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Stand-alone medical imaging modalities

High contrast modalities:
Optical Tomography (OT);

Electrical Impedance Tomography
(EIT);

Elastographic Imaging (EI).

=) low resolution

High resolution modalities:
Computerized Tomography (CT);

Magnetic Resonance Imaging (MRI);

Ultrasound Imaging (UI).

=) sometimes
low contrast.
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Coupled physics medical imaging modalities

Idea: use physical mechanism that couples two modalities to
improve resolution while keeping the high contrast capabilities.
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Photo-acoustic e↵ect

Photo-acoustic e↵ect:

Graham Bell: When rapid
pulses of light are inci-
dent on a sample of mat-
ter they can be absorbed
and the resulting energy
will then be radiated as
heat. This heat causes de-
tectable sound waves due
to pressure variation in the
surrounding medium.
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Experimental result

Courtesy UCL (Paul Beard’s Lab).
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In Rn

Model in Rn

Let ⌦ ⇢ Rn be a bounded domain with supp f ⇢ ⌦. Assume the
speed c(x) is variable and known in ⌦. For T > 0, let u solve the
problem

8
<

:

(@2

t � c2(x)�)u = 0 in (0,T )⇥ Rn

u|t=0

= f
@tu|t=0

= 0.

Measurement: ⇤f := u|
[0,T ]⇥@⌦.

Inverse Problem: recover f from ⇤f .
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In Rn

Literature in Rn

Previous Results: Agranovsky, Ambartsoumian, Anastasio et. al.,
Burcholzer, Cox et. al., Finch, Grun, Haltmeier, Hofer, Hristova,
Jin, Kuchment, Nguyen, Kunyansky, Paltau↵, Patch, Rakesh,
Stefanov, Uhlmann, Wang, Xu, ...

For the Riemannian manifold (⌦, c�2dx2), let

T
0

:= max
⌦

dist(x , @⌦).

T
1

:= length of longest geodesic in ⌦.

Theorem (Stefanov and Uhlmann, 2009)

T < T
0

) no uniqueness;

T
0

< T < T
1

2

) uniqueness, no stability;

T
1

2

< T ) stability and explicit reconstruction.
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In Rn

Stefanov and Uhlmann’s Time Reversal

Define A(⇤f ) := v(0, ·) (pseudo-inverse of ⇤) where v solve the
backward problem

8
>><

>>:

(@2

t � c2(x)�)v = 0 in (0,T )⇥ ⌦
v |t=T = �

@tv |t=T = 0
v |

[0,T ]⇥@⌦ = ⇤f

where � solves

�� = 0 in ⌦, �|@⌦ = ⇤f (T , ·).
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In Rn

Stefanov and Uhlmann’s Time Reversal

Denote the error operator by

Kf := f � A(⇤f )

or equivalently
(I � K )f = A(⇤f ).

Stefanov and Uhlmann showed that kKk < 1 when T > T
1

2

. This
leads to the Neumann series reconstruction:

f = (I � K )�1A(⇤f ) =
1X

m=0

KmA(⇤f ).

11 / 39



TAT: introduction TAT: models

In ⌦: Full Data

Outline

1 TAT: introduction

2 TAT: models
In Rn

In ⌦: Full Data
In ⌦: Partial Data

12 / 39



TAT: introduction TAT: models

In ⌦: Full Data

Model in ⌦

Motivation: placing reflectors around the patient to enhance waves.

Assume the speed c(x) is variable and known in ⌦. For T > 0, let
u solve the problem

8
>><

>>:

(@2

t � c2(x)�)u = 0 in (0,T )⇥ ⌦
u|t=0

= f
@tu|t=0

= 0
@⌫u|

(0,T )⇥@⌦ = 0.

Measurement: ⇤f := u|
[0,T ]⇥@⌦.

Inverse Problem: recover f from ⇤f .
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In ⌦: Full Data

Literature in ⌦

Previous Results: Kunyansky, Holman, Cox, Acosta, Montalto,
Nguyen.

For the Riemannian manifold (⌦, c�2dx2), let

T
0

:= max
⌦

dist(x , @⌦).

T
1

:= length of longest geodesic in ⌦.

Theorem (Stefanov and Y., 2015)

T < T
0

) no uniqueness;

T
0

< T < T
1

2

) uniqueness, no stability;

T
1

2

< T ) stability and explicit reconstruction.
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In ⌦: Full Data

Time reversal in ⌦ fails!

Let v solve the problem
8
>><

>>:

(@2

t � c2(x)�)v = 0 in (0,T )⇥ ⌦
v |t=T = �

@tu|t=T = 0
u|

(0,T )⇥@⌦ = ⇤f .

Define the error operator Kf := f � v(0), but kKk = 1!
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In ⌦: Full Data

Time reversal in ⌦ fails!

