ShapeFit: Exact location recovery from corrupted pairwise directions

Paul Hand Rice University

with Choongbum Lee, Vlad Voroninski

24 May 2016 - Funding: NSF, ONR

Location recovery from directions

Location recovery from directions

Difficulty: Incorrect point-correspondences

Difficulty: Incorrect point-correspondences

Location recovery from corrupted directions

Formulation: Location recovery from directions

Let:

$$t_1 \dots t_n \in \mathbb{R}^3$$

$$G = ([n], E = E_g \sqcup E_b)$$

$$v_{ij} = \frac{t_i - t_j}{\|t_i - t_j\|_2} \text{ for } ij \in E_g$$

$$v_{ij} \in S^2 \qquad \text{ for } ij \in E_b$$

 $\begin{array}{ll} \mbox{Given:} & G, \{v_{ij}\} \\ \mbox{Find:} & \{t_i\} \mbox{ up to translation and scale} \end{array}$

Algorithms for location recovery from directions

Not robust	Empirically robust	Provably robust
least squares	1dSfM	
ℓ_∞ methods	LUD	
spectral methods		

Singer et al.; Kahl; Brand, Antone, Teller; Wilson, Snavely; Özyeşil and Singer

. . .

Algorithms for location recovery from directions

Not robust	Empirically robust	Provably robust
least squares	1dSfM	ShapeFit
ℓ_∞ methods	LUD	
spectral methods		

Singer et al.; Kahl; Brand, Antone, Teller; Wilson, Snavely; Özyeşil and Singer

. . .

$$\begin{split} & \underset{\{t_i\}}{\text{minimize}} \quad \sum_{ij \in E} \|P_{v_{ij}^{\perp}}(t_i - t_j)\|_2 \\ & \text{subject to} \quad \sum_{ij \in E} \langle t_i - t_j, v_{ij} \rangle = 1, \quad \sum_{i \in [n]} t_i = 0 \end{split}$$

$$\begin{split} & \underset{\{t_i\}}{\text{minimize}} \quad \sum_{ij\in E} \|P_{v_{ij}^{\perp}}(t_i - t_j)\|_2 \\ & \text{subject to} \quad \sum_{ij\in E} \langle t_i - t_j, v_{ij} \rangle = 1, \quad \sum_{i\in [n]} t_i = 0 \end{split}$$

- Robust to corruptions
- Recovery guarantee

- Reasonable on real data
- Fast implementation

$$\begin{split} & \underset{\{t_i\}}{\text{minimize}} \quad \sum_{ij\in E} \|P_{v_{ij}^{\perp}}(t_i - t_j)\|_2 \\ & \text{subject to} \quad \sum_{ij\in E} \langle t_i - t_j, v_{ij} \rangle = 1, \quad \sum_{i\in [n]} t_i = 0 \end{split}$$

- Robust to corruptions
- Recovery guarantee

- Reasonable on real data
- Fast implementation

ShapeFit can succeed with 60% corruption on a random model

Average Reconstruction Error

Shown for \mathbb{R}^3 , Erdös-Rényi graph, n = 200, Gaussian locations

$$\begin{split} & \underset{\{t_i\}}{\text{minimize}} \quad \sum_{ij\in E} \|P_{v_{ij}^{\perp}}(t_i - t_j)\|_2 \\ & \text{subject to} \quad \sum_{ij\in E} \langle t_i - t_j, v_{ij} \rangle = 1, \quad \sum_{i\in [n]} t_i = 0 \end{split}$$

- Robust to corruptions
- Recovery guarantee

- Reasonable on real data
- Fast implementation

ShapeFit provably tolerates corruptions under a random data model

Let: $t_1 \ldots t_n \sim \mathcal{N}(0, I_3)$

G be Erdös-Rényi with prob. p

ShapeFit provably tolerates corruptions under a random data model

Let: $t_1 \ldots t_n \sim \mathcal{N}(0, I_3)$

G be Erdös-Rényi with prob. p

Theorem (Hand, Lee, Voroninski 2015)

Let $n \gtrsim 1$ and $p \gtrsim n^{-\frac{1}{3}}$. There is $\gamma = \Omega(p^5/\log^3 n)$ such that whp: If $\max_i \deg_b(i) \leq \gamma n$ then ShapeFit's unique minimizer is exact.

ShapeFit proof

$$\min \sum_{ij \in E} \|P_{v_{ij}^{\perp}}(t_i - t_j)\|_2 \text{ subject to } \sum_{ij \in E} \langle t_i - t_j, v_{ij} \rangle = 1, \sum_{i=1}^n t_i = 0$$

 \mathbf{m}

Proof:

$$\begin{split} & \underset{\{t_i\}}{\text{minimize}} \quad \sum_{ij \in E} \|P_{v_{ij}^{\perp}}(t_i - t_j)\|_2 \\ & \text{subject to} \quad \sum_{ij \in E} \langle t_i - t_j, v_{ij} \rangle = 1, \quad \sum_{i \in [n]} t_i = 0 \end{split}$$

