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Persistency (Partial Optimality)

ILP LP
min cTx

Ax ≤ b

x ∈ {0, 1}n

min cTx

Ax ≤ b

x ∈ [0, 1]n

1 When the solution to LP is integer?
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1 When the solution to LP is integer?
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2 Is the integer part of an optimal solution to LP optimal for ILP?
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1 When the solution to LP is integer?
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2 ,
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3 , 1, 0, . . . )

2 Is the integer part of an optimal solution to LP optimal for ILP?

3 Is a part of the integer part is optimal for ILP?

4 Sufficient conditions for a part of an optimal solution to LP to be optimal for
ILP?

5 Find the largest part satisfying sufficient conditions.
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Vertex Packing / Maximum Independent Set

Minimum Vertex Cover

Maximum Independent Set

= Maximum Vertex Packing

Maximum Weighted Vertex Packing

(V, E) – an undirected graph;

Vertex Packing is a subset P ⊂ V for which u, v ∈ P ⇒ (u, v) 6∈ E ;

Weights c : V → R;

Problem: max
x

∑
v∈V

cvxv (VP)

(∀uv ∈ E) xu + xv ≤ 1,

(∀v ∈ V) xv ∈ {0, 1}.
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Vertex Packing / Maximum Independent Set

Relaxing the integrality constraints:

max
µ

∑
v∈V

cvµv (VPL)

(∀uv ∈ E) µu + µv ≤ 1,

(∀v ∈ V) µv ≥ 0.

Theorems

(Balinski, 1965; Lorentzen, 1966): Any basic feasible solution to (VLP) is
{0, 1

2 , 1}-valued.

(Edmonds and Pulleyblank) (VLP) reduces to a maxflow problem on a
related symmetric bipartite graph;

(Nemhauser and Trotter, 1975): Variables which assume binary values in an
optimum (VLP) solution retain the same values in an optimum (VP) solution.

(Picard and Queyranne, 1977): There exists a unique maximum set of
variables that are integer valued in an optimal solution to (VLP).
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QPBO

Quadratic pseudo-Boolean Optimization (QPBO)

(V, E) – an undirected graph;

Weights a : V ∪ E → R;

Problem: min
x

∑
v∈V

avxv +
∑
uv∈E

auvxuxv

(∀v ∈ V) xv ∈ {0, 1}.

Generalizes Vertex Packing (let auv = B, a big number; a = −cv ).
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QPBO

Natural linear relaxation: xs → µs ∈ [0, 1], xsxt → µst ∈ [0, 1] (lifting)

min
µ : V∪E→[0,1]

∑
v∈V

avµv +
∑
uv∈E

auvµuv (LP)

s.t. (∀uv ∈ E) µu + µv − 1 ≤ µuv ≤ min(µu, µv ) (local convex hulls).
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QPBO

Natural linear relaxation: xs → µs ∈ [0, 1], xsxt → µst ∈ [0, 1] (lifting)

min
µ : V∪E→[0,1]

∑
v∈V

avµv +
∑
uv∈E

auvµuv (LP)

s.t. (∀uv ∈ E) µu + µv − 1 ≤ µuv ≤ min(µu, µv ) (local convex hulls).

Theorems

Each extreme point of the feasible set is {0, 1
2 , 1}-valued.

(Hammer et al., 1984; Boros et al., 1991): LP reduces to a maxflow problem;

Weak Persistency (Hammer et al., 1984): Variables µv which assume binary
values in an optimum (LP) solution retain the same values in an ILP solution.

Strong Persistency (Hammer et al., 1984): Variables µv which assume
binary values in all optimal (LP) solutions retain the same values in all
optimal ILP solutions.
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0-1 Polynomial Programming

v1

e1 v2 v3

v5
v6

v7

v4

e2

e4
e3 A hypergraph (courtesy of wikipedia).

