Stochastic homogenization of quasilinear Hamilton-Jacobi equations and geometric motions

P. Cardaliaguet

Univ. Paris-Dauphine

Joint work with S. Armstrong (U. Paris-Dauphine)

SIAM Conference on Analysis of Partial Differential Equations December 7-10, 2015 — Scottsdale, Arizona

We study homogenization of non-convex viscous Hamilton-Jacobi equations in random environment

$$\partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A \left(D u^{\varepsilon}, \frac{x}{\varepsilon}, \omega \right) D^2 u^{\varepsilon} \right) + H \left(D u^{\varepsilon}, \frac{x}{\varepsilon}, \omega \right) = 0 \quad \text{in } \mathbb{R}^d \times (0, \infty).$$

where

- A, H are stationary in an ergodic environment
- and $H : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is coercive but not necessarily convex.

Problem : show that there exists a homogenized Hamiltonian $\overline{H} : \mathbb{R}^d \to \mathbb{R}$ such that $u^{\varepsilon} \to u$ where u solves

$$\partial_t u + \overline{H}(Du) = 0$$
 in $\mathbb{R}^d \times (0, \infty)$.

э

イロト イポト イヨト イヨト

Typical examples :

Viscous Hamilton-Jacobi equations :

$$\partial_t u^{\varepsilon} - \varepsilon \Delta u^{\varepsilon} + H\left(Du^{\varepsilon}, \frac{x}{\varepsilon}, \omega\right) = 0 \quad \text{in } \mathbb{R}^d \times (0, \infty),$$

(homogenization=open problem in random environment when $H = H(\xi, x)$ not convex in ξ)

Forced mean curvature motion :

$$\partial_t u^{\varepsilon} - \varepsilon \operatorname{tr}\left(\left(I_d - \frac{Du^{\varepsilon} \otimes Du^{\varepsilon}}{|Du^{\varepsilon}|^2}\right) D^2 u^{\varepsilon}\right) + a\left(\frac{x}{\varepsilon}, \omega\right) |Du^{\varepsilon}| = 0 \quad \text{in } \mathbb{R}^d \times (0, \infty),$$

where a is a forcing term : corresponds to a front propagation problem with normal velocity

$$V_{t,x} = \varepsilon \operatorname{curv} + a(\frac{x}{\varepsilon}, \omega).$$

(homogenization=open problem in random environment)

In periodic environment, homogenization of HJ equations relies on the existence of a corrector.

Lions-Papanicolau-Varadhan (unpublished), Evans ('92), Arisawa-Lions ('98), Capuzzo Dolcetta-Ishii ('01), Lions-Souganidis ('05)

 In random environment, existing proofs rely on the subadditive ergodic Theorem or on duality techniques, requiring the "convexity properties" of the equation.

Souganidis ('99), Rezakhanlou-Tarver ('00), Lions-Souganidis ('05 and '10), Kosygina-Rezakhanlou-Varadhan ('06), Schwab (2009), Davini-Siconolfi ('11), Armstrong-Souganidis ('12),...

 For nonconvex HJ eq's, such subadditive quantity is not known... ...except in few particular settings.

Armstrong-Tran ('14), Armstrong-Tran-Yu ('14), Gao ('15).

- $\bullet \longrightarrow \mathsf{Key} \mathsf{ idea} : \mathsf{rely} \mathsf{ on a quantitative approach...}$
 - ... developed so far for convex HJ eq's.

Matic-Nolen ('12), Armstrong-C.-Souganidis ('14), Armstrong-C. ('15)

Some references for the homogenization of the MCM equation :

$$\partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(\left(I_d - \frac{Du^{\varepsilon} \otimes Du^{\varepsilon}}{|Du^{\varepsilon}|^2} \right) D^2 u^{\varepsilon} \right) + a\left(\frac{x}{\varepsilon}, \omega\right) |Du^{\varepsilon}| = 0 \quad \text{in } \mathbb{R}^d \times (0, \infty),$$

- In periodic environment :
 - Plane-like solutions : Caffarelli-de la Llave ('01), Chambolle-Thouroude ('09).
 - Homogenization : Lions-Souganidis ('05), Caffarelli-Monneau ('14).
 - Sign changing velocities : Dirr-Karali-Yip. ('08), C.-Lions-S-Souganidis ('09), Barles-Cesaroni-Novaga ('11),
 - Properties of the effective Hamiltonian : Chambolle-Goldman-Novaga ('14).
- In random environment :
 - Pinning phenomena in random media : Dirr-Dondl-Scheutzow. ('11).

