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Introduction

Persistency (Partial Optimality)

ILP LP
minc'x minc'x
Ax < b Ax < b
x € {0,1}" x €1]0,1]"

@ When the solution to LP is integer?
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Persistency (Partial Optimality)

ILP LP
minc'x minc'x
Ax < b Ax < b
x € {0,1}" x €1]0,1]"

@ When the solution to LP is integer?

x=(0,1,1,0,3,3,%,1,0,...)
@ Is the integer part of an optimal solution to LP optimal for ILP?
© Is a part of the integer part is optimal for ILP?

@ Sufficient conditions for a part of an optimal solution to LP to be optimal for
ILP?
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Introduction

Persistency (Partial Optimality)

ILP LP
minc'x minc'x
Ax < b Ax < b
x € {0,1}" x €1]0,1]"

@ When the solution to LP is integer?

x=(0,1,1,0,3,3,%,1,0,...)
@ Is the integer part of an optimal solution to LP optimal for ILP?
© Is a part of the integer part is optimal for ILP?

@ Sufficient conditions for a part of an optimal solution to LP to be optimal for
ILP?

© Find the largest part satisfying sufficient conditions.

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



Introduction

Persistency (Partial Optimality)

ILP LP
minc'x minc'x
Ax < b Ax < b
x € {0,1}" x €1]0,1]"

NEEN
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Introduction

Outline

@ Introduction
v Persistency (Partial Optimality)
o Vertex Packing, QPBO, Energy Minimization
o Optimization-Based Methods for Persistency
@ Generalized Sufficient Conditions
o Improving Substitution
o Relaxed-Improving Substitution
o Generality
@ Maximizing Persistency

e Optimization-Based Formulation
o Discrete Cutting Plane
o OpenGM Benchmark
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Vertex Packing / Maximum Independent Set

Minimum Vertex Cover

A

/
// Maximum Independent Set

. \\ —/ e = Maximum Vertex Packing

Maximum Weighted Vertex Packing

e (V,€) — an undirected graph;
o Vertex Packing is a subset P C V for which u,v € P = (u,v) € &;
o Weights c: V — R;

@ Problem: maxz CoXy (VP)
vey

(Vuv € &) x, + x, < 1,
(Vv € V) x, € {0,1}.
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Vertex Packing / Maximum Independent Set

Relaxing the integrality constraints:
max 3 oy (VPL)
K vey
(Vuv € &) pu + v <1,
(VV S V) My = 0.

Theorems

o (Balinski, 1965; Lorentzen, 1966): Any basic feasible solution to (VLP) is
{0, 3, 1}-valued.

@ (Edmonds and Pulleyblank) (VLP) reduces to a maxflow problem on a
related symmetric bipartite graph;

@ (Nemhauser and Trotter, 1975): Variables which assume binary values in an
optimum (VLP) solution retain the same values in an optimum (VP) solution.

o (Picard and Queyranne, 1977): There exists a unique maximum set of
variables that are integer valued in an optimal solution to (VLP).
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QPBO

Quadratic pseudo-Boolean Optimization (QPBO)

e (V,€&) — an undirected graph;
o Weights a: YUE — R;

@ Problem: min E ayXy + E Ayy XuXy
X
vey uveé

(Vv € V) x, € {0,1}.

o Generalizes Vertex Packing (let a,, = B, a big number; a = —c,).
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QPBO

Natural linear relaxation: xs — s € [0, 1], xsx¢ — s € [0, 1] (lifting)

i v v uv uv LP
LIS BE TS DEN (LP)

vey uveé
st. (Vuv € &) py + py — 1 < pyy < min(py, ) (local convex hulls).
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QPBO

Natural linear relaxation: xs — s € [0, 1], xsx¢ — s € [0, 1] (lifting)

i v \"4 uv uv LP
LIS BE TS DEN (LP)

vey uveé
st. (Vuv € &) py + py — 1 < pyy < min(py, ) (local convex hulls).
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QPBO

Natural linear relaxation: xs — s € [0, 1], xsx¢ — s € [0, 1] (lifting)

min a a LP
o VUS%[O,I]Z viv Z uvHuy (LP)
vey uvel

st. (Vuv € &) py + py — 1 < pyy < min(py, ) (local convex hulls).