0-1 Polynomial Programming / pseudo-Boolean Optimization

(V, E) – a hypergraph, E ⊂ 2V ;

Weights f : E → R;

Problem: min
x∈{0,1}V

∑
c∈E

fc
∏
v∈c

xv . (PP)

Any pseudo-Boolean function can be represented as a multilinear polynomial.

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency
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0-1 Polynomial Programming

Quadratization techniques

+ 0-1 PP can be reduced to QPBO with auxiliary variables Boros and Hammer
(2001), Ishikawa (2011), Fix et al. (2011)

+ Can apply roof dual relaxation (combinatorial, persistency)
− Relaxation of reduced problem is looser, multiple reductions

Special Relaxations: (bi)submodular relaxations (Kolmogorov, 2012)

+ extreme feasible solutions are half-integral;
+ reduces to sum of (bi)submodular functions minimization (combinatorial);
+ all integer variables are persistent;
− Relatively loose, multiple choices

Tighter relaxations, e.g. relaxation of Sherali and Adams (1990)

− optimal solutions are not half-integral in general;
− no combinatorial method to solve;
− not persistent in general;
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Energy Minimization / Graphical Model

v1

e1 v2 v3

v5
v6

v7

v4

e2

e4
e3 � f3,5,6 (x3, x5, x6)

fuv(xu, xv)

fv(xv)

xu xv

Energy Minimization / Weighted Constraint Satisfaction

(V, E) - a hypergraph;

Xv - a finite set of labels, v ∈ V;

Costs fc :
∏

v∈c Xv → R, c ∈ E ;

Energy: Ef (x) =
∑

c∈E fc(xc);

Probloem: minx∈X Ef (x);

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency
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Energy Minimization

Example: Potts Model for Object Class Segmentation

V - set of pixels; E ⊂ V × V neighboring pixels;

Xs = {1, . . .K} – class label;

Ef (x) =
∑

s∈V fs(xs) +
∑

st∈E λst [[xs 6= xt ]].

Image Ground Truth

(MSRC object class segmentation)

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency
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Energy Minimization

Example: Potts Model for Stereo

V - set of pixels; E ⊂ V × V neighboring pixels;

Xs = {1, . . .K} – disparity value;

Ef (x) =
∑

s∈V fs(xs) +
∑

st∈E λst [[xs 6= xt ]].

Reference (Left) Image Depth Reconstruction
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Persistency - Sufficient Conditions
Maximum Persistency via Iterative Relaxed Inference with Graphical Models

Alexander Shekhovtsov1, Paul Swoboda2, Bogdan Savchynskyy2,3

1TU Graz, Austria. 2Heidelberg University, Germany. 3TU Dresden, Germany.
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Swoboda et al. [7] (PBP optimal)
27min, 89.8%

Our: 16s, 99.94% strong

Figure 1: Progress of partial optimality methods. Top line corresponds to a stereo model with Potts interactions and large aggregating windows for unary
costs used in [2, 5] (instance published by [2]). Bottom line is a more refined stereo model with truncated linear terms [8] (instance in [1]). Hashed
area indicates that the optimal persistent label in the pixel is not found (but some non-optimal labels might have been eliminated). Solution completeness
is given by the percent of persistent labels. Graph cut based methods are fast but only efficient for strong unary terms. LP-based methods are able to
determine a larger persistent assignments but are extremely slow, prior to this work. Note, our method is set up to determine strong persistency, a partial
assignment that holds for all optimal solutions, while other methods here find a part of any optimal solution.

We consider the NP-hard problem of MAP-inference for graphical mod-
els. We propose a polynomial time practically efficient algorithm for finding
a part of its optimal solution. Specifically, our algorithm marks each label in
each node of the considered graphical model either as (i) optimal, meaning
that it belongs to all optimal solutions of the inference problem; (ii) non-

optimal if it provably does not belong to any solution; or (iii) undefined,
which means our algorithm can not make a decision regarding the label.
The labels that we proved optimal or non-optimal are called persistent.