Assumptions

We consider the problem

$$\partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A \left(D u^{\varepsilon}, \frac{x}{\varepsilon}, \omega \right) D^2 u^{\varepsilon} \right) + H \left(D u^{\varepsilon}, \frac{x}{\varepsilon}, \omega \right) = 0 \quad \text{in } \mathbb{R}^d \times (0, \infty).$$

where

(A, H) is stationary ergodic satisfying a finite range condition,
A = A(ξ, x, ω) is 0-homogeneous in ξ and A = 1/2 σσ^T with, |σ(e, x, ω)| + |D_xσ(e, x, ω)| + |D_ξσ(e, x, ω)| ≤ C₀ in ∂B₁ × ℝ^d × Ω,
H(·, ·, ω) ∈ C¹(ℝ^d × ℝ^d) is such that, for every t > 0 and ξ, x ∈ ℝ^d, H(tξ, x, ω) = t^pH(ξ, x, ω) and c₀ |ξ|^p ≤ H(ξ, x, ω) < C₀ |ξ|^p

and

$$|D_{x}H(\xi,x,\omega)|+|\xi| \left| D_{\xi}H(\xi,x,\omega) \right| \leq C_{0} |\xi|^{p} \quad \text{ in } \left(\mathbb{R}^{d} \setminus \{0\} \right) \times \mathbb{R}^{d} \times \Omega.$$

"Lions-Souganidis (LS)" coercivity condition holds.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Examples of equations

Viscous Hamilton-Jacobi equations :

$$\partial_t u^{\varepsilon} - \varepsilon \Delta u^{\varepsilon} + H\left(Du^{\varepsilon}, \frac{x}{\varepsilon}\right) = 0 \quad \text{in } \mathbb{R}^d \times (0, \infty),$$

where $H(\xi, x)$ is homogeneous and coercive in $\xi : \exists p > 1$ with

 $H(t\xi, x) = t^{p}H(\xi, x)$ and $c_{0} |\xi|^{p} \le H(\xi, x) \le C_{0} |\xi|^{p}$

but not necessarily convex.

Forced mean curvature motion :

$$\partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(\left(I_d - \frac{Du^{\varepsilon} \otimes Du^{\varepsilon}}{|Du^{\varepsilon}|^2} \right) D^2 u^{\varepsilon} \right) + a\left(\frac{x}{\varepsilon}\right) |Du^{\varepsilon}| = 0 \quad \text{in } \mathbb{R}^d \times (0, \infty),$$

where the forcing field *a* is positive, Lipschitz, bounded and satisfies the Lions-Souganidis (LS) condition

$$\inf_{x\in\mathbb{R}^d}\left(a^2(x)-(d-1)\left|Da(x)\right|\right)>0\quad\mathbb{P}\text{-a.s.}$$

(needed for homogenization in periodic setting (Caffarelli-Monneau (14'))

э

Anisotropic forced mean curvature motion :

$$\partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A \left(\frac{D u^{\varepsilon}}{|D u^{\varepsilon}|}, \frac{x}{\varepsilon} \right) D^2 u^{\varepsilon} \right) + \left| B \left(\frac{D u^{\varepsilon}}{|D u^{\varepsilon}|}, \frac{x}{\varepsilon} \right) D u^{\varepsilon} \right| = 0 \quad \text{in } \mathbb{R}^d \times (0, \infty),$$

where $A = \sigma \sigma^T$ with $\sigma(p/|p|, x)p = 0$ and the (LS) condition holds :

$$\inf_{(e,x)\in\partial B_1\times\mathbb{R}^d}\left[|B(e,x)e|^2-|\sigma(e,x)|^2\left(|\sigma_x(e,x)|^2+|B_x(e,x)|\right)\right]>0.$$