Theorems

@ Each extreme point of the feasible set is {0, %, 1}-valued.

o (Hammer et al., 1984; Boros et al., 1991): LP reduces to a maxflow problem;

o Weak Persistency (Hammer et al., 1984): Variables i, which assume binary
values in an optimum (LP) solution retain the same values in an ILP solution.

e Strong Persistency (Hammer et al., 1984): Variables u, which assume
binary values in all optimal (LP) solutions retain the same values in all
optimal ILP solutions.
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Introduction
0-1 Polynomial Programming

A hypergraph (courtesy of wikipedia).

V7

0-1 Polynomial Programming / pseudo-Boolean Optimization
e (V,&) — a hypergraph, £ C 2Y;
o Weights f: £ — R;

@ Problem: i Z £, HX"‘ (PP)

0,1}V
xe{0,1} ceg vec

@ Any pseudo-Boolean function can be represented as a multilinear polynomial.
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Introduction
0-1 Polynomial Programming

@ Quadratization techniques
+ 0-1 PP can be reduced to QPBO with auxiliary variables Boros and Hammer
(2001), Ishikawa (2011), Fix et al. (2011)
-+ Can apply roof dual relaxation (combinatorial, persistency)
— Relaxation of reduced problem is looser, multiple reductions
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Introduction
0-1 Polynomial Programming

@ Quadratization techniques
+ 0-1 PP can be reduced to QPBO with auxiliary variables Boros and Hammer

+

(2001), Ishikawa (2011), Fix et al. (2011)
Can apply roof dual relaxation (combinatorial, persistency)
Relaxation of reduced problem is looser, multiple reductions

@ Special Relaxations: (bi)submodular relaxations (Kolmogorov, 2012)

+
+
—+

extreme feasible solutions are half-integral;

reduces to sum of (bi)submodular functions minimization (combinatorial);
all integer variables are persistent;

Relatively loose, multiple choices
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Introduction
0-1 Polynomial Programming

@ Quadratization techniques
+ 0-1 PP can be reduced to QPBO with auxiliary variables Boros and Hammer

+

(2001), Ishikawa (2011), Fix et al. (2011)
Can apply roof dual relaxation (combinatorial, persistency)
Relaxation of reduced problem is looser, multiple reductions

@ Special Relaxations: (bi)submodular relaxations (Kolmogorov, 2012)

+
+
—+

extreme feasible solutions are half-integral;

reduces to sum of (bi)submodular functions minimization (combinatorial);
all integer variables are persistent;

Relatively loose, multiple choices

o Tighter relaxations, e.g. relaxation of Sherali and Adams (1990)

optimal solutions are not half-integral in general;
no combinatorial method to solve;
not persistent in general;
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Introduction

Energy Minimization / Graphical Model

=) N

Energy Minimization / Weighted Constraint Satisfaction

(V, &) - a hypergraph;

X, - a finite set of labels, v € V;
Costs fo: [[,eo v = R, C€E;
Energy: Er(x) = > ee folxc);
Probloem: minyex Ef(x);

(*]
(]
(]
(]
(]
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Introduction
Energy Minimization

Example: Potts Model for Object Class Segmentation

@ V - set of pixels; £ C V x V neighboring pixels;
o X, ={1,... K} —class label;

@ Ef(X) = Zsev fS(XS) + Zstei )\stﬂ:xs 7é Xt]]-

Image Ground Truth

sky

ree™ " hyilding|
airplane

(MSRC object class segmentation)

o
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Introduction
Energy Minimization

Example: Potts Model for Stereo

o V - set of pixels; £ C V X V neighboring pixels;
o X, ={1,... K} — disparity value;
0 Er(x) = sy fs(Xs) + Xaree Astlxs # x|
Reference (Left) Image Depth Reconstruction
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Introduction

Persistency - Sufficient Conditions

Graph cut - based LP - based
Courtesy of Kovtun [5] Instance used by Alahari et al. [2]}|]Shekhovtsov [6] | Our: 225, 96.7% strong
93.6% (instance not available) Kovtun’s method: 1s, 87.6% LP-windowing: 1.5h, 94%

3 L N\ y b

A
¥

. = t ‘

lKovlun's method: 1s, 02%] [Kohli etal. [3] (MQPBO)] [Swoboda etal. [7] (PBP oplimal)]

Potts Model
Amin(1, v, —x,])

'Our: 16s, 99.94% su'ong'

41s,0.2% 27min, 89.8%

Truncated Model
Wi min(2, [x, — %))

