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Quasi-periodic solutions for PDEs

Let us start with classes of dispersive PDEs on the circle

− i∂tu− L(−i∂x)u+ f(u) = 0 (1)

L(−i∂x) is a real-on-real linear (pseudo-)differential operator of
order ν

f is a non-linear operator (of order q ≤ ν).

Example: non-linear Schrödinger equation

−iut + uxx + f(x, u, ux, uxx) = 0 , L(k) = k2
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Let us start with classes of dispersive PDEs on the circle

− i∂tu− L(−i∂x)u+ f(u) = 0 (1)

L(−i∂x) is a real-on-real linear (pseudo-)differential operator of
order ν

f is a non-linear operator (of order q ≤ ν).

Example: non-linear Schrödinger equation

−iut + uxx + f(x, u, ux, uxx) = 0 , L(k) = k2

KdV equation

ut − uxxx + f(x, u, ux, uxx, uxxx) = 0 , L(k) = k3
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Quasi-periodic solutions for PDEs

Let us start with classes of dispersive PDEs on the circle

− i∂tu− L(−i∂x)u+ f(u) = 0 (1)

L(−i∂x) is a real-on-real linear (pseudo-)differential operator of
order ν

f is a non-linear operator (of order q ≤ ν).

Example: non-linear Schrödinger equation

−iut + uxx + f(x, u, ux, uxx) = 0 , L(k) = k2

DP equation

−ut+uxxt+uxxx−4ux+uuxxx+4uux−3uxuxx = 0 L(k) =
k3 + k

1 + k2
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Quasi-periodic solutions for PDEs

Let us start with classes of dispersive PDEs on the circle

− i∂tu− L(−i∂x)u+ f(u) = 0 (1)

L(−i∂x) is a real-on-real linear (pseudo-)differential operator of
order ν

f is a non-linear operator (of order q ≤ ν).

Example: non-linear Schrödinger equation

−iut + uxx + f(x, u, ux, uxx) = 0 , L(k) = k2

Wave equation

ytt − yxx + my + f(x, y, yx, yxx) = 0  u = (−∂xx + m)−1(y + iyt)
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Quasi-periodic solutions for PDEs

(−i∂t − L(−i∂x))u+ f(u) = 0 (2)

This is a rather wide class of PDEs,
the main point is that if we ignore the non-linearity In the linear
system all the solutions are of the form

u(t, x) =
∑
k∈Z

uke
ikx+iL(k)t (recall that L(k) ∈ R)

Namely periodic, quasi-periodic or almost periodic.
When we study the equation close to u=0 it is natural to look for
quasi-periodic solutions

Definition

Quasi-periodic solution of frequency ω ∈ Rd: a torus embedding
Td 3 ϕ→ u(ϕ, x) such that u(ωt, x) solves the equation
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Quasi-periodic solutions for PDEs

(−i∂t − L(−i∂x))u = 0 (2)

In the linear system all the solutions are of the form

u(t, x) =
∑
k∈Z

uke
ikx+iL(k)t (recall that L(k) ∈ R)

Namely periodic, quasi-periodic or almost periodic.
This depends on the support of the solution and on the dispersion law
L(k)
When we study the equation close to u=0 it is natural to look for
quasi-periodic solutions

Definition

Quasi-periodic solution of frequency ω ∈ Rd: a torus embedding
Td 3 ϕ→ u(ϕ, x) such that u(ωt, x) solves the equation
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Quasi-periodic solutions for PDEs

Definition

Quasi-periodic solution of frequency ω: a torus embedding
Td 3 ϕ→ u(ϕ, x) such that u(ωt, x) solves the equation

the embedding Td 3 ϕ→ u(ϕ, x) solves

Equation for the torus embedding

−iω · ∂ϕu+ L(−i∂x)u+ f(u) = 0

The unknowns are ω, u.