Key ideas:

• We build on the Maximum Persistency [6] framework, which proved
that most of the existing methods for partial optimality can be ex-
plained by a simple local domination condition if only one supplies
the right reparametrization of the energy function.

• Finding the maximum subset of persistent labels can be formu-
lated [6] as a big linear program that optimizes over reparametriza-
tions and a subset of labels deemed persistent at the same time. It is a
challenging problem and large scale instances can only be addressed
by a windowing technique [6] – a semi-local condition.

• We solve the same maximum persistency problem instead by itera-
tively solving standard LP relaxation for a series of auxiliary energy
problems, similarly to the approach in [7]. We thus unite [6] and [7].

Key features of our approach:

• Invariant to reparametrization and order of labels.
• Fast approximate dual solvers can be employed without compromis-

ing correctness and global persistency guarantees.
• Requires an approximate solution to LP relaxation as a starting point.
• Can be viewed as making an approximate solver for LP-relaxation to

be able to prove optimality of a part of its solution.
More specifically, we demonstrated our approach using TRW-S [4] for solv-
ing auxiliary subproblems.

Properties when subproblems are solved with TRW-S:

• Closely approximates maximum persistency LP (evaluated on small
random problems).

• Fast message passing transfers to auxiliary problems.
• The method is correct using a finite number of TRW-S iterations.
• Subproblems can be solved incrementally, reusing the messages.

[1] OpenGM benchmark. http://hci.iwr.uni-heidelberg.

de/opengm2/?l0=benchmark.
[2] Karteek Alahari, Pushmeet Kohli, and Philip H. S. Torr. Reduce, reuse

& recycle: Efficiently solving multi-label MRFs. In CVPR, 2008.
[3] P. Kohli, A. Shekhovtsov, C. Rother, V. Kolmogorov, and P. Torr. On

partial optimality in multi-label MRFs. In ICML, 2008.
[4] V. Kolmogorov. Convergent tree-reweighted message passing for

energy minimization. PAMI, 28(10), October 2006. doi: 10.
1109/TPAMI.2006.200. URL http://dx.doi.org/10.1109/

TPAMI.2006.200.
[5] I. Kovtun. Partial optimal labeling search for a NP-hard subclass of

(max, +) problems. In DAGM-Symposium, pages 402–409, 2003.
[6] A. Shekhovtsov. Maximum persistency in energy minimization. In

CVPR, 2014.
[7] P. Swoboda, A. Shekhovtsov, J. H. Kappes, C. Schnörr, and B. Savchyn-

skyy. Partial optimality by pruning for MAP-inference with general
graphical models. ArXiv e-prints, Oct 2014.

[8] Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler,
Vladimir Kolmogorov, Aseem Agarwala, Marshall Tappen, and Carsten
Rother. A comparative study of energy minimization methods for
Markov random fields with smoothness-based priors. PAMI, 30(6):
1068–1080, 2008. ISSN 0162-8828.

This is an extended abstract. The full paper is available at the Computer Vision Foundation webpage.

Model 1 (Kovtun’03, Alahari et al.’10): Potts, strong unaries with window
aggregation

Model 2 (Szeliski et al., 2008): Nearly Potts, per-pixel unaries
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Generalized Sufficient Conditions for Persistency
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Improving Substitution

Ef : X → R, x ∈ X
Substitution: (x1, x2, . . . , xv , . . . xn) → (x1, x2, . . . , α, . . . xn)

Denote as x [v ← α]

If Ef (x [v ← α]) ≤ Ef (x) for all x then xv = α is optimal!

