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Compressed Sensing
Compressed Sensing aims at solving

Ax =y where xe CY,y e C™ A e C™xN
for m < N under the assumption that x is s-sparse, i.e. ||x|jo = #{i : x; # 0} <s.
Basis Pursuit
Algorthmic approach:
min ||x||1 subject to Ax =y (BP)
Robust approach:
min [1x|l1 subject to [/ Ax — yll2 < 7 (BPDN)

where 71 is an estimate for the noise level.
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Sparsity and Modifications
Union of subspaces

Basic idea behind sparsity: the signal x belongs to a union of low-dimensional
subspaces:

xllo<st= |J {xeC";supp(x) C S}

SC[N]
#5<s

xe¥s:={xeCV;

Modifications

e Since x may not be sparse in the standard basis, one may employ an orthonormal
operator © € O(n), i.e.

min ||z||1 subject to A®*z =y
which is the same as
min ||©x||1 subject to Ax = y.
e If x is not sparse, its discrete gradient Vx often is (e.g. for images), hence we
minimize

min || Vx||1 subject to Ax =y. (TV)
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A possesses the Restricted Isometry Property (RIP) of order s if

(1= 8)|Ix]13 < |Ax|I3 < (1 + 8)]|x||3 for all x € X5 and some & € (0, 1).

The smallest such § is called the Restricted Isometry Constant Js.
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Compressed Sensing

Restricted Isometry Property

A possesses the Restricted Isometry Property (RIP) of order s if
(1= 8)|Ix]13 < |Ax|I3 < (1 + 8)]|x||3 for all x € X5 and some & € (0, 1).
The smallest such § is called the Restricted Isometry Constant Js.
Recovery result
If A has the RIP of order 2s with dps < 0.6248 then the minimizer x! of BPDN fulfils

lIx = x¥l2 < C% +Dp

where 05(x)1 = inf ) z,<s [z — x||1 is the error of best s-term approximation.
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Standard/Benchmark Theorem

If m> Cé2sln(eN/s), then a Gaussian random matrix A possesses the RIP of order
s with constant § with probability exceeding 1 — 2 exp(—62m/2C).
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Compressed Sensing
Standard/Benchmark Theorem

If m> Cé2sln(eN/s), then a Gaussian random matrix A possesses the RIP of order
s with constant § with probability exceeding 1 — 2 exp(—62m/2C).

Further information

A Mathematical
Introduction to

For a thorough introduction, see Foucart and Rauhut [2013]: ggnms[?:]egsswe

) Birkhauser

The big red book
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Frames
wi

Let Q = : € CP*N with p > N be a frame for CN, i.e. there exist A,B > 0
wp

such that

P
Allxl13 < 1ix,wi)? < Bllx|? for all x € CV.
i=1

The sequence {(x,w;)}7_; are the analysis coefficients of x. A frame is called tight if
A= B and Parseval if A=B =1.
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Analysis and Synthesis

Frames
wi

Let Q = : € CP*N with p > N be a frame for CN, i.e. there exist A,B > 0
wp

such that

P
Allxl13 < 1ix,wi)? < Bllx|? for all x € CV.
i=1
The sequence {(x,w;)}7_; are the analysis coefficients of x. A frame is called tight if
A = B and Parseval if A= B = 1. Since {w,...,wy} spans CV we can expand

P
X = Z cjw; for some ¢; € C.
i=1
The c¢; are the synthesis coefficients. They can be computed via a dual frame

Qf € CV*P, i.e. ¢ = Qfx. Those are not unique in general.
Remark: The canonical dual frame is Qf = (2*Q)~1Q*.
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Cosparsity

Frame Minimization
Instead of basis pursuit we consider

min || Qx]|1 subject to Ax =y (2-BP)
or its robust version
min ||Qx||1 subject to ||[Ax — y|2 <7 (2-BPDN)

under the assumption that x is Q — k-cosparse, i.e. #{i; (wj,x) #0} < p—k
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Cosparsity

Frame Minimization
Instead of basis pursuit we consider

min || Qx]|1 subject to Ax =y (2-BP)
or its robust version
min ||Qx||1 subject to ||[Ax — y|2 <7 (2-BPDN)
under the assumption that x is Q — k-cosparse, i.e. #{i; (wj,x) #0} < p—k

Union of subspaces
Cosparsity comes from the same idea as sparsity: a p — k-cosparse x belongs to

{XE(CN : ||Qx\|0§p—k}: U {wj : ie S}t
SClp]
ES<k

We often write s = p — k.

8/25
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The smallest 05 € (0,1) fulfilling either of the inequalities is the restricted isometry
constant.



Introduction: Analysis Sparsity

Previous Results

Q-Restricted Isometry Property (Q2-RIP)
For the analysis, Candes et al. [2011] introduced the Q-RIP
(1 =8)|IxI3 < 1Ax|I3 < (1 + 8)]|x||3 for all @ — k — cosparse x
or equivalently
(1=l < 1AQ c||3 < 14 6||QFc||3 for all ¢ € s.