We need to be more specific on the regularity:
say f has Cq regularity
look for small solutions in the Sobolev space Hs(Td ×T;C) for some
s ≤ q
if f is an analytic function
look for small analytic solutions Hs(Td+1

a ;C)

Td+1
a := {x+ iy : x ∈ Td+1 , y ∈ Rd+1 , |y| ≤ a}
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Quasi-periodic solutions for PDEs

Equation for the torus embedding

−iω · ∂ϕu+ L(−i∂x)u+ f(u) = 0

We need to be more specific on the regularity:
say f has Cq regularity
look for small solutions in the Sobolev space Hs(Td ×T;C) for some
s ≤ q
if f is an analytic function
look for small analytic solutions Hs(Td+1

a ;C)

Td+1
a := {x+ iy : x ∈ Td+1 , y ∈ Rd+1 , |y| ≤ a}
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Example: Forced fully non-linear NLS on the circle

Consider a forced fully-non linear NLS of the circle

−iut + uxx + εf(ωt, x, u, ux, uxx) = 0

with diophantine forcing ω ∈ Λ ⊂ Rd

Theorem (Feola-M.P. 15)

for every nonlinearity f ∈ Cq such that the PDE is either reversible
or Hamiltonian + some technical conditions
then for all ε ∈ (0, ε0) small enough, there exists a Cantor set Cε ⊂ Λ
of asymptotically full Lebesgue measure, i.e.

|Cε| → 1 as ε→ 0, (3)

such that for all ω ∈ Cε there exists a solution u(ε, ω) ∈ Hs to the
NLS equation with ||u(ε, ω)||s → 0 as ε→ 0. In addition, u(ε, ω) is
reducible and linearly stable.
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A result on the reversible autonomous NLS

Consider a reversible NLS equation

− iut + uxx + f(u, ux, uxx) = 0 (4)

where
f(u, ux, uxx) = a1|u|2u+ a2|u|2uxx + a3|ux|2u+ (5)

a4|ux|2uxx + a5|uxx|2u+ a6|uxx|2uxx + h.o.t.

with ai ∈ R for i = 1, . . . , 6. Suppose that

(a1, a2, a3, a4, a5, a6) 6= (0, a, a, b, b, 0)

Theorem (Corsi,Feola,P.)

For any generic choice of tangential sites j1, . . . , jd ∈ N and for all
ε ∈ (0, ε0), there exists a Cantor set

Cε ⊂ ε
[

1

2
,

3

2

]d
, |Cε| → 1 as ε→ 0, (6)

such that for all ξ ∈ Cε the NLS has a quasi- periodic solution with
frequency ω∞:

v =

d∑
i=1

√
ξie

iω
(∞)
i sin(jix) + o(

√
ξ) , ω∞i (ξ) = j2

i +
∑
j

Mj
i ξj + o(ξ)

The solutions analytic and linearly stable.
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Preliminaries −i∂tu+ L(−i∂x)u+ f(u) = 0

The solutions we are looking for are very special
one does not expect typical initial data to evolve quasi-periodically)
First Idea: extend KAM theory to the context of infinite dimensional
dynamical systems.

Think of the equation as a vector field with u in some Banach space.

ut = F (u)

For instance if we pass to Fourier coefficients in x:
u(x, t) =

∑
k∈Z uk(y)eikx

we get
u̇k = iL(k)uk + fk({uj}).

In a finite dimensional system:

Suppose that the L(k) satisfy some non-resonance conditions
Suppose that your system has a Hamiltonian or a Reversible
structure

KAM theory (Moser counterterm theorem) implies:

Existence of a positive measure set of maximal tori.
Existence of families of lower dimensional tori.
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Preliminaries −i∂tu+ L(−i∂x)u+ f(u) = 0

For instance if we pass to Fourier coefficients in x:
u(x, t) =

∑
k∈Z uk(y)eikx

we get
u̇k = iL(k)uk + fk({uj}).

This is a chain of harmonic oscillators coupled by a non-linearity.
If u is small f is a perturbation...
In a finite dimensional system:

Suppose that the L(k) satisfy some non-resonance conditions

Suppose that your system has a Hamiltonian or a Reversible
structure

KAM theory (Moser counterterm theorem) implies:

Existence of a positive measure set of maximal tori.