If Ef (x [v ← β]) ≤ Ef (x [v ← α]) for all x then xv = α can be thrown away!

st′

y

t′′

α

β

s

t

t′

Substitutability (constraint programming) dominance (valued constraint
satisfaction) dead end elimination (bioinformatics)

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



14/33

Introduction Sufficient Conditions Maximizing Persistency Experiments References

Improving Substitution

Ef : X → R, x ∈ X
Substitution: (x1, x2, . . . , xv , . . . xn) → (x1, x2, . . . , α, . . . xn)

Denote as x [v ← α]

If Ef (x [v ← α]) ≤ Ef (x) for all x then xv = α is optimal!

If Ef (x [v ← β]) ≤ Ef (x [v ← α]) for all x then xv = α can be thrown away!

st′

y

t′′

α

β

s

t

t′

Substitutability (constraint programming) dominance (valued constraint
satisfaction) dead end elimination (bioinformatics)

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



14/33

Introduction Sufficient Conditions Maximizing Persistency Experiments References

Improving Substitution

Substitute simultaneously:

Let x [A ← yA]v = yv for v ∈ A and xv for v ∈ V\A.

If Ef (x [A ← yA]) ≤ Ef (x) for all x then yA is a part of an optimal
assignment.

1

0

1

2

1

2

1

2

1

2
1

1

2

1

2

Autarky in QPBO

Verifying whether yA satisfies condition is NP-hard.
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Simultaneous Improving Substitution

pu : Xu ! Xu pv

p : X → X node-wise

Definition

Substitution p is improving if
(∀x) Ef (p(x)) ≤ Ef (x).

If x is optimal then p(x) is optimal. Search space can be reduced.

s tt
′

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency
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Sufficient Conditions for Peristency

Improving mapping: (∀x ∈ X ) Ef (p(x)) ≤ Ef (x) – NP hard to verify

Equivalent to: min
x∈X

(Ef (x)− Ef (p(x))) ≥ 0

Lift: minµ∈δ(X )(〈f , µ〉 − 〈f ,Pµ〉) ≥ 0

Relax: minµ∈Λ〈f − PTf , µ〉 ≥ 0, Λ - any tractable polytope containing δ(X )

Definition:

Substitution p is relaxed-improving if minµ∈Λ〈(I − PT)f , µ〉 ≥ 0

Polynomial to verify.

µuv (i , j)

v

µv (j)µu(i)

u

0

1

0

0

0

1

v

µu(i) µv (j)

µuv (i , j)

u

0

1

00.6

0.4

0.0
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Polynomial to verify.
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Sufficient Conditions for Peristency
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Relaxed Improving Substitution

Substitution p : X → X can be represented in the lifted space:

M

p s p t

mapping ± P(M)

Linear mapping P is the extension of p : X → X ,

An oblique projection onto a facet.
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Generality of Sufficient Conditions

Sufficient condition for persistency

Can be verified by solving LP over Λ ⊃ δ(X )

Tightens with relaxation:
For Λ′ ⊂ Λ, if p is improving on Λ then it is improving on Λ′.

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency
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Generality of Sufficient Conditions

Theorems (Shekhovtsov (2014, 2015))

Relaxed-improving condition with natural (local) relaxations are satisfied for a.o.f.:

p
a

ir
w

is
e

m
u

lt
il
a

b
el

Simple DEE (Goldstein, 1994) X
MQPBO (Kohli et al., 2008) X
Kovtun (2003) one-agains-all X

Kovtun (2011) iterative X
Swoboda et al. (2014)* X

h
ig

h
er

or
d

er
p

se
u

d
o

-B
o

o
le

a
n Roof dual / QPBO Hammer et al. (1984) X

Reductions: HOCR (Ishikawa, 2011), (Fix et al., 2011) FLP

Bisubmodular relaxations (Kolmogorov, 2010)** BLP

Generalized Roof Dualilty (Kahl and Strandmark, 2011) FLP

Persistency by Adams et al. (1998) FLP

BLP = Basic LP Relaxation Werner (2007); Thapper and Živný (2013);
FLP = Full Local LP Relaxation, equivalent to Sherali and Adams (1990);
*Swoboda et al. (2014) is higher order but the comparison proof is for pairwise case. **Result holds for sum

of bisubmodular functions over the same hypergraph as the BLP relaxation.
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Maximizing Persistency
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Maximum Persistency

Given that verification problem is polynomially solvable,

which method is better?