Examples of randomness

• Sum of i.i.d. r.v. :

$$a(x) = 1 + \sum_{k \in \mathbb{Z}^d} a_0(x - k, Z_k)$$

where $a_0 = a_0(x, z)$ is deterministic with compact support and $(Z_k)_{k \in \mathbb{Z}^d}$ are i.i.d.

Poisson point process :

$$a(x) = 1 + \left(\sum_{k} a_0(x - Y_k, Z_k)\right) \wedge M$$

where $a_0 = a_0(x, z)$ is deterministic with compact support, (Y_k) is a stationary Poisson point process and $(Z_k)_{k \in \mathbb{Z}^d}$ are i.i.d.

Theorem (Homogenization)

Under the above assumptions, there exists universal exponents $\alpha, \beta \in (0, 1)$ and a function $\overline{H} \in C^{0,\beta}_{\text{loc}}(\mathbb{R}^d)$ satisfying, for every $\xi \in \mathbb{R}^d$,

$$c_0 |\xi|^p \leq \overline{H}(\xi) \leq C_0 |\xi|^p$$

such that, for every $T \ge 1$ and $u, u^{\varepsilon} \in W^{1,\infty}(\mathbb{R}^d \times [0,T])$ satisfying

$$\begin{cases} \partial_t u^{\varepsilon} - \varepsilon \operatorname{tr} \left(A \left(D u^{\varepsilon}, \frac{x}{\varepsilon} \right) D^2 u^{\varepsilon} \right) + H \left(D u^{\varepsilon}, \frac{x}{\varepsilon} \right) = 0 & \text{ in } \mathbb{R}^d \times (0, T], \\ \partial_t u + \overline{H} (D u) = 0 & \text{ in } \mathbb{R}^d \times (0, T], \\ u^{\varepsilon} (\cdot, 0) = u (\cdot, 0) & \text{ on } \mathbb{R}^d, \end{cases}$$

we have

$$\mathbb{P}\left[\sup_{R\geq 1}\limsup_{\varepsilon\to 0}\sup_{(x,t)\in B_R\times[0,T]}\varepsilon^{-\alpha}\left|u^{\varepsilon}(x,t)-u(x,t)\right|=0\right]=1.$$

Note : one can choose $\beta \approx 2/7$.

3

Previous approaches based on the metric problem rely on

- sub-additive ergodic theorem
- applied to the solution $m_{\mu} := m_{\mu}(x, y)$ of the point-to-point metric problem :

$$\begin{cases} -\operatorname{tr}\left(A(x)D^2m_{\mu}\right) + H(Dm_{\mu}, x) = \mu & \text{ in } \mathbb{R}^d \setminus B_1(y) \\ m_{\mu} = 0 & \text{ on } \partial B_1(y). \end{cases}$$

• Then \overline{H} is defined as a kind of Fenchel conjugate of $\overline{m}_{\mu}(z) := \lim_{t \to +\infty} m_{\mu}(tz, 0)/t$.

 \longrightarrow Requires the convexity of the equation.

Our main idea : use a quantitative approach.

- Analysis of the *point-to-plane* metric problem.
- Obtain variance estimates for its solutions
- Derive the convergence of its solution by
 - the variance estimate
 - and a finite speed of propagation property

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusion and open problems

- We have obtained the homogenization and the convergence rate for viscous HJ equations in random media under the structural conditions
 - homogeneity and coercivity of the Hamiltonian,
 - 0-homogeneity of $A = A(\xi, x)$ w.r.t. ξ ,
 - Finite range condition.
- Can one get rid of (one of) these conditions?
- Other classes of problems (time-dependent ?).
- Properties of the homogenized Hamiltonian?