- Robust to corruptions
- Recovery guarantee

- Reasonable on real data
- Fast implementation

Several methods have state-of-the-art median recovery errors

	ShapeFit	LUD	1d+Huber	1d + SF	1d+LUD
Ellis Island	30	25	40	29	25
NYC Library	2.5	2.9	2.2	2.4	2.8
Piazza Pop.	2.4	3.0	3.2	1.7	2.0
Metropolis	2.8	4.2	4.0	2.4	3.7
Montreal ND	1.6	1.2	0.9	1.5	1.1
Tow. London	3.3	5.6	3.5	3.3	4.3
Notre Dame	0.5	0.5	0.5	0.5	0.5
Alamo	0.9	0.9	0.8	0.8	0.9
Gendarmen.	35	29	37	27	27
Union Sq.	13	7.8	7.9	7.4	7.9
Vienna Cath.	19	6.0	4.3	7.6	5.8
Roman For.	18	7.6	6.4	19	7.7

Median recovery error (m)

LUD has state-of-the-art mean recovery errors

Mean recovery error (m)

	Shaper
Ellis Island	442
NYC Library	3e3
Piazza Pop.	8.9
Metropolis	145
Montreal ND	3.1
Tow. London	99
Notre Dame	1.5
Alamo	3.4
Gendarmen.	266
Union Sq.	4e4
Vienna Cath.	2e3
Roman For.	661

	ShapeFit	LUD	1d+Huber
	442	25	1e6
/	3e3	7.2	995
	8.9	6.2	1e5
	145	15	бе4
D	3.1	2.1	4e4
n	99	24	2e5
è	1.5	1.5	5e3
	3.4	2.8	8e3
	266	53	2e5
	4e4	13	8e3
۱.	2e3	15	2e5
	661	18	бе4

ShapeFit can be solved faster than prior methods

Solution time (s)

Ellis Island NYC Libra Piazza Pop Metropolis Montreal N Tow. Lond Notre Dam Alamo Gendarmer Union Sq. Vienna Cat Roman For

	ShapeFit	LUD	1d+Huber
	0.5	6.1	8.8
ry	1.2	6.5	38
) .	0.4	2.8	7.6
	0.9	7.0	18
١D	1.3	13	115
lon	1.2	6.8	142
ne	2.9	24	46
	2.8	18	199
۱.	1.8	16	24
	1.6	11	44
th.	6.8	29	201
r.	4.0	24	82
r.	4.0	24	82

ShapeFit performs reasonably with linear motion

Joint work with: Lee, Voroninski, Goldstein, Tsotsos, Soatto

ShapeFit performs reasonably with linear motion

Joint work with: Lee, Voroninski, Goldstein, Tsotsos, Soatto

Algorithms for location recovery from directions

Not robust	Empirically robust	Provably robust
least squares	1dSfM	ShapeFit
ℓ_∞ methods	LUD	
spectral methods		

Singer et al.; Kahl; Brand, Antone, Teller; Wilson, Snavely; Özyeşil and Singer

. . .

ShapeFit: Exact location recovery from corrupted pairwise directions

Paul Hand Rice University

with Choongbum Lee, Vlad Voroninski

24 May 2016 - Funding: NSF, ONR

Comparison of ShapeFit and LUD in noiseless synthetic data

Shown for \mathbb{R}^3 , Erdös-Rényi graph, n = 200, Gaussian locations

Algorithms for location recovery from directions

Singer et al.; Kahl; Brand, Antone, Teller; Wilson, Snavely; Özyeşil and Singer

. . .

1dSfM filters outliers by inconsistent 1d projections

Wilson, Snavely

1dSfM filters outliers by inconsistent 1d projections

Wilson, Snavely

1dSfM filters outliers by inconsistent 1d projections

Wilson, Snavely

Problem Formulation with Noise

Let:

$$t_1 \dots t_n \in \mathbb{R}^3$$

$$G = ([n], E = E_g \sqcup E_b)$$

$$v_{ij} = \begin{cases} \left((t_i - t_j)^{\wedge} + \sigma z_{ij} \right)^{\wedge} & \text{if } ij \in E_g \\ z_{ij} & \text{if } ij \in E_b \end{cases}$$

$$z_{ij} \sim \text{Unif}(S^2)$$

 $\begin{array}{lll} \mbox{Given:} & G, \{v_{ij}\} \\ \mbox{Estimate:} & \{t_i\} \mbox{ up to translation and scale} \end{array}$

ShapeFit is empirically stable to noise

Shown for n = 50, Erdös-Rényi probability = 1/2, corruption probability = 0.2

Triangles Inequality

Lemma

Let $d \geq 3$. If $\{t_i\}$ is c-well-distributed w.r.t. (x, y), then for all $h_x, h_y, h_1, \ldots, h_k \in \mathbb{R}^d$,

$$\sum_{i \in [k]} \|P_{(x-t_i)^{\perp}}(h_x - h_i)\|_2 + \|P_{(t_i - y)^{\perp}}(h_i - h_y)\|_2$$
$$\geq ck \cdot \|P_{(x-y)^{\perp}}(h_x - h_y)\|_2$$

Recovery from exact directions is possible if the graph is parallel rigid

Parallel rigid

Recovery from exact directions is possible if the graph is parallel rigid

Not parallel rigid

Recovery from exact directions is possible if the graph is parallel rigid

Not parallel rigid

Epipolar geometry

 ${\sf Rotation} + {\sf Translation}$

Epipolar geometry:

5 point-correspondences allow relative pose recovery

Rotation + Translation

ShapeFit is fast enough for real time applications

ShapeFit can be iterated