The smallest 05 € (0,1) fulfilling either of the inequalities is the restricted isometry
constant.

Reconstruction Guarantee
If A has the Q-RIP with constants &»s < 0.08, then the minimizer x! of BPDN fulfils

o‘s(Qx)l

lIx = xFll2 < € /e

+ Dn

where 05(Q2x)1 = inf. 0z <p—k 122 — Qx]1.



Introduction: Analysis Sparsity

Previous Results

Q-RIP for Gaussian Random Matrices

e Candes et al. [2011] showed that if Q is Parseval and m 2 sin(p/s), then a
Gaussian random matrix possesses the Q-RIP with high probability.

10/25



Introduction: Analysis Sparsity

Previous Results

Q-RIP for Gaussian Random Matrices

e Candes et al. [2011] showed that if Q is Parseval and m 2 sin(p/s), then a
Gaussian random matrix possesses the Q-RIP with high probability.

e The same paper argued, that all matrices classically used in Compressed Sensing
(e.g. Rademacher, Bernoulli, Steinhaus, etc.) obey the Q-RIP if an additional
random sign flip is applied.

10/25



Introduction: Analysis Sparsity

Previous Results

Q-RIP for Gaussian Random Matrices

e Candes et al. [2011] showed that if Q is Parseval and m 2 sin(p/s), then a
Gaussian random matrix possesses the Q-RIP with high probability.

e The same paper argued, that all matrices classically used in Compressed Sensing
(e.g. Rademacher, Bernoulli, Steinhaus, etc.) obey the Q-RIP if an additional
random sign flip is applied.

e Rauhut and Kabanava [2013] showed that if m 2 % In (%) then a Gaussian
random matrix possesses the Q-RIP with high probability.



Introduction: Analysis Sparsity

Previous Results

Q-RIP for Gaussian Random Matrices

e Candes et al. [2011] showed that if Q is Parseval and m 2 sin(p/s), then a
Gaussian random matrix possesses the Q-RIP with high probability.

e The same paper argued, that all matrices classically used in Compressed Sensing
(e.g. Rademacher, Bernoulli, Steinhaus, etc.) obey the Q-RIP if an additional
random sign flip is applied.

e Rauhut and Kabanava [2013] showed that if m 2 % In (%) then a Gaussian
random matrix possesses the Q-RIP with high probability.

e What about other types of measurement matrices?



Introduction: Analysis Sparsity

Previous Results

Q-RIP for Gaussian Random Matrices

e Candes et al. [2011] showed that if Q is Parseval and m 2 sin(p/s), then a
Gaussian random matrix possesses the Q-RIP with high probability.

e The same paper argued, that all matrices classically used in Compressed Sensing
(e.g. Rademacher, Bernoulli, Steinhaus, etc.) obey the Q-RIP if an additional
random sign flip is applied.

e Rauhut and Kabanava [2013] showed that if m 2 % In (%) then a Gaussian
random matrix possesses the Q-RIP with high probability.

e What about other types of measurement matrices?
"We will see easily that Gaussian matrices and other random compressed sensing
matrices satisfy the Q-RIP" Candes et al. [2011]



Introduction: Analysis Sparsity

Interlude: Sampling in Bounded Orthonormal Systems

Bounded Orthonormal Systems (BOS)

Let D a non-empty set endowed with a probability measure v and W := {¢1...,¢¥n}
be a system of pairwise orthonormal functions on D with respect to v that is

/ D)5 (t)du(t) = 61,
D

WV is an bounded orthonormal system if there exists a constant K > 0 such that

max sup |1;(t)| < K
i€[N] teD
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Interlude: Sampling in Bounded Orthonormal Systems

Bounded Orthonormal Systems (BOS)

Let D a non-empty set endowed with a probability measure v and W := {¢1...,¢¥n}
be a system of pairwise orthonormal functions on D with respect to v that is

/ V(£ () du(t) = 5
D

WV is an bounded orthonormal system if there exists a constant K > 0 such that

max sup |1;(t)| < K
i€[N] teD

Examples
e Trigonometric polynomials x — e =27 {(x:€) on D = [0,1]¢ are a BOS with K =1
with respect to the Lebesgue-measure.

e Fourier matrices (or any other type of orthonormal matrices) F with
Fik = \%Ne_h"(j_l)(k_l)/’v renormalized by a factor /N over CV (here:

D = [N]) with »(B) = 2.
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Q-RIP for Bounded Orthonormal Systems
Krahmer et al. [2015] showed the following theorems for Parseval Frames :

e If Q and W are incoherent, that is max; ; [(wi, ¢;)| < % and if

m > CsK?X%In(\2s) In(p)

where X\ = sup j;|,=1 is the localization factor, then the rescaled

lotez|,
llzllo<s Vs
sampling matrix ‘/%CD, where the rows of ® are chosen at uniformly at random

from W, then with probability exceeding 1 — p~'"(25) &, exhibits uniform
recovery via BPDN for s = p — k-cosparse vectors.
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Previous Results

Q-RIP for Bounded Orthonormal Systems
Krahmer et al. [2015] showed the following theorems for Parseval Frames :

e If Q and W are incoherent, that is max; ; [(wi, ¢;)| < % and if

m > CsK?X%In(\2s) In(p)

where X\ = sup j;|,=1
llzllo<s

T . ) .
7”9}2“1 is the localization factor, then the rescaled

sampling matrix ‘/%CD, where the rows of ® are chosen at uniformly at random

from W, then with probability exceeding 1 — p~'"(25) &, exhibits uniform
recovery via BPDN for s = p — k-cosparse vectors.

o If max; [{(wi, ;)| < kj and we construct ® by choosing rows at random from ¥
2

according to the probability measure given by (Hnﬁ) , then the matrix
"2/ jen
ﬁdiag (@) & exhibits uniform recovery for s = p — k-cosparse vectors via
J
BPDN with probability exceeding 1 — p~ "(25),
e These theorems employ the Q-RIP.
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The Idea: Null Space Properties

The Null Space Property

e & is said to possess the null space property of order k with respect to S if for all
SClwithiS<p—k

12sx]l1 < [|R2sx]l1 for all x € ker(®) \ {0} (£2-NSP)
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e & is said to possess the null space property of order k with respect to S if for all
SClwithiS<p—k

12sx]l1 < [|R2sx]l1 for all x € ker(®) \ {0} (£2-NSP)
e & is said to possess the £2-robust null space property of order k with respect to
Q with constants 6 € (0,1) and 7 > 0 if for all S C | with S < p — k
0
Vs

€sx][1 < —=[19sx([1 + 7/[®x]|2. (Q2-RNSP)
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The Idea: Null Space Properties

The Null Space Property

e & is said to possess the null space property of order k with respect to S if for all
SClwithiS<p—k

12sx]l1 < [|R2sx]l1 for all x € ker(®) \ {0} (£2-NSP)
e & is said to possess the £2-robust null space property of order k with respect to
Q with constants 6 € (0,1) and 7 > 0 if for all S C | with S < p — k
0

T2 19531 + 7l10xl (Q-RNSP)

e The robust £2-robust-NSP implies recovery via BPDN with an error bound for
the reconstruction x*

Isxl1 <

C
I =<t < —os(91 + Dn

where the constants C, D only depend on the parameters 0,7 as well as the
frame bounds.
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Theorem [F,Rauhut, '16]

If & € C™*N is a random subsampling of an orthogonal operator W € CN*N and

K
QMW < —,
1Q"W]|oo < NG
where QF denotes some dual frame, and
m > c Bs
In3(m) =~ A62(1 - 9)

5 In(p)

then with probability exceeding 1 — C exp (—c ,’;’fé) the matrix @, if obtained from W

by choosing rows uniformly at random, possesses the £2-robust NSP of order s for the

frame Q with 7 = ‘/%.
m
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Theorem [F,Rauhut, '16]

If & € C™*N is a random subsampling of an orthogonal operator W € CN*N and

K
QMW < —,
1Q"W]|oo < NG
where QF denotes some dual frame, and

m > c Bs
In3(m) =~ A62(1 - 9)

5 In(p)

then with probability exceeding 1 — C exp (—c ,’;’fé) the matrix @, if obtained from W

by choosing rows uniformly at random, possesses the £2-robust NSP of order s for the
frame Q with 7 = ‘/%.

Remark
The quantity ||Qf W]/ can be seen as a generalization of the (local) incoherence.



Applications and Preconditioning

(*-minimization and fourier subsampling

Fourier matrices
We consider

min ||x||1 subject to ®x =y
where ® is a subsampling of the Fourier matrix F = <ﬁe‘2ﬂi0_1)(k—l)/’v>l<' LN
<Jsk<
and Q = Idy. Then we have
1
QT P)|oo = —
197 ®lloc = —

hence K =1 in the theorem, which is optimal.
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(*-minimization and fourier subsampling

Fourier matrices
We consider

min ||x||1 subject to ®x =y

here ® is a subsampling of the Fourier matrix F = (ise~27/i-D(k-1/N)
where IS @ subsampling o € rourier matrix \/Ne 1<), k<N

and Q = Idy. Then we have

1

hence K =1 in the theorem, which is optimal.

Features

Sampling can be done uniformly at random.

Example lacks application in imaging problems since the im
age itself must be sparse.

