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Consider the discrete time dynamical system

X h
k = X h

k−1 + h b(X h
k−1) +

√
h σ(X h

k−1) ξk , X h
0 = x .

where the ξk are independent and E [ξk ] = 0 and E
[
ξkξ

T
k
]

= I,
e.g. ξk ∼ Gaussian(0, I).

Equations of this type are used in the modeling of many
real-world processes, e.g.

A system of atoms interacting with each other and with a
heat bath.
The value of certain financial instruments.
and many physical evolutions governed by ODE or PDE for
which the model is not precisely known.
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Notice that if σ ≡ 0 then we expect that as h→ 0,

X h
bt/hc → yt

where yt is the solution to the ODE

yt = x +

∫ t

0
b(ys)ds

or, equivalently, for a smooth function f , the function
uh(t , x) = f (X h

bt/hc) converges as h→ 0 to the solution
u(t , x) = f (yt ) of the PDE

∂tu = Lu, u(0, x) = f (x).

where
Lu = b · Du
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When σ 6= 0 we expect that

uh(t , x) = E
[
f (X h
bt/hc)

]
converges as h→ 0 to the solution u of the PDE

∂tu = Lu, u(0, x) = f (x).

where now
Lu = b · Du +

1
2

trace(σσTD2u).

(The second order term appears when you expand f (X h
1 )− f (x)

in powers of h. The terms of order
√

h vanish when you take the
expectation. The two terms in L are the order h terms in the
expansion.)
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In fact, the solution to the PDE ∂tu = Lu with u(0, x) = f (x) is
u(t , x) = E [f (Xt )] where Xt solves

Xt = x +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs.

The second integral is an Itô integral.
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For appropriate processes bs and σs, if

Xt = x +

∫ t

0
bs ds +

∫ t

0
σs dWs

and w(t , x) is smooth, then we have Itô’s formula

w(t ,Xt ) = w(0, x) +

∫ t

0
(∂t + Ls) w(s,Xs)ds

+

∫ t

0
Dw(s,Xs)σ(Xs)dWs.

where
Ltw = bt · Dw +

1
2

trace
(
σtσ

T
t D2w

)
.
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Since b and σ are generally very approximate anyway, we won’t
worry about the difference between E [f (Xt )] and E

[
f (X h
bt/hc)

]
.
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To approximate averages with respect to Xt we can use

E [f (Xt )] ≈ 1
n

n∑
j=1

f (X i
t )

where the X i
t are independent copies of Xt .

As you can check

mse = E


1

n

n∑
j=1

f (X i
t )− E [f (Xt )]

2


=
1
n

(
E
[
f 2(Xt )

]
− E [f (Xt )]2

)
So the approximation converges like 1/

√
n.
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But notice that if f (x) = 1 for x ∈ A and 0 otherwise then

mse =
1
n

(
P [Xt ∈ A]− P [Xt ∈ A]2

)
so the typical error is proportional to

√
P [Xt ∈ A].

If the event {Xt ∈ A} is rare (i.e. if P [Xt ∈ A] is very small) then
the error will be much bigger than the answer itself.

So the “straightforward” Monte Carlo approach won’t work for
rare events.
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And in many situations a rare event may be precisely the
characteristic of the system we are most interested in, e.g.

A chemical reaction that is 1015 times less frequent than
the typical timescale of a bond vibration.

The most extreme and costly weather and climate events
(like massive hurricanes or long droughts).

A stock option highly dependent on the probability that the
stock value reaches some unlikely level.
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The “small noise” setting is a useful device when thinking about
rare event simulation. Suppose

Xt = x +

∫ t

0
b(Xs)ds +

√
ε

∫ t

0
σ(Xs)dWs

and f (x) = e−g(x)/ε.

u(t , x) = E
[
e−g(Xt )/ε

]
solves ∂tu = Lu with u(0, x) = e−g(x)/ε,

where now
Lu = b · Du +

ε

2
trace(σσTD2u)
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If ∂tu = Lu then Gε = −ε log u solves the Hamilton-Jacobi
equation

∂tGε = H(DGε) +
ε

2
trace(σσTD2Gε), Gε(0, x) = g(x)

where
Hε(p) = b · p − 1

2
‖σp‖22.
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Taking ε→ 0 informally (though our conclusions are broadly
correct) we arrive at the equation

∂tG = H(DG), G(0, x) = g(x).

This is a first order HJ equation with a convex Hamiltonian. The
solution can be written

G(t , x) = inf
φ

∫ t

0

1
2
‖φs‖22ds + g(yφt )

where yφt is the solution to the ODE

yφt = x +

∫ t

0

(
b(yφs ) + σ(yφs )φs

)
ds
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So
E
[
e−g(Xt )/ε

]
= e−

γ1+o(1)
ε

where γ1 = G(t , x) = infφ
∫ t

0
1
2‖φs‖22ds + g(yφt ).