Existence of families of lower dimensional tori.
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Preliminaries −i∂tu+ L(−i∂x)u+ f(u) = 0

For instance if we pass to Fourier coefficients in x:
u(x, t) =

∑
k∈Z uk(y)eikx

we get
u̇k = iL(k)uk + εfk({uj}).

In a finite dimensional system:

Suppose that the L(k) satisfy some non-resonance conditions

Suppose that your system has a Hamiltonian or a Reversible
structure

KAM theory (Moser counterterm theorem) implies:

Existence of a positive measure set of maximal tori.

Existence of families of lower dimensional tori.
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Classic KAM results

The first results were on model Hamiltonian PDEs such as the
semilinear NLS with Dirichlet boundary conditions

−iut + uxx + |u|2u+ g(x, u) = 0, u(t, 0) = u(t, π) = 0

KAM theory(Semilinear PDEs with Dirichlet b.c. : Kuksin,
Wayne, Pöschel, Kuksin-Pöschel, Chierchia-You (Wave equation
with periodic b.c.)

The reason for requiring Dirichlet b.c. is that one needs the linear
frequencies L(k) to be distinct

u̇k = iL(k)uk + fk(u).
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Classic results by Nash-Moser

A more flexible approach which was proposed to handle Periodic
boundary conditions is to consider the equation of the torus
embedding as a functional equation

F(ω, ε, u) = −iω · ∂ϕu+ L(−i∂x)u+ f(u) = 0

with unknowns ω, u and apply a Newton algorithm.

Craig-Wayne ’93 (periodic solutions), Bourgain ’94 (quasi
periodic solutions), Berti-Bolle.
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Classic results by Nash-Moser

consider the equation of the torus embedding as a functional equation

F(ω, ε, u) = −iω · ∂ϕu+ L(−i∂x)u+ f(u) = 0

with unknowns ω, u and apply a Newton algorithm.

F(u)

u0u1u2

Figura: Three steps of the Newton algorithm
un+1 := un − (duF(ω, ε, un))

−1[F(ω, ε, un)]
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Some literature: unbounded non linearities

Recall

−i∂tu− L(−i∂x)u+ f(u) = 0, L : Hs → Hs−ν , f : Hs → Hs−q

semi-linear Pde’s, q ≤ ν − 1
Kuksin ‘98, Kappeler-Pöeschel ‘03 KdV (q < ν − 1), Liu-Yuan
‘10, Zhang-Gao-Yuan ‘11 Hamiltonian and Reversible DNLS
(q = p− 1) Berti, Biasco, Procesi , Hamiltonian and Reversible
DNLW

Fully Non-linear Pde’s, q = p
periodic solutions
Ioss-Plotnikov-Toland ’05, water waves, Baldi Kirckhoff ,
Benjamin-Ono,Alazard,Baldi capillary water waves
quasi-periodic solutions
Baldi, Berti, Montalto, ‘12-‘15 quasi-periodic solutions for KdV,
capillary water waves
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Small Divisors

The first problems come form small divisors.
The linearized equation is NOT invertible form Hs to Hs. Even in the
best possible scenario it loses regularity As an example consider the
NLS operaotr linearized at u = 0

iω · ∂ϕu− ∂xxu+ εf(u)  Lω = iω · ∂ϕ − ∂xx

Eigenvalues of Lω: (ω · `+ j2), (`, j) ∈ Zd ×Z.

Small divisors

|ω · `− σj2| ≥ γ

1 + |`|τ
, ∀(`, j) ∈ Zd+1, σ = ±1, τ > d,

Then Lω is invertible, but

L−1
ω : Hs → Hs−τ .