Figure: Failure of the time reversal to resolve all singularities.
T = 0.9⇥ diagonal, c = 1. Increasing T does not help!
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In ⌦: Full Data

Propagation of singularities

Figure: Propagation of singularities in [0,T ]⇥ ⌦ for the positive speed
only with Neumann boundary conditions (left) and time reversal with
Dirichlet ones (right). In the latter case, the sign changes at each
reflection.
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In ⌦: Full Data

Main idea: averaged time reversal

This leads to the following idea:

Average with respect to T !

Then the error will average as well and some of the positive and
negative contributions will cancel out. This will make the error
operator a microlocal contraction.

Let A(⌧) be the time reversal over [0, ⌧ ]. Define the averaged time
reversal operator as

A
0

:=
1

T

Z T

0

A(⌧) d⌧.
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In ⌦: Full Data

Averaging works!

Figure: Averaged time reversal. T = 0.9⇥ diagonal, c = 1. This is not
our inversion yet!
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In ⌦: Full Data

Comparison with non-averaged time reversal

Figure: For comparison: Failure of the time reversal to resolve all
singularities. T = 0.9⇥ diagonal, c = 1.
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In ⌦: Full Data

Explicit Inversion

Let T
1

be the length of the longest geodesic in (⌦, c�2dx2).

Theorem (Stefanov-Y., 2015)

Let (⌦, c�2e) be non-trapping, strictly convex, and let T > T
1

.
Let ⌦

0

b ⌦. Then A
0

⇤ = Id�K
0

on HD(⌦0

), where
kK

0

kL(HD(⌦0

))

< 1. In particular, Id�K
0

is invertible on HD(⌦0

),
and the inverse problem has an explicit solution of the form

f =
1X

m=0

Km
0

A
0

h, h := ⇤f .
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In ⌦: Full Data

Neumann series inversion

Figure: Full data Neumann series inversion, 10 terms, T = 5, on the
square [�1, 1]2, variable c = 1 + 0.3 sin(⇡x1) + 0.2 cos(⇡x2).
The artifacts are mainly due to the presence of corners. The L2 error on
the left is 0.44%; and on the right: 0.34%. The L1 error on the left is
about 1.2%; and about 3% on the right.
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In ⌦: Partial Data

Partial data

Assume the speed c(x) is variable and known in ⌦. For T > 0, let
u solve the problem

8
>><

>>:

(@2

t � c2(x)�)u = 0 in (0,T )⇥ ⌦
u|t=0

= f
@tu|t=0

= 0
@⌫u|

(0,T )⇥@⌦ = 0.

Partial Data Measurement: ⇤f := u|
[0,T ]⇥�

where � is an open
subset of @⌦.

Inverse Problem: recover f from ⇤f .
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In ⌦: Partial Data

Partial data: uniqueness

Uniqueness: follows from unique continuation. Let

T
0

:= max
⌦

dist(x , �).

Theorem (Uniqueness)

⇤f = 0 for some f 2 HD(⌦) implies f (x) = 0 for dist(x , �) < T .
In particular, if T � T

0

, then f = 0.
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In ⌦: Partial Data

Partial data: stability

Stability: follows from boundary control by Bardos-Lebeau-Rauch.

Theorem (Stability)

If each broken geodesic �(t) hits � for |t|  T =) stability.
If some does not hit �̄ =) no stability.

Figure: Bardos-Lebeau-Rauch condition: Left: unstable. Right: stable
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In ⌦: Partial Data

Partial data: smooth wave speed reconstruction

Figure: Partial data inversion with data on the indicated part of @⌦.
Neumann series inversion with 10 terms, T = 5, ⌦ = [�1, 1]2. Left:
constant speed c = 1, L2 error = 0.7%. Right: variable speed
c = 1 + 0.3 sin(⇡x1) + 0.2 cos(⇡x2), L2 error = 2%. Again, the most
visible artifacts can be explained by the presence of corners.

27 / 39



TAT: introduction TAT: models

In ⌦: Partial Data

Partial data: discontinous speed

It works well with the following discontinuous speed AND partial
data.
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In ⌦: Partial Data

Partial data: discontinuous speed, Iteration = 0
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In ⌦: Partial Data

Partial data: discontinuous speed, Iteration = 1
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In ⌦: Partial Data

Partial data: discontinuous speed, Iteration = 2
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In ⌦: Partial Data

Partial data: discontinuous speed, Iteration = 3
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In ⌦: Partial Data

Partial data: discontinuous speed, Iteration = 4
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In ⌦: Partial Data

Partial data: discontinuous speed, Iteration = 5
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In ⌦: Partial Data

Partial data: discontinuous speed, Iteration = 6
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In ⌦: Partial Data

Partial data: discontinuous speed, Iteration = 7
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In ⌦: Partial Data

Partial data: discontinuous speed, Iteration = 8
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In ⌦: Partial Data

Partial data: discontinuous speed, Iteration = 9
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In ⌦: Partial Data
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