Uniform sampling pattern in
fourier domain

15/25
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Wavelet minimization

Wavelet Transformation

Let Q = W be the orthonormal Wavelet transform and ® a subsampled Fourier
transform and consider

min ||[Wx||1 subject to &x =y

or equivalently min ||c||1 subject to ®W*c = y. Then (®W*); ) = %,k(x,-) where j
is the scale for the wavelet transform and the (x;)1<j<m are the sampling points.
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Applications and Preconditioning

Wavelet minimization

Wavelet Transformation

Let Q = W be the orthonormal Wavelet transform and ¢ a subsampled Fourier
transform and consider

min ||[Wx||1 subject to &x =y

or equivalently min ||c||1 subject to ®W*c = y. Then (®W*); ) = @,k(x;) where j
is the scale for the wavelet transform and the (x;)1<j<m are the sampling points.

Natural images are often sparse/compressible in wavelets.

Reconstruction form the largest 6% of wavelet coefficients

Cons The sampling points (x;)1<j<m need to be drawn uniformly from R? but also
according to Lebesgue-meassure.

Cons We have K = 27, where J is the maximal scale employed.



Applications and Preconditioning

Wavelet-minimization and Preconditioning

Preconditioning
Instead, consider measurements (¢(X,-){/;j7k(x,-)> =1<i<m Where ¢ is chosen such that
o ¢(x) = C(1+|x|)/>™ for some « > 0 (intuitively: « € (0,1))
d; —
° fJRZ ¢2—(XX) =1.
Then, the preconditioned system {qﬁ'{[;j,k . j, k as chosen before} is a BOS with

respect to the orthogonalization measure 20

dx
X
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Applications and Preconditioning

Wavelet-minimization and Preconditioning

Preconditioning
Instead, consider measurements (¢(X,-){/;j7k(x,-)> =1<i<m Where ¢ is chosen such that

o ¢(x) = C(1+|x|)/>™ for some « > 0 (intuitively: « € (0,1))
d;
¢ i =L
Then, the preconditioned system {qﬁ'&z\j,k . j, k as chosen before} is a BOS with

respect to the orthogonalization measure ﬂ—a).

Effect
e Sampling can to be carried out according to ¢;’—(xx).

e We can apply the usual reconstruction theorems and now

wd
< 202
have K < NGE

e We only need the father/mother wavelet 1) € C%(R?).

Sampling pattern in [—1, 1]2
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Examples of wavelet minimization

7.6%

m

Sampling rate = TV Wavelet Minimization

18 /25



7.6%

28.5%

Applications and Preconditioning

Examples of wavelet minimization

m

Sampling rate = Wavelet Minimization




Compressed Sensing Introduction: Analysis Sparsity Contribution Applications and Preconditioning References

Examples of wavelet minimization

7.6%

Sampling rate f’; TV Wavelet Minimization

19/25



Compressed Sensing Introduction: Analysis Sparsity Contribution Applications and Preconditioning References

Examples of wavelet minimization

7.6%

28.5%

Wavelet Minimization

Sampling rate 77
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Shearlet Frames and Anisotropy

Shearlets
e Main feature: Detects anisotropic features.
o Ui m(x) = 23j/4w(5,kA2jx — m) where

s=(o 3 )a=(§ wova )

for some suitable ¢y € L?(R?) and parameters j, k, m.

e Obtain a frame S via suitable truncation and exchange of variables. Those are
not tight in general!
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Shearlet Frames and Anisotropy

Problems & Solutions
We consider min ||[SHx||1 subject to ||[®x — y|l2 < 7.

e Computing SH1, in order to estimate ||SHTW| s, is extremely computational
expensive in general.
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There is an implementation of this frame.
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Applications and Preconditioning

Shearlet Frames and Anisotropy

Problems & Solutions
We consider min ||[SHx||1 subject to ||[®x — y|l2 < 7.

e Computing SHT, in order to estimate ||S’H‘L\UHOO, is extremely computational
expensive in general.

o Kutyniok and Lim [2014] constructed a shearlet frame which

»

>

| 4
>
>

Preconditioning

Again, we need preconditioning in order to avoid sampling over
R2 uniformly. Then,

_ ot
K = max 9]k m () @()] S max

involves functions which are compactly supported and form a frame for
L%(R?),

which’s associated dual frame can be stated in closed form and efficiently
computed and

is moreover composed of orthonormal bases.

There is an implementation of this frame.

This frame is not tight in general,

2i(1/4+2x)

Sampling pattern in [—1, 1]2
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Summary & Conclusion
Advantages

e The theorem allows the usage of arbitrary frames.
e Only analysis sparsity is needed for the theory to work.

e Subsamplings of orthogonal operators actually appear in applications, e.g. in
MRI, CT etc.

e The theory also extends to infinite-dimensional spaces, e.g. L2(R?), H2(Q) etc.

e Side project: Application to real-world CT-data.
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