Maximum Persistency Problem

Find the substitution p : X → X that delivers the maximum problem reduction:

min
p∈P

∑
u∈V
|p(Xu)| s.t. p is relaxed-improving,

P - class of mappings.

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency
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Restricted Class of Mappings

Clamping to an interval. Order-dependent

max
x

min
x

Fix a test labeling y and substitute any subset Yv ⊂ Xv with yv . Order
independent

y

Lattice (nesting) of substitutions in both cases

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency
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Restricted Class of Mappings

Can find the maximum (eliminating most of variables) (strictly) Λ- improving
substitution in these cases for any Λ!

Subsets substituting class covers

p
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ir
w
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e

m
u

lt
il
a

b
el

Simple DEE (Goldstein, 1994)

MQPBO (Kohli et al., 2008)

Kovtun (2003) one-agains-all

Kovtun (2011) iterative

Swoboda et al. (2014)*
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Discrete Cutting Plane

Theorem

Let µ be a solution to LP-relaxation: µ ∈ argminµ∈Λ〈f , µ〉 and p : X → X be
(strictly) relaxed-improving. Then Pµ = µ.

µ

1

2

1

2

Initialize test labeling y from µ

y
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Discrete Cutting Plane

Algorithm

Start with a mapping p that substitutes everything with y

Auxiliary problem g = (I − PT)f

Check relaxed-improving conditions by solving LP:

min
µ∈Λ
〈g , µ〉

?
≥ 0

If not satisfied, determine the most violating solution µ

Make the solution µ immovable by p

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



24/33

Introduction Sufficient Conditions Maximizing Persistency Experiments References

Discrete Cutting Plane

Algorithm

Start with a mapping p that substitutes everything with y

Auxiliary problem g = (I − PT)f

Check relaxed-improving conditions by solving LP:

min
µ∈Λ
〈g , µ〉

?
≥ 0

If not satisfied, determine the most violating solution µ

Make the solution µ immovable by p

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



24/33

Introduction Sufficient Conditions Maximizing Persistency Experiments References

Discrete Cutting Plane

Algorithm

Start with a mapping p that substitutes everything with y

Auxiliary problem g = (I − PT)f

Check relaxed-improving conditions by solving LP:

min
µ∈Λ
〈g , µ〉

?
≥ 0

If not satisfied, determine the most violating solution µ

Make the solution µ immovable by p

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



24/33

Introduction Sufficient Conditions Maximizing Persistency Experiments References

Discrete Cutting Plane

Algorithm

Start with a mapping p that substitutes everything with y

Auxiliary problem g = (I − PT)f

Check relaxed-improving conditions by solving LP:

min
µ∈Λ
〈g , µ〉

?
≥ 0

If not satisfied, determine the most violating solution µ

Make the solution µ immovable by p

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



24/33

Introduction Sufficient Conditions Maximizing Persistency Experiments References

Discrete Cutting Plane

Algorithm

Start with a mapping p that substitutes everything with y

Auxiliary problem g = (I − PT)f

Check relaxed-improving conditions by solving LP:

min
µ∈Λ
〈g , µ〉

?
≥ 0

If not satisfied, determine the most violating solution µ

Make the solution µ immovable by p

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



24/33

Introduction Sufficient Conditions Maximizing Persistency Experiments References

Discrete Cutting Plane

Algorithm

Start with a mapping p that substitutes everything with y

Auxiliary problem g = (I − PT)f

Check relaxed-improving conditions by solving LP:

min
µ∈Λ
〈g , µ〉

?
≥ 0

If not satisfied, determine the most violating solution µ

Make the solution µ immovable by p

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



25/33

Introduction Sufficient Conditions Maximizing Persistency Experiments References

Correctness and Optimality

Main Properties:

Runs in polynomial time;

Finds the maximum relaxed improving substitution when the LP solver is e.g.
the interior point method (uses strict complementarity).