And by exactly the same argument,

E
[
e−2g(Xt )/ε

]
= e−

γ2+o(1)
ε

where γ2 = infφ
∫ t

0
1
2‖φs‖22ds + 2g(yφt ).

Observe that 2γ1 ≥ γ2 so
√

mse
E
[
e−g(Xt )/ε

] =
1
n

√
e−

γ2−2γ1+o(1)
ε − 1

can be really big and standard MC won’t work when ε is small.
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So
E
[
e−g(Xt )/ε

]
= e−

γ1+o(1)
ε

where γ1 = G(t , x) = infφ
∫ t

0
1
2‖φs‖22ds + g(yφt ).

And by exactly the same argument,

E
[
e−2g(Xt )/ε

]
= e−

γ2+o(1)
ε

where γ2 = infφ
∫ t

0
1
2‖φs‖22ds + 2g(yφt ).

Observe that 2γ1 ≥ γ2 so
√

mse
E
[
e−g(Xt )/ε

] =
1
n

√
e−

γ2−2γ1+o(1)
ε − 1

can be really big and standard MC won’t work when ε is small.
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So we’ve established that rare events are a difficult
computational problem. What can we do about it?

We need to “bias” the dynamical system so that the rare event
becomes common while maintaining the ability to compute
statistics corresponding to the unbiased dynamics.
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So we’ve established that rare events are a difficult
computational problem. What can we do about it?

We need to “bias” the dynamical system so that the rare event
becomes common while maintaining the ability to compute
statistics corresponding to the unbiased dynamics.
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There are several methods by which we can bias the dynamics
and reduce the error. For example

1 importance sampling – we can add an additional term to
the dynamics nudging the system “toward” the rare event
and reweight the samples.

2 splitting – we can evolve a large family of samples
simultaneously and occasionally duplicate those making
progress toward the rare event and remove those that
aren’t.

3 control variates – we can add a random variable to f (Xt )
that has zero mean but cancels out some of the variance
of f (Xt ).

4 path sampling – use a Markov chain Monte Carlo scheme
to sample directly from the ensemble of trajectories
conditioned on the rare event.

5 stratification – partition the space of paths and sample
trajectory fragments in each domain independently.
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For any variance reduction strategy to be successful you have
to know (or guess) some features of the rare event and input it
into the scheme.
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Diffusion Monte Carlo is a simple splitting scheme. Given a
sequence of times t0 < t1 < t2 < · · · , it generates an ensemble
of Ntk points Xtk so that

E

 Ntk∑
i=1

f (X i
tk )

 = E
[
f (Xtk )e−

∑k
j=1 v(Xtj−1 ,Xtj )

]

for any reasonable observable f .

The ensemble of points evolves in two steps:
1 Evolve each point according to the underlying dynamics

from tk−1 to tk .
2 To incorporate the additional “weight” factor e−v(Xtk−1 ,Xtk )

copy particles with large weight and kill those with low
weight.
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DMC proceeds from and ensemble
{

X i
tk−1

}
of size Ntk−1 at

“time” tk−1 to an ensemble of size Ntk at time tk as follows:

1 : for i = 1 : Ntk−1

2 : evolve the sample X i
tk−1

to time X̃ i
tk

3 : generate a random integer N i ≥ 0

with E
[
N i
]

= e
−v(X i

tk−1
,X̃ i

tk
)

4 : add N i copies of X̃ i
tk to the

time tk ensemble

5 : set Ntk =

Ntk−1∑
i=1

N i
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Suppose E
[∑Ntk−1

i=1 f (X i
tk−1

)

]
= E

[
f (Xtk−1)e−

∑k−1
j=1 v(Xtj−1 ,Xtj )

]
for

any f . Then

E

 Ntk∑
i=1

f (X i
tk )

 = E

Ntk−1∑
i=1

N i f (X̃ i
tk−1

)


= E

Ntk−1∑
i=1

E
[
E
[
N i | {X̃ j

tk−1
}
]

f (X̃ i
tk−1

) | {X j
tk−1
}
]

= E

Ntk−1∑
i=1

E
[
e
−v(X i

tk−1
,X̃ i

tk
)
f (X̃ i

tk−1
) |X i

tk−1

]
= E

[
f (Xtk )e−

∑k
j=1 v(Xtj−1 ,Xtj )

]
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What if we choose

v(x , y) = G(y)−G(x)?