NO classical Implicit function theorem.
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Main Ideas: Quadratic algorithms

In a Newton algorithm we need to control the inverse of the
Linearized operator in a neighborhood of u = 0

F(u)

u0u1u2

Newton method : un+1 = un − (duF(un))−1F(un) (6)

duF(un) is an infinite matrix and in order to have convergence
we need estimates on the inverse in high Sobolev norm We would like
to control the loss of regularity

(duF)−1 : Hs → Hs−µ
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Main Ideas: Quadratic algorithms

In a Newton algorithm we need to control the inverse of the
Linearized operator in a neighborhood of u = 0

Newton method : un+1 = un − (duF(un))−1F(un) (6)

We would like to control the loss of regularity

(duF)−1 : Hs → Hs−µ

1st Melnikov conditions: lower bounds on the eigenvalues of duF
(necessary in order to invert duF)
This is necessary but NOT sufficient in order to deduce the
control on the loss of regularity

2nd Melnikov conditions: lower bounds on the differences of the
eigenvalues duF This implies that duF is diagonable by a map
Hs → Hs this is sufficient in order to deduce the control on the
loss of regularity.
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Main Ideas

Nash-Moser: Uses 1st Melnikov conditions (bounds on the L2

norm of (duF(λ, ε, un))−1)+ multiscale analysis (used to pass
form L2 norm to Hs norm)

KAM theory: Uses 1st Melnikov conditions + 2nd Melnikov
conditions at each step perform a traslation so that un → 0, and
then a diagonalization of the linearized operator, so that in this
basis it is simple to invert it and compute un+1.

Here we also have information on the linear stability of the
solutions.
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Due to the presence of small divisors in order to get results one needs
some parameters to modulate Consider the example of the linearized
NLS operator:

−iω · ∂ϕu+ ∂xxu+ ε|u|2u =⇒ −iω · ∂ϕ + ∂xx + εV (ϕ, x)

for some values of ω and of the potential λ = 0 can be an eigenvalue!
but if you have parameters

−iω(ξ) · ∂ϕ + ∂xx + εV (ξ, ϕ, x)

then ”for most values of the parameters” the spectrum does not touch
zero

|λ`,j(ξ)| > γ|`|−τ

No natural parameter

−iut−L(−i∂x)u+ f(u) = 0  −iut + uxx + |u|2u+G(x, u) = 0

Use as parameters the initial data.... this might be very hard
One natural parameter

utt − uxx + mu+ f(u)

Add external parameters

−iut + uxx +Mξ(x)u+G(x, u) = 0

where Mξ is a parameter family of potentials
consider a forced equation

−iut + uxx + εf(ωt, u)

use ω as parameters



intro lit. I Main problems parameters parameters summary proof thanks

Due to the presence of small divisors in order to get results one needs
some parameters to modulate

No natural parameter

−iut−L(−i∂x)u+ f(u) = 0  −iut + uxx + |u|2u+G(x, u) = 0

Use as parameters the initial data.... this might be very hard

One natural parameter

utt − uxx + mu+ f(u)

Add external parameters

−iut + uxx +Mξ(x)u+G(x, u) = 0

where Mξ is a parameter family of potentials

consider a forced equation

−iut + uxx + εf(ωt, u)

use ω as parameters



intro lit. I Main problems parameters parameters summary proof thanks

Summarizing: −i∂tu+ L(−i∂x)u+ f(u) = 0

For a autonomous equation with no external parameters there are
three classes of problems:

1) Parameter extraction

2) Invertibility of the linearized operator

3) Reducibility
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Summarizing: −i∂tu+ L(−i∂x)u+ f(u) = 0

1) Parameter extraction

We fix some tangential sites S = {j1, . . . , jd} and we look for
approximate solutions of the form:

v0(ξ, x, t) =

d∑
i=1

√
ξie

itL(ji)+iji·x

Then we need to prove that for generic choices of the ji the
parameters ξ modulate the spectrum of

−i∂t + L(−i∂x) + fu(v0) = 0.

This is the so-called frequency-amplitude modulation.