@ Model 1 (Kovtun'03, Alahari et al."10): Potts, strong unaries with window
aggregation

o Model 2 (Szeliski et al., 2008): Nearly Potts, per-pixel unaries
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Sufficient Conditions

Generalized Sufficient Conditions for Persistency
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Sufficient Conditions
Improving Substitution

Ef: X >R, xe X
Substitution: (X1, X2, ..., Xy, .. Xn) = (X1, X2, ..., Q... X,)
Denote as x[v + a]

If Ef(x[v < o) < Ef(x) for all x then x, = « is optimal!
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Sufficient Conditions
Improving Substitution

Ef: X >R, xe X

Substitution: (X1, X2, ..., Xy, .. Xn) = (X1, X2, ..., Q... X,)
Denote as x[v + a]

If Er(x[v < a]) < E¢(x) for all x then x, = « is optimal!

If Ef(x[v < B]) < Ef(x[v < a]) for all x then x, = a can be thrown away!

@ Substitutability (constraint programming) dominance (valued constraint
satisfaction) dead end elimination (bioinformatics)
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Sufficient Conditions
Improving Substitution

@ Substitute simultaneously:

o Let x[A + ya]y =y, for v € A and x, for v € V\A.

o If Ef(x[A < ya]) < Ef(x) for all x then y4 is a part of an optimal
assignment.

fal ‘ot

N =

7
bo

0

Autarky in QPBO
Verifying whether y 4 satisfies condition is NP-hard.
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Sufficient Conditions
Simultaneous Improving Substitution

p: X — X node-wise

(&)

( @ 5 e} Definition

N | C ° ) Substitution p is improving if
O

(V%) Er(p(x)) < Er(x).
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Sufficient Conditions

Sufficient Conditions for Peristency

e Improving mapping: (Vx € X') E¢(p(x)) < E¢(x) — NP hard to verify
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Sufficient Conditions

Sufficient Conditions for Peristency

e Improving mapping: (Vx € X') E¢(p(x)) < E¢(x) — NP hard to verify
e Equivalent to: n;iE(Ef(x) — Ef(p(x))) >0
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Sufficient Conditions

Sufficient Conditions for Peristency

e Improving mapping: (Vx € X') E¢(p(x)) < E¢(x) — NP hard to verify
e Equivalent to: n;iE(Ef(x) — Ef(p(x))) >0

o Lift: minue(;(;()(<f,,u> —(f,Pu)) >0
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Sufficient Conditions

Sufficient Conditions for Peristency

e Improving mapping: (Vx € X') E¢(p(x)) < E¢(x) — NP hard to verify
e Equivalent to: n;iE(Ef(x) — Ef(p(x))) >0

o Lift: minyesqa)((F, ) — (f, Pp)) = 0
@ Relax: mingen(f — PTf,u) >0, A - any tractable polytope containing 6(.X)
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Sufficient Conditions

Sufficient Conditions for Peristency

e Improving mapping: (Vx € X') E¢(p(x)) < E¢(x) — NP hard to verify

o Lift: minyesqa)((F, ) — (f, Pp)) = 0
@ Relax: mingen(f — PTf,u) >0, A - any tractable polytope containing 6(.X)

Definition:

Substitution p is relaxed-improving if min,ea((I — PT)f,pu) >0

@ Polynomial to verify.
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Sufficient Conditions

Sufficient Conditions for Peristency

e Improving mapping: (Vx € X') E¢(p(x)) < E¢(x) — NP hard to verify

o Lift: minyesqa)((F, ) — (f, Pp)) = 0
@ Relax: mingen(f — PTf,u) >0, A - any tractable polytope containing 6(.X)

Definition:

Substitution p is relaxed-improving if min,ea((I — PT)f,pu) >0

@ Polynomial to verify.

0.4 @ | = /“uv(ia.j) - @ 1
0 1(i) 1 0.6 @ | @0ml)
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Sufficient Conditions
Relaxed Improving Substitution

@ Substitution p: X — X can be represented in the lifted space:

p

s Dt

R 7

{ >< mapping 0 IP(M)
& ROT :

il AN &

@ Linear mapping P is the extension of p: X — X,

@ An oblique projection onto a facet.
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Sufficient Conditions

Generality of Sufficient Conditions

o Sufficient condition for persistency
o Can be verified by solving LP over A D 4(X)

@ Tightens with relaxation:
For A" C A, if p is improving on A then it is improving on A,
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Sufficient Conditions

