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Introduction to Phase Retrieval

¢ |In some signal/image acquisition applications, only the
magnitudes of a complex-valued representation (e.g., a
Fourier transform) of that image are available.

Magnitude

o Phase retrieval describes the problem of signal recovery,
absent the complex phase information.
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Introduction to Phase Retrieval

e Complex phase contains essential information about
image features.

¢ To illustrate, replace the complex phase of the 2D DFT of
the clown with that of the cameraman.
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Introduction to Phase Retrieval

e Phase retrieval is ill-posed without additional information.
e Current methods use sparse or other regularizers.

e This presentation focuses on a primal-dual optimization
method for sparse or compressive phase retrieval.
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Problem Formulation

A description of phase retrieval begins with the forward
model, corresponding to the measurement process.

The desired signal or columnized image x is related to
squared-magnitude intensity measurements
y = [y1,-..,ynm] through a complex-valued transform A:

Ym = |[AZ]m|?, m=1,2,..., M.

In the experiments that follow, A is primarily the discrete
Fourier transform.

In this work, the number of measurements M is less than
or equal to the dimension of «, denoted V.
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Problem Formulation

e In real settings, these measurements are corrupted by
noise.

e Depending on the type of imaging, noise may be
appropriately added before (pre) or after (post) taking the
magnitude in the forward model:

Ym = |[Ax],n + pre|? + post.
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Problem Formulation

e In real settings, these measurements are corrupted by
noise.

e Depending on the type of imaging, noise may be
appropriately added before (pre) or after (post) taking the
magnitude in the forward model:

Ym = |[Ax]m|* + post.

This work focuses on the post-magnitude noise model.

Squared
Magnitudes Measurements
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Problem Formulation

e Gaussian noise is frequently assumed, motivating the
quadratic data fit term employed in many algorithms:

M
& = argmin Y [y — |[A2]l’]”
€T

m=1

e Robust regression applies a 1-norm to the data fit term to
avoid over-fitting to low-SNR data:

M
& = argmin Z 1Y — [[AZ]m]?|.
xr

m=1

This model appears in [DS Weller et al., IEEE ICIP, 2014]
[P Hand, arXiv, 2015] [DS Weller et al., IEEE TCI, 2015].

¢ This work mainly considers the 1-norm data fit penalty.
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Problem Formulation

e The data fit term corresponds to our forward model for the
magnitude-only measurements.

e This problem remains ill-posed when M is not large
enough, motivating regularization with function R(x):

M
& = argmin Y _ |ym — |[Az]m|?[P + BR(z).
x m=1
(p = 1 or 2, for the 1-norm and quadratic data fit penalties,
respectively)
¢ This work focuses on dictionary-based sparsity (synthesis

frame is built into A; R(x) = ||z||1), as described in [DS
Weller et al., IEEE TCI, 2015].
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Relationship to Existing Work

A partial list of sparsity-regularized phase retrieval methods:

¢ Matrix-lifting and semidefinite relaxation methods (e.g.,
PhaselLift): [ML Moravec et al., SPIE Wavelets Xll, 2007]
[Y Shechtman et al., Opt Express, 2011] [H Ohlsson et al.,
arXiv, 2012] [EJ Candés et al., SIAM J Imag Sci, 2013] [X
Li and V Voroninski, SIAM J Math Anal, 2013] [L Demanet
and V Jugnon, arXiv, 2013] [| Waldspurger et al., Math
Programm, 2015] [P Hand, arXiv, 2015]

¢ Alternating projections: [S Mukherjee and CS

Seelamantula, IEEE ICASSP, 2012] [S Mukherjee and CS
Seelamantula, IEEE TSP, 2014]
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Relationship to Existing Work

More sparsity-regularized phase retrieval methods:
e Graphical model-based approximate message passing: [P
Schniter and S Rangan, Allerton, 2012]
e Pursuit-type greedy methods: [Y Shechtman et al., IEEE
TSP, 2014]
e Majorize-minimize methods: [DS Weller et al., IEEE ICIP,
2014] [DS Weller et al., IEEE TCI, 2015]
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Relationship to Existing Work