Correct even with sub-optimal (no convergence guarantees) LP solvers

Correct with dual suboptimal solvers (we use TRW-S by Kolmogorov (2006))

Can be implemented as incremental

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency
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Efficiency

- solving relaxed inference approximately even once is slow

- Fast block-coordinate algorithms TRW-S not finitely converging

How can we iterate such relaxed inference?

Fast implementation with TRW-S

Incremental: reuse reparametrizations ϕ

Guaranteed to prune something even after 1 iteration of TRW-S (there is a
blocking constraint not yet pruned)

An optimal pruning is often possible before the dual is solved (cuts)

Problem reductions preserving the sufficient condition

Fast message passing for (I − PT)f with reductions

Combined Effect of Speedups

Instance Initialization Extra time for persistency
(1000 it.) no speedups +reduction +node pruning +labeling pruning +fast msgs

Protein folding 1CKK 8.5s 268s (26.53%) 168s (26.53%) 2.0s (26.53%) 2.0s (26.53%) 2.0s (26.53%)
colorseg-n4 pfau-small 9.3s 439s (88.59%) 230s (93.41%) 85s (93.41%) 76s (93.41%) 19s (93.41%)

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency
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Experiments
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OpenGM Benchmark

Problem family [29]-CPLEX [29]-TRWS "-L1[25] Our-CPLEX Our-TRWS
10x10 Potts-3 0.18s 58.46% 0.05s 58.38% 0.05s 72.27% 0.18s 72.27% 0.04s 72.21%
10x10 full-3 0.24s 2.64% 0.09s 1.22% 0.06s 62.90% 0.24s 62.90% 0.05s 62.57%
20x20 Potts-3 3.25s 73.95% 0.21s 68.49% 0.87s 87.38% 2.43s 87.38% 0.06s 87.38%
20x20 full-3 2.81s 0.83% 0.37s 0.83% 0.95s 72.66% 3.03s 72.66% 0.07s 72.31%
20x20 Potts-4 12.45s 23.62% 0.39s 18.43% 19.40s 74.28% 8.56s 74.28% 0.08s 73.63%
20x20 full-4 3.96s 0.01% 0.39s 0.01% 21.08s 6.28% 12.41s 6.58% 0.08s 6.58%

Table 1. Performance evaluation on random instances of [25]. For each problem family (size, type of potentials and number of labels)
average performance over 100 samples is given. To allow for precise comparison all methods are initialized with the same test labeling y
found by LP relaxation. Our-TRWS closely approximates Our-CPLEX, which matches "-L1[25], and scales much better.

Problem family #I #L #V MQPBO MQPBO-10 Kovtun [29]-TRWS Our-TRWS
mrf-stereo 3 16-60 > 100000 † † † 2.5h 13% 117s 73.56%
mrf-photomontage 2 5-7  514080 93s 22% 866s 16% † 3.7h 16% 483s 41.98%
color-seg 3 3-4  424720 22s 11% 87s 16% 0.3s 98% 1.3h >99% 61.8s 99.95%
color-seg-n4 9 3-12  86400 22s 8% 398s 14% 0.2s 67% 321s 90% 4.9s 99.26%
ProteinFolding 21  483  1972 685s 2% 2705s 2% † 48s 18% 9.2s 55.70%
object-seg 5 4-8 68160 3.2s 0.01% † 0.1s 93.86% 138s 98.19% 2.2s 100%

Table 2. Average performance on OpenGM benchmarks. Columns #I,#L,#V denote the number of instances, labels and variables respec-
tively. † – result is not available (memory / implementation / other reason).