Generality of Sufficient Conditions

Theorems (Shekhovtsov (2014, 2015))

Relaxed-improving condition with natural (local) relaxations are satisfied for a.o.f.:

Simple DEE (Goldstein, 1994) v

03 MQPBO (Kohli et al., 2008) v

§ % Kovtun (2003) one-agains-all v

'i_g Kovtun (2011) iterative v

Swoboda et al. (2014)* v

= | Rl QPBO Hammer et i (i968) | v
5 < | Reductions: HOCR (Ishikawa, 2011), (Fix et al., 2011) | FLP
'g cg Bisubmodular relaxations (Kolmogorov, 2010)** BLP
5 -5 | Generalized Roof Dualilty (Kahl and Strandmark, 2011) | FLP
& § Persistency by Adams et al. (1998) FLP

< a

BLP = Basic LP Relaxation Werner (2007); Thapper and Zivny (2013);
FLP = Full Local LP Relaxation, equivalent to Sherali and Adams (1990);
*Swoboda et al. (2014) is higher order but the comparison proof is for pairwise case. **Result holds for sum

of bisubmodular functions over the same hypergraph as the BLP relaxation:
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Maximizing Persistency

Maximizing Persistency
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Maximizing Persistency
Maximum Persistency

o Given that verification problem is polynomially solvable,
@ which method is better?

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



Maximizing Persistency
Maximum Persistency

o Given that verification problem is polynomially solvable,
@ which method is better?

Maximum Persistency Problem

Find the substitution p: X — X that delivers the maximum problem reduction:

min Z |p(X,)| s.t. pis relaxed-improving,

P - class of mappings.

N

*;
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Restricted Class of Mappings

o Clamping to an interval. Order-dependent

o Fix a test labeling y and substitute any subset ), C X, with y,. Order
independent

o Lattice (nesting) of substitutions in both cases
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Restricted Class of Mappings

@ Can find the maximum (eliminating most of variables) (strictly) A- improving
substitution in these cases for any Al

Subsets substituting class covers

Simple DEE (Goldstein, 1994)

MQPBO (Kohli et al., 2008)

Kovtun (2003) one-agains-all
Kovtun (2011) iterative
Swoboda et al. (2014)*

pairwise
multilabel

< Roof dual / QPBO Hammer et al. (1984)
5 5 | Reductions: HOCR (Ishikawa, 2011), (Fix et al., 2011) | FLP
'g aclg) Bisubmodular relaxations (Kolmogorov, 2010)** BLP
5 9 | Generalized Roof Dualilty (Kahl and Strandmark, 2011) | FLP
) § Persistency by Adams et al. (1998) FLP
L= [oh
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Maximizing Persistency
Discrete Cutting Plane

Let ju be a solution to LP-relaxation: ji € argmin,ca(f, 1) and p: X — X be
(strictly) relaxed-improving. Then Pu = p.

B
o 3lels o
H o / o V\x—\—}\;
o\gv oy
o o o
o Initialize test labeling y from p
° o ®
Y o ® o
(e
\.e ‘o ‘e
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Maximizing Persistency

Discrete Cutting Plane

Algorithm

o Start with a mapping p that substitutes everything with y

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



Maximizing Persistency

Discrete Cutting Plane

Algorithm

o Start with a mapping p that substitutes everything with y

o Auxiliary problem g = (I — PT)f

@ Check relaxed-improving conditions by solving LP:
?

i > 0
Tég(g,m >
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Maximizing Persistency

Discrete Cutting Plane

Algorithm

o Start with a mapping p that substitutes everything with y

o Auxiliary problem g = (I — PT)f
@ Check relaxed-improving conditions by solving LP:
?
. SO
min{gs i =

o If not satisfied, determine the most violating solution u
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Maximizing Persistency

Discrete Cutting Plane

Algorithm

o Start with a mapping p that substitutes everything with y

o Auxiliary problem g = (I — PT)f

@ Check relaxed-improving conditions by solving LP:
?

i > 0
Tég(g,m >

If not satisfied, determine the most violating solution u

Make the solution y immovable by p
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Maximizing Persistency

Discrete Cutting Plane

Algorithm

o Start with a mapping p that substitutes everything with y

o Auxiliary problem g = (I — PT)f

@ Check relaxed-improving conditions by solving LP:
?

i > 0
Tég(g,m >

If not satisfied, determine the most violating solution u

Make the solution y immovable by p
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Maximizing Persistency