Then DMC would compute

E

 Ntk∑
i=1

f (X i
tk )

 = eG(X0)E
[
f (Xtk )e−G(Xtk )

]
or (by redefining f )

e−G(X0)E

 Ntk∑
i=1

f (X i
tk )eG(X i

tk
)

 = E [f (Xtk )] .
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Recall the branching rule:

3 : generate a random integer N i ≥ 0

with E [Ni ] = e
−
(

G(X̃ i
tk
)−G(X i

tk−1
)
)

4 : add N i copies of X̃ i
tk to the

time tk ensemble

So if G decreases in a step more copies will be created.

By choosing G to be relatively small in a region we can sample
that region more thoroughly
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So, for example suppose

Xt = x −
∫ t

0
∇V (Xs)ds +

√
2µWt

where the invariant measure e−V/µ looks like

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

y

µ 1
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Then we might choose

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

or −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

if (left) we want to compute an average near the low probability
saddle

or (right) we want to force the system from the left well to the
right well.
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A simple rare event example:

Xt = x −
∫ t

0
∇V (Xs)ds +

√
2µWt

Starting from the lower well and running for 1 unit of time.
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We use a DMC scheme with

v(x , y) = G(y)−G(x), G(x) = −λ‖x − xA‖

where xA is the minimum in the lower basin. We want to
compute

PxA (X1 ∈ B) , B = {x : ‖x − xB‖ < 0.25} .

λ is chosen so that the expected number of particles ending in
B is close to 1.
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µ λ estimate variance
×workload

brute force
variance

16 5 0.5133 0.3357 0.2499
8 15 0.2839×10−1 0.5519×10−2 0.2758×10−1

4 25.5 0.4813×10−5 0.1521×10−8 0.4813×10−5

2 33 0.1262×10−13 0.2133×10−23 0.1262×10−13
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By the way...

E
[
f (Wt )e−

∫ t
0 u(Ws)ds

]
≈ E

[
f (Wt )e

−
∑bt/dtc

j=1
1
2 (u(Wjh)+u(W(j−1)h))ds

]
and if ψ is the solution to the imaginary time Schrödinger
equation

∂tψ =
1
2

∆ψ − uψ

then ∫
f (x)ψ(t , x) dx = E

[
f (W (t))e−

∫ t
0 u(W (s))ds

]
where W is a Brownian motion.

DMC is frequently used to solve the imaginary time
Schrödinger equation in high dimensions.
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We haven’t talked about a mathematically justifiable “optimal”
choice of the function G within DMC.

We’ll consider the optimal design question in more detail for
importance sampling.
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In importance sampling, instead of sampling the original
process X you sample a biased process X̂ solving

X̂t = x +

∫ t

0

(
b(X̂s) + σ(X̂s)v(s, X̂s)

)
ds +

∫ t

0
σ(X̂s)dWs

which satisfies
E
[
f (X̂t )Zt

]
= E [f (Xt )]

where
Zt = e−

∫ t
0 vT(s,X̂s)dWs− 1

2

∫ t
0‖v(s,X̂s)‖2

2ds.
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To see this we just need to know that u(t , x) = E
[
f (X̂t )Zt

]
solves ∂tu = Lu with u(0, x) = f (x).

Note that Itô’s formula for the process Yt = − log Zt reads

f (Yt ) = f (0) +
1
2ε

∫ t

0

(
f ′(Ys) + f ′′(Ys)

)
‖v(s, X̂s)‖22ds

+

∫ t

0
f ′(Ys)v T(s, X̂s)dWs.

Applied to Zt = eYt we find

Zt = 1−
∫ t

0
Zsv T(s, X̂s)dWs
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Fixing t and applying Itô’s formula to u(t − s, X̂s),

u(t − s, X̂s) = u(t , x) +

∫ t

0
(−∂t + L) u(t − s, X̂s)ds

+

∫ t

0
σ(X̂s)v(s, X̂s) · Du(t − s, X̂s)ds

+

∫ t

0
Du(t − s, X̂s)σ(X̂s)dWs

The second term on the right hand side vanishes because
∂tu = Lu.
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Finally, we can define the process Ys =
(

u(t − s, X̂s),Zs

)
and

apply Itô’s formula to a function h(Ys),

h(Ys) = h(Y0)+

∫ t

0

(
b̄s · Dh(Ys) +

1
2

trace
(
σ̄sσ̄

T
sD2h(Ys)

))
ds

+

∫ t

0
Dh(Ys)σ̄sdWs

where

b̄s =

[
σ(X̂s)v(s, X̂s) · Du(t − s, X̂s)

0

]
, σ̄s =

[
Du(t − s, X̂s)σ(X̂s)

−Zsv T(s, X̂s)

]
.