Our-CPLEX Our Algorithm 1 (Iterative Relaxed Infer-
ence) using CPLEX [8].

Our-TRWS Our Algorithm 2 using TRW-S [12]. Initial
solution uses at most 1000 iterations (or the
method has converged). All speedups.

[29]-CPLEX Method of Swoboda et al. [29, 30] with
CLPEX.

[29]-TRWS Method [29, 30] with TRW-S.
"-L1[25] Single LP formulation of the maximum

strong persistency [25] solved with CPLEX.
Kovtun One-against-all method of Kovtun [15].
MQPBO Multilabel QPBO [11].

MQPBO-10 MQPBO with 10 random permutations, ac-
cumulating persistency.

Table 3. List of Evaluated Methods

number of labels [5]. Is this advantage preserved if we con-
sider the cost vector g = (I�P )

Tf or even ḡ (13)? It turns
out that the answer in both cases is positive, we give details
in §D.3.

Summary of Speedups. We apply the techniques described
in this section in the loop of Algorithm 2 as follows.
Attempt a single node pruning for all nodes u 2 V and
all labels i 2 Y

v

. Run the dual solver (line 4) on the re-
duced problem ḡ (13) using warm start from the current
reparametrization ' until either of the following:

1. it has found a primal solution x such that: hḡ, �(x)i 
0 and p(x) 6= x;

2. iteration limit was exceeded or the solver has con-
verged.

In the first case, apply the pruning negative labeling tech-
nique to x. Otherwise, perform step 7. If the dual solver

has converged, Lemma 4.4 guarantees either correct termi-
nation or that further pruning is possible. At the same time,
warm start allows the solver to converge eventually despite
the iteration limit. Details of implementation and a proof of
finite termination with TRW-S specifically are given in §D.

6. Experimental Evaluation
In the experiments we study how well we approximate

the maximum persistency [25], give a direct comparison to
the most relevant scalable method [29]3, illustrate the con-
tribution of different speedups and give an overall perfor-
mance comparison to a larger set of relevant methods. As
a measure of persistency we use the percentage of labels
eliminated by the improving mapping p

P
v2V |X

v

\p
v

(X
v

)|P
v2V(|X

v

|�1) 100%. (15)

Random Instances. Table 1 gives comparison to [29] and
[25] on random instances generated as in [25] (small prob-
lems on 4-connected grid with uniformly distributed inte-
ger potentials for “full” model and of the Potts type for
“Potts” model, all not LP-tight). It can be seen that our
exact Algorithm 1 performs identically to the "-L1 formu-
lation [25]. Although it solves a series of LPs, as opposed
to a single LP solved by "-L1, it scales better to larger in-
stances. Instances of size 20x20 in the "-L1 formulation are
already too difficult for CPLEX: it takes excessive time and
sometimes returns a computational error. The performance
of the dual Algorithm 2 confirms that we loose very little in
terms of persistency but gain significantly in speed.

3Note, [30] points out that numerical results published in [29] were
incorrect due to an implementation error, the results that we report are
consistent with [30].
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OpenGM Benchmark

Input image (Potts model Color Segmentation)

Proved optimal part Reminder (number of labels)
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OpenGM Benchmark

Easy

object-seg Kovtun (2003): 0.2s, 80.5% Ours: 1.4s, 100%
(LP-tight)

Hard

mrf-stereo Kovtun (2003): 2.5s, 0.42% Ours: 62+180s, 75%

Very hard

mrf-photomontage

Kovtun (2003): 0.5s, 27.5%

0
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7

Ours, remainder: 130+390s, 79.2%
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Conclusion

We find a part of an optimal solution in polynomial time

New general sufficient condition

Covers many methods in the literature

Developed an efficient algorithm (implementation available, matlab interface)

In a sense, we converted a method without guarantees (TRW-S) into a
method with guarantees at a reasonable overhead

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency
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