Discrete Cutting Plane

Algorithm

o Start with a mapping p that substitutes everything with y

o Auxiliary problem g = (I — PT)f

@ Check relaxed-improving conditions by solving LP:
?

i > 0
Tég(g,m >

If not satisfied, determine the most violating solution u

Make the solution y immovable by p
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Maximizing Persistency
Correctness and Optimality

Main Properties:
@ Runs in polynomial time;

@ Finds the maximum relaxed improving substitution when the LP solver is e.g.
the interior point method (uses strict complementarity).

o Correct even with sub-optimal (no convergence guarantees) LP solvers
o Correct with dual suboptimal solvers (we use TRW-S by Kolmogorov (2006))

@ Can be implemented as incremental
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Maximizing Persistency

Efficiency

- solving relaxed inference approximately even once is slow

- Fast block-coordinate algorithms TRW-S not finitely converging

How can we iterate such relaxed inference?

Fast implementation with TRW-S

@ Incremental: reuse reparametrizations ¢

o Guaranteed to prune something even after 1 iteration of TRW-S (there is a
blocking constraint not yet pruned)

@ An optimal pruning is often possible before the dual is solved (cuts)

@ Problem reductions preserving the sufficient condition

o Fast message passing for (I — PT)f with reductions

Combined Effect of Speedups

Instance Initialization Extra time for persistency

(1000 it.) | no speedups +reduction | +node pruning| +labeling pruning| +fast msgs
Protein folding 1CKK 8.5s 268s (26.53%)| 168s (26.53%)| 2.0s (26.53%) | 2.0s (26.53%) | 2.0s (26.53%)
colorseg-n4 pfau-small 9.3s 439s (88.59%)| 230s (93.41%)| 85s (93.41%) 76s (93.41%) 19s (93.41%)
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Experiments

OpenGM Benchmark

ColorSegmentation (N8)

J. Lellmann et.al.
converted by J. Lellmann and J.H. Kappes

ColorSegmentation
K. Alahari et.al.

| converted by J H. Kappes

Chinese Characters

L
——
T
e

MRF Stereo
R. Szeliski et.al.

converted by J.H. Kappes

Object Segmentation
K. Alahari et.al.

converted by J.H. Kappes

MRF Photomontage
R. Szeliski et.al.

converted by J.H. Kappes

MREF Inpainting
R. Szeliski et.al.

converted by J.H. Kappes

[t Sors pmompesn .t pai st
converted by S. Nowozin and J. H. Kappes converted by S Nowozin and J. H. Kappes ™ : COgIZzZ?[J?igiabpej
@

Braih 3mm Geometric Surface Labeling (3)

J. H. Kappes et.al. Gallagher et.al.

converted by J. H. Kappes converted by D. Batra and J. H. Kappes
Problem family #1 #L #V MQPBO MQPBO-10 Kovtun [29]-TRWS | Our-TRWS
mrf-stereo 3 16-60 > 100000 i i 2.5h 13% | 117s 73.56%
mrf-photomontage 2 5-7 <514080| 93s 22%| 866s 16% 3.7h 16% | 483s 41.98%
color-seg 3 3-4 <424720| 228  11%| 87s 16%|0.3s 98% | 1.3h  >99% |61.8s 99.95%
color-seg-n4 9 3-12 < 86400| 22s 8% | 398s 14%0.2s 67% | 321s 90% | 4.9s 99.26%
ProteinFolding 21 <483 <1972 685s 2% |2705s 2% i 48s 18% | 9.2s 55.70%
object-seg 5 4-8 68160 | 3.2s 0.01% t 0.1s 93.86% | 138s 98.19% | 2.2s 100%

A. Shekhovtsov, P. Swoboda, B. Savchynskyy
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Experiments

OpenGM Benchmark

Input image (Potts model Color Segmentation)

Reminder (number of labels)

imum Persistency
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Experiments

Kovtun (2003): 0.2s, 80.5%

Easy
Jours: 6‘2\+1305, 75%)-
Hard
Kovtun (2003): 0.5s, 27.5%
Very hard

Ours, remainder: 130+390s, 79.2%
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Experiments
Conclusion

@ We find a part of an optimal solution in polynomial time
o New general sufficient condition

@ Covers many methods in the literature

Developed an efficient algorithm (implementation available, matlab interface)

In a sense, we converted a method without guarantees (TRW-S) into a
method with guarantees at a reasonable overhead
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