More sparsity-regularized phase retrieval methods:

e Graphical model-based approximate message passing: [P
Schniter and S Rangan, Allerton, 2012]

e Pursuit-type greedy methods: [Y Shechtman et al., IEEE
TSP, 2014]

e Majorize-minimize methods: [DS Weller et al., IEEE ICIP,
2014] [DS Weller et al., IEEE TCI, 2015]

The last type forms the basis for this work.
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Variable Splitting

e The coupling of « in each component of the data fit term
(via A) complicates solving the inverse problem.

e Introducing an auxiliary variable w = Ax decouples the
components, making the data fit term separable:

M
T = arg min min Z Ym — |um|?|P + Bllx|1, w= Ax.
r

m=1

e The Lagrange form of this problem is

M
L(@,u;v) = Y fym — lunlPP + Bl + [/ (Az — u)] .

m=1

The dual vector v is complex-valued.
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Primal-Dual Optimization

e Solving the Lagrange dual problem directly,
U = arg max [g(u) = inf L(x, u; 1/)]

e For a fixed v, the Lagrangian function is additively
separable. Minimizing each z,, individually,

i;}fﬂ]a:n] + [[A’U]an]R = {

e Therefore, g(v) is finite only when || A’v || < 8.
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Primal-Dual Optimization

e For each u,,, the exact value is more complicated, but we
can guarantee the infimum is always less than or equal to
zero (at least when y,,, > 0):

1t lym [P+ i = 0 Iy = fim "I = o
m

Um
< _|Vm‘\/ym-

e Since g(v) <0, and g(0) = 0, max, g(v) = 0.
e Returning to the primal problem:
e The minimum feasible primal objective value is zero only
when x = 0, and y,,, = 0 for all m.
¢ In all other cases, the minimum is greater than zero, and we
have a nonzero duality gap (weak duality).
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Optimization Transfer

e Weak duality derives from the nonconvexity of the original
problem. Instead, we use optimization transfer to produce
a series of convex problems to solve.

e Optimization transfer refers to the iterative process of
solving an optimization problem by solving a series of
simpler problems built around a surrogate function.

e When minimizing an objective function, the function f(x) is
replaced by a surrogate called a majorizer ¢(x; x*),
parameterized by the choice of majorization point x¢, that
satisfies two properties:

1. The majorizer dominates the original objective:
d(z; ) > f(z), for all .
2. The majorizer equals the objective at the majorization point:

¢(x';x') = f(a').
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Optimization Transfer

¢ Given these properties, minimizing the majorizer is
guaranteed not to increase the original objective function
value relative to x’:

' = argmin ¢(x; V) =

T

@) < p(x i at) < g(xh ) = f(ah).

e Using the solution to each iteration as the majorization
point for the next results in a monotonically nonincreasing
sequence of objective function values f(x'), f(x?),.. ..

e Furthermore, choosing a surrogate that is differentiable
with respect to = around = = x* whenever f(x) is
differentiable at =* ensures that the algorithm converges to
a local extremum of the original function (if it is
differentiable almost everywhere).
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Optimization Transfer

Previous work [DS Weller et al., IEEE ICIP, 2014] [DS Weller et
al., IEEE TCI, 2015] constructs a convex majorizer for the
1-norm and quadratic data fit terms:

e The data fit term can be rewritten as a pairwise maximum:
Y — [[AZ]in[*]P = (max{ym — |[Az]m[?, [[A]m|* — ym})P-

The first term is concave; the second is convex.

¢ Replace the first with its tangent plane around
Sm = [AZ,:

[Ym—[Az]m*|P < (max{ym+|sm|* 2[5y [A]m] g, [[A]m]*~ym})P.

e The resulting function is a convex majorizer that tightly fits
the original data fit term.
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Optimization Transfer

When |s,.|?> < ym, the majorizer (black) is shown on the left.
When |s,,|? is larger, the majorizer can be applied as if

|sm|? = ym, yielding the gray curve on the right. This curve is a
tighter fit than the function using the original s, in black.