This formula with h(u, z) = uz tells us that

u(t − s, X̂s)Zs = u(t , x)−
∫ t

0
u(t − s, X̂s)Zsv T(s, X̂s)dWs

+

∫ t

0
ZsDu(t − s, X̂s)σ(X̂s)dWs
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So we find that E
[
u(t − s, X̂s)Zs

]
= u(t , x) = E [f (Xt )] for all

s ≤ t . In particular

E
[
f (X̂t )Zt

]
= E

[
u(0, X̂t )

]
= E [f (Xt )] .
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The mse corresponding to the new estimator

1
n

d∑
j=1

f (X̂ i
t )Z i

t ≈ E [f (Xt )]

is
mse =

1
n

(
E
[
f 2(X̂t )Z 2

t

]
− E [f (Xt )]2

)
.

We want to choose v so that E
[
f 2(X̂t )Z 2

t

]
is as close as

possible to E [f (Xt )]2 .

Jonathan Weare Rare event simulation for diffusions



Using Itô’s formula a few times just as before we can show that
the function

w(s, x) = Es,x

[
f 2(X̂t )Z 2

t

]
for s ≤ t solves the PDE

∂sw + Lw + ‖v‖22w − σv · Dw = 0, w(t , x) = f 2(x).

Notice that if, for s ≤ t , we choose

v(s, x) = σT(x)D (log u(t − s, x))

then w(s, x) = u(t − s, x)2 solves the PDE.

So, in that case

E
[
f 2(X̂t )Z 2

t

]
= E [f (Xt )]2

and the Monte Carlo estimate has zero variance.
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So there’s a choice of v that leads to a perfect estimator... but it
requires knowing the answer before you start.

Any good choice of v is going to be some kind of approximation
of this perfect choice even if it’s an ad-hoc choice based only on
physical intuition.

Let’s try to find some provably good, but still practically useful
choices of v .

One way to do that is to use our small noise device.
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Assume again that f (x) = e−g(x)/ε, multiply the diffusion
coefficient σ by

√
ε, and multiply v by 1/

√
ε, so that

X̂t = x +

∫ t

0

(
b(X̂s) + σ(X̂s)v(s, X̂s)

)
ds +

√
ε

∫ t

0
σ(X̂s)dWs

and
Zt = e−

1√
ε

∫ t
0 vT(s,X̂s)dWs− 1

2ε

∫ t
0‖v(s,X̂s)‖2

2ds
.

we find that now for s ≤ t ,

w(s, x) = Es,x

[
e−2g(X̂t )/εZ 2

t

]
solves the PDE

∂sw + b · Dw +
ε

2
trace

(
σσTD2w

)
+

1
ε
‖v‖22w − 1

2
σv · Dw = 0, w(t , x) = e−2g(x)/ε.
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We can again take the log transformation, V ε = −ε log w and
find that

∂sV ε + b · DV ε +
ε

2
trace

(
σσTD2V ε

)
− 1

2
‖v + σDV ε‖22 −

1
2
‖v‖22 = 0, V ε(t , x) = 2g(x).

When v(s, x) = −σT(x)DGε(t − s, x), the equation is solved by
V ε(s, x) = 2Gε(t − s, x).

Taking the ε→ 0 limit we find that V ε → V solving

∂sV + b · DV

− 1
2
‖v + σDV‖22 −

1
2
‖v‖22 = 0, V (t , x) = 2g(x).
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2G(t , x)−V (0, x) = − lim
ε→0

ε log E [f (Xt )]2 + lim
ε→0

ε log E
[
f 2(X̂t )Z 2

t

]
is always positive and is the rate of exponential growth of the
mse with ε−1.

As a first step we should try to choose v so that this difference
is 0.

Not surprisingly v(s, x) = −σT(x)DG(t − s, x) works.
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Subsolutions work too. Suppose for some pair F , v ,

∂sF + b · DF

− 1
2
‖v + σDF‖22 −

1
2
‖v‖22 ≥ 0, F (t , x) ≤ 2g(x).

A comparison principle tells us then that F ≤ V . So if we also
have F (0, x) ≥ 2G(t , x) then it must be that V (0, x) = 2G(t , x).
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Ideally we’d have more than just V (0, x) = 2G(t , x)
(subexponential in ε−1 growth of mse). For example, we’d like
the mse to remain bounded as ε→ 0.

It turns out that if we choose v(s, x) = −σT(x)DG(t − s, x) then,
for most initial conditions, mse will remain bounded or even go
to zero.

Jonathan Weare Rare event simulation for diffusions



For v(s, x) = −σT(x)DG(t − s, x),

X̂t = x +

∫ t

0

(
b(X̂s) + σ(X̂s)ûs(s, X̂s)

)
ds +

√
ε

∫ t

0
σ(X̂s)dWs

where

û(s, x) = arg min
u

{∫ t

s

1
2
‖ur‖22dr + g(φu

t )

}
with

φ̇u
r = b(φu

r ) + σ(φu
r )ur , φu

r (s) = x .
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