.2, T=0.05, \alpha=0.15$

Comparison

$$
\sup _{\chi_{\omega} \in \mathcal{U}_{L}} \inf _{j \in \mathbb{N}^{*}} \gamma_{j} \int_{\omega} \phi_{j}^{2}
$$

	square	disk
wave or Schrödinger	relaxed solution $a=L$ $\exists \omega$ for $L \in\left\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right\}$ \nexists otherwise (conjecture)	relaxed solution $a=L$ $\exists \omega$ for $L \in\left\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right\}$ \nexists otherwise (conjecture)
diffusion $(-\triangle)^{\alpha}$	$\exists!\omega \quad \forall L \quad \forall \alpha>0$ $\# c . c .(\omega)<+\infty$	$\exists!\omega$ (radial) $\quad \forall L \quad \forall \alpha>0$ if $\alpha>1 / 2$ then $\#$ c.c. $(\omega)<+\infty$ if $\alpha<1 / 2$ then $\#$ c.c. $(\omega)=+\infty$

