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Location recovery from corrupted directions



Formulation: Location recovery from directions

Let: t1 . . . tn ∈ R
3

G = ([n], E = Eg ⊔ Eb)

vij =
ti − tj

‖ti − tj‖2
for ij ∈ Eg

vij ∈ S2 for ij ∈ Eb

Given: G, {vij}

Find: {ti} up to translation and scale

Eb

Eg
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ShapeFit can succeed with 60% corruption

on a random model

Erdös-Rényi probability

Average Reconstruction Error

Corruption probability
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Shown for R3, Erdös-Rényi graph, n = 200, Gaussian locations
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ShapeFit provably tolerates corruptions

under a random data model

Let: t1 . . . tn ∼ N (0, I3)

G be Erdös-Rényi with prob. p

Theorem (Hand, Lee, Voroninski 2015)

Let n & 1 and p & n− 1

3 . There is γ = Ω(p5/ log3 n) such that whp:

If maxi degb(i) ≤ γn then ShapeFit’s unique minimizer is exact.



ShapeFit proof

min
∑

ij∈E

‖Pv⊥
ij
(ti − tj)‖2 subject to

∑

ij∈E

〈ti − tj , vij〉 = 1,

n
∑

i=1

ti = 0

Proof:

Constraint ⇒ lengths scale differently

⇒ induced rotations on subgraph

⇒ induced rotations on good graph

⇒ increased objective
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Several methods have state-of-the-art

median recovery errors

Median recovery error (m)

ShapeFit LUD 1d+Huber 1d + SF 1d+LUD
Ellis Island 30 25 40 29 25
NYC Library 2.5 2.9 2.2 2.4 2.8
Piazza Pop. 2.4 3.0 3.2 1.7 2.0
Metropolis 2.8 4.2 4.0 2.4 3.7
Montreal ND 1.6 1.2 0.9 1.5 1.1
Tow. London 3.3 5.6 3.5 3.3 4.3
Notre Dame 0.5 0.5 0.5 0.5 0.5

Alamo 0.9 0.9 0.8 0.8 0.9
Gendarmen. 35 29 37 27 27
Union Sq. 13 7.8 7.9 7.4 7.9
Vienna Cath. 19 6.0 4.3 7.6 5.8
Roman For. 18 7.6 6.4 19 7.7



LUD has state-of-the-art mean recovery errors

Mean recovery error (m)

ShapeFit LUD 1d+Huber
Ellis Island 442 25 1e6
NYC Library 3e3 7.2 995
Piazza Pop. 8.9 6.2 1e5
Metropolis 145 15 6e4
Montreal ND 3.1 2.1 4e4
Tow. London 99 24 2e5
Notre Dame 1.5 1.5 5e3
Alamo 3.4 2.8 8e3
Gendarmen. 266 53 2e5
Union Sq. 4e4 13 8e3
Vienna Cath. 2e3 15 2e5
Roman For. 661 18 6e4



ShapeFit can be solved faster than prior methods

Solution time (s)

ShapeFit LUD 1d+Huber
Ellis Island 0.5 6.1 8.8
NYC Library 1.2 6.5 38
Piazza Pop. 0.4 2.8 7.6
Metropolis 0.9 7.0 18
Montreal ND 1.3 13 115
Tow. London 1.2 6.8 142
Notre Dame 2.9 24 46
Alamo 2.8 18 199
Gendarmen. 1.8 16 24
Union Sq. 1.6 11 44
Vienna Cath. 6.8 29 201
Roman For. 4.0 24 82



ShapeFit performs reasonably with linear motion

Joint work with: Lee, Voroninski, Goldstein, Tsotsos, Soatto



ShapeFit performs reasonably with linear motion

ShapeFit Visual-Inertial Kalman Filter

Joint work with: Lee, Voroninski, Goldstein, Tsotsos, Soatto
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ShapeFit: Exact location recovery

from corrupted pairwise directions

Paul Hand
Rice University

with Choongbum Lee, Vlad Voroninski

24 May 2016 – Funding: NSF, ONR



Comparison of ShapeFit and LUD in noiseless

synthetic data
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Shown for R3, Erdös-Rényi graph, n = 200, Gaussian locations
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1dSfM filters outliers by inconsistent 1d projections

Wilson, Snavely
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Problem Formulation with Noise

Let: t1 . . . tn ∈ R
3

G = ([n], E = Eg ⊔ Eb)

vij =

{

(

(ti − tj)
∧ + σzij

)∧
if ij ∈ Eg

zij if ij ∈ Eb

zij ∼ Unif(S2)

Given: G, {vij}

Estimate: {ti} up to translation and scale



ShapeFit is empirically stable to noise

Average relative error

Noise parameter σ
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Shown for n = 50, Erdös-Rényi probability = 1/2, corruption probability = 0.2



Triangles Inequality

Lemma

Let d ≥ 3. If {ti} is c-well-distributed w.r.t. (x, y), then for all
hx, hy , h1, . . . , hk ∈ R

d,

∑

i∈[k]

‖P(x−ti)⊥(hx − hi)‖2 + ‖P(ti−y)⊥(hi − hy)‖2

≥ ck · ‖P(x−y)⊥(hx − hy)‖2



Recovery from exact directions is possible

if the graph is parallel rigid
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Epipolar geometry

Rotation + Translation



Epipolar geometry:

5 point-correspondences allow relative pose recovery

Rotation + Translation



ShapeFit is fast enough for real time applications
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ShapeFit can be iterated

True Soln
Recovered Soln

Iteration 1, Relative Error: 1.3
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vij ·
ti−tj
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Iteration 2, Relative Error: 3.2e-13
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