2) Invertibility of the linearized operator

3) Reducibility
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Summarizing: −i∂tu+ L(−i∂x)u+ f(u) = 0

1) Parameter extraction

2) Invertibility of the linearized operator

Given an approximate solution vn(ξ, x, t) (appropriately close to v0)
we need to invert

−i∂t + L(−i∂x) + fu(vn)

as a tame operator: Hs → Hs−µ.

3) Reducibility
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Summarizing: −i∂tu+ L(−i∂x)u+ f(u) = 0

1) Parameter extraction

2) Invertibility of the linearized operator

3) Reducibility

Given an approximate solution vn(ξ, x, t) prove that

−i∂t + L(−i∂x) + fu(vn)

can be diagonalized by a map Hs → Hs.
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Summarizing: −i∂tu+ L(−i∂x)u+ f(u) = 0

1) Parameter extraction

2) Invertibility of the linearized operator

3) Reducibility

Parameter extraction is potentially extremely tricky...it often reduces
to a combinatoric problem.

Reducibility is NOT necessary in order to prove existence of
quasi-periodic solutions.

We expect that if we can prove Reducibility then the Invertibility of
the linearized operator follows.

If we do not have reducibility then one has to use multi-scale analysis
in order to obtain invertibility
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Strategy

Perform the parameter extraction by using a weak Birkhoff normal
form
Prove that for large measure sets of parameters one may diagonalize
the linearized operator

L(u) := duF(u) = ω(ξ) · ∂ϕ1 + i

(
1 + a2(ξ) b2(ξ)
−b̄2(ξ) −1− a2(ξ)

)
∂xx

+i

(
a1(ξ) b1(ξ)
−b̄1(ξ) −ā1(ξ)

)
∂x+

(
a0(ξ) b0(ξ)
−b̄0(ξ) −ā0(ξ)

) (7)

Put this into a convergent Nash-Moser scheme.
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Proof of Reducibility:1

∂x−reduction: find invertible bounded V1,V2 : Hs → Hs such
that

V−1
1 LV2 = V−1

1 (ω · ∂ϕ +D +R)V2 = Lc, Lc = ω · ∂ϕ +Dc +Rc

where R = O(ε∂xx), Dc constant coefficients diff. operator,
Rc = O(ε) BUT bounded.
Tools: diffeomorphism of the torus, descent method.
Strictly based on the pseudo-differential structure of the
linearized operator of a Pde, namely

∑
ai(ϕ, x)∂ix.
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Proof of Reducibility:2

ε-reduction: find invertible bounded Ψn : Hs → Hs such that
∃ limn Ψn ◦ . . . ◦Ψ1 =: limn Φn = Φ∞ where

Φ−1
n LcΦn = ω · ∂ϕ +Dn +Rn

with |Rn| = O(ε2n

).
Classical KAM reduction scheme: works on bounded operators
on scales of sequences spaces. Requires 2nd Melnikov condition.
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Generalizations

This methods works essentially in all cases of dispersive evolution
PDEs on the circle.
Analytic setting: the scheme seems to fail in the analytic context.
Consider Ta := {x ∈ C : |Imx| < a}. The diffeomorphism
x→ x+ ξ(ϕ, x) maps Ta′ to Ta, with a′ + |ξ|∞ < a. At each step
|ξ|∞ ≈ ε. One cannot iterate!
use the KAM idea
At each step ONLY apply the change of variables such that

duF → ω · ∂ϕ +D +R

with R ∼ O(ε) bounded. then at the next step you still have the
multiplication structure
but at the step n one has |ξ(n)|∞ ≈ εn ∼ 2−χ

n
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dispersion laws: if the dispersion law is linear or sub linear when one
conjugate L with x+ ξ(ϕ, x), derivatives in time interact with
derivatives in space.
example: T −1

2 ω · ∂ϕT2 = ω · ∂ϕ + (ω · ∂ϕξ)∂x
One need a different T2

Works in progress:

Degasperis-Procesi equations: linear dispersion law, analytic case,
Baldi, Feola, P.

Water waves equations: sub linear dispersion, Berti, Baldi,
Montalto.
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Thanks for the attention!
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