[Ax]m (real axis) [Ax]m (real axis)

Similar majorizers exist for the p = 2 case.
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Minimizing the Majorizer

e Applying variable splitting to the majorizer yields a
constrained optimization similar to that for the original
problem. However, this problem is convex.

¢ Direct solution of the Lagrangian, or an efficient alternating
minimization like ADMM can be applied here.

e The algorithm [DS Weller et al., IEEE TClI, 2015]:
) = arg min 8|z, + LAz — u® +d9|3.
ugffl) = B I090) (B (W08 Sz = o[ — [Aw(iﬂ) + d(i)]m|2.

dD) — g 4 AL+ _ g, (i+1).

The majorizer is
Gm (Um; Sm) = (max{yn, + ysm‘Q — 2[s3,Um] g, ’UmP — Ym})-
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Incorporating Image Constraints

¢ Nonnegativity and support constraints can be enforced via
projection between updating « and u.

¢ Alternatively, the xz-update can be modified to explicitly
include the constraints.

e For a support mask S, the matrix A can be modified to only
include those columns in S.

o For nonnegativity, ||z||, becomes 1'z, yielding a quadratic
program.

e Incorporating other image domain constraints, like
bounded magnitudes, is also possible.

SIAM Imaging Science 2016 — MS11 — Daniel Weller
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Experimental Methods

¢ Both 1D Monte Carlo experiments on sparse random
signals, and 2D image reconstructions for the Star of David
phantom and a point spread function are conducted.

e Simulated 1D and 2D (image) data are generated with
additive Gaussian noise and/or outliers.

e The reconstructed signals are analyzed quantitatively (for
1D Monte Carlo tests) and visually (for images). Note that
errors are computed after accounting for global phase,
spatial shifts, and image reversal (the objective function is
insensitive to these operations).

e Some experiments are based on [DS Weller et al., IEEE
TCI, 2015].
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Monte Carlo Experiments (1D)

Compare matrix lifting-based compressive phase retrieval
(CPRL) [H Ohlsson et al., arXiv, 2012] versus proposed
optimization-transfer with 1-norm data fit term:

40 dB AWGN + 1 outlier

Measurements (M/N) Measurements (M/N)
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Image Reconstruction

The Star-of-David phantom is reconstructed using both
GESPAR and the proposed non-smooth-regularized phase
retrieval method with sparsity only, and with an additional

non-negativity constraint.

Proposed
GESPAR Sparsity Only
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PSNR = 10.4 dB PSNR =24.2 dB

Proposed
and Non-Negativity

PSNR = 26.7 dB
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Image Reconstruction

Elliptical cross sections of a simulated double-helix point
spread functions (1% outliers) are reconstructed using the
proposed phase retrieval method with sparsity only.
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PSNR=34.9dB PSNR=329dB PSNR=37.6dB PSNR=236.4dB
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Discussion

e The robust data fit term and non-smooth regularization
greatly improves phase retrieval of both 1D signals and 2D
images.

e The synthesis sparse prior extends to images of point
spread functions. Other research concerning dictionary
learning for phase retrieval like [AM Tillmann et al., arXiv,
2016] would be helpful for more arbitrary PSFs.

e The primal-dual ADMM-based solution to the majorizer in
the optimization transfer algorithm is effective here without
any manual tuning. Similarly, the regularization parameter
was not manually adjusted for any of these experiments.
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Conclusion

A phase retrieval framework using variable splitting was
introduced.

¢ A primal-dual ADMM-based optimization transfer algorithm
was presented for robust phase retrieval.

e Both 1D and 2D image reconstruction results were
presented and discussed.

e Ongoing research concerning synthesizing analysis
transforms, image-domain constraints, more direct
primal-dual methods, and theoretical analysis of such
algorithms, continues.
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