Probably certifiably correct k-means clustering

Dustin G. Mixon

SIAM Conference on Imaging Science

May 24, 2016

The k-means problem

Given a point cloud, partition the points into concentrated clusters

k-means objective:

$$\sum_{t=1}^{k} \sum_{i \in C_t} \left\| x_i - \frac{1}{|C_t|} \sum_{j \in C_t} x_j \right\|^2$$

- NP-hard to minimize in general
- Lloyd's algorithm often works, but no optimality certificate

Taking
$$D_{ij} := ||x_i - x_j||^2$$
, then

$$\sum_{t=1}^k \sum_{i \in C_t} ||x_i - \frac{1}{|C_t|} \sum_{j \in C_t} x_j ||^2 = \frac{1}{2} \operatorname{Tr} \left(D \sum_{t=1}^k \frac{1}{|C_t|} \mathbf{1}_{C_t} \mathbf{1}_{C_t}^\top \right)$$

Taking
$$D_{ij} := ||x_i - x_j||^2$$
, then

$$\sum_{t=1}^k \sum_{i \in C_t} ||x_i - \frac{1}{|C_t|} \sum_{j \in C_t} x_j||^2 = \frac{1}{2} \operatorname{Tr} \left(D \sum_{t=1}^k \frac{1}{|C_t|} \mathbf{1}_{C_t} \mathbf{1}_{C_t}^\top \right)$$

Proof:

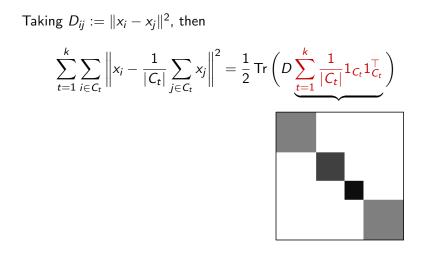
$$Tr(D1_{C_t} 1_{C_t}^{\top}) = \sum_{i \in C_t} \sum_{j \in C_t} ||x_i - x_j||^2$$

=
$$\sum_{i \in C_t} \sum_{j \in C_t} ||(x_i - c_t) - (x_j - c_t)||^2$$

=
$$2|C_t| \sum_{i \in C_t} ||x_i - c_t||^2$$

Divide by $2|C_t|$ and add.

Peng, Wei, SIAM J. Optim., 2007



Taking
$$D_{ij} := ||x_i - x_j||^2$$
, then

$$\sum_{t=1}^{k} \sum_{i \in C_t} \left\| x_i - \frac{1}{|C_t|} \sum_{j \in C_t} x_j \right\|^2 = \frac{1}{2} \operatorname{Tr} \left(D \sum_{t=1}^{k} \frac{1}{|C_t|} \mathbf{1}_{C_t} \mathbf{1}_{C_t}^\top \right)$$
Relax to SDP:
minimize $\operatorname{Tr}(DX)$
subject to $\operatorname{Tr}(X) = k$
 $X1 = 1$
 $X \ge 0$
 $X \succeq 0$

Faster certified clustering?

SDP solvers are polytime, but slow

SDP clusters 64 points in 20 sec, Lloyd takes 0.001 sec

Faster certified clustering?

SDP solvers are polytime, but slow

SDP clusters 64 points in 20 sec, Lloyd takes 0.001 sec

Probably certifiably correct algorithm

- Oracle provides k-means-optimal solution whp
- Task: Given "solution," quickly certify optimality

Faster certified clustering?

SDP solvers are polytime, but slow

SDP clusters 64 points in 20 sec, Lloyd takes 0.001 sec

Probably certifiably correct algorithm

- Oracle provides k-means-optimal solution whp
- Task: Given "solution," quickly certify optimality

How is this possible?

- Tight convex relaxation
- Clever computation of dual certificate

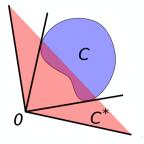
Collaborators

Takayuki Iguchi AFIT

Jesse Peterson AFIT

Soledad Villar UT Austin

Dual cone: $C^* := \{x : \langle x, y \rangle \ge 0 \ \forall y \in C\}$



Dual cone: $C^* := \{x : \langle x, y \rangle \ge 0 \ \forall y \in C\}$

Primal program:

Dual program:

max $\langle c, x \rangle$ min $\langle b, y \rangle$ s.t. $b - Ax \in L$ s.t. $A^{\top}y - c \in K^*$ $x \in K$ $y \in L^*$

Dual cone: $C^* := \{x : \langle x, y \rangle \ge 0 \ \forall y \in C\}$

Primal program:Dual program: $\max \langle c, x \rangle$ $\min \langle b, y \rangle$ s.t. $b - Ax \in L$ s.t. $x \in K$ $y \in L^*$

Weak duality: $\langle b - Ax, y \rangle \ge 0$, $\langle x, A^{\top}y - c \rangle \ge 0$ $\implies \langle c, x \rangle \le \langle x, A^{\top}y \rangle = \langle Ax, y \rangle \le \langle b, y \rangle$

Strong duality: $\langle c, x_{\text{opt}} \rangle = \langle b, y_{\text{opt}} \rangle$ "dual certificate"

Dual cone:
$$C^* := \{x : \langle x, y \rangle \ge 0 \ \forall y \in C\}$$

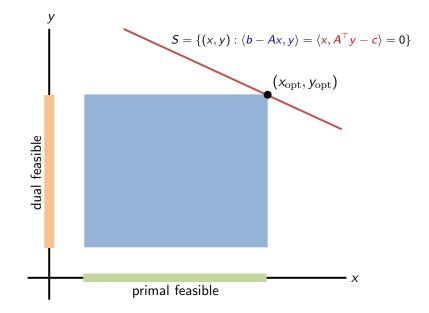
Primal program:Dual program:max $\langle c, x \rangle$ mins.t. $b - Ax \in L$ s.t. $x \in K$ $y \in L^*$

Complementary slackness

x is primal-opt and y is dual-opt if and only if

- x is primal feasible
- y is dual feasible

$$\flat \langle b - Ax, y \rangle = \langle x, A^{\top}y - c \rangle = 0$$

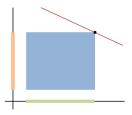


The big idea (Afonso Bandeira)

Task: Given x_{opt} , quickly find y_{opt}

Method:

- 1. Check that x_{opt} is primal feasible
- 2. Find y such that $(x_{opt}, y) \in S$
- 3. Check that y is dual feasible

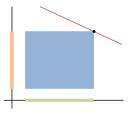


The big idea (Afonso Bandeira)

Task: Given x_{opt} , quickly find y_{opt}

Method:

- 1. Check that x_{opt} is primal feasible
- 2. Find y such that $(x_{opt}, y) \in S$
- 3. Check that y is dual feasible



Example: Minimum bisection in stochastic block model

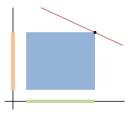
- Easy to find **unique** y such that $(x_{opt}, y) \in S$
- Checking dual feasibility is an eigenvalue problem (easy)

The big idea (Afonso Bandeira)

Task: Given x_{opt} , quickly find y_{opt}

Method:

- 1. Check that x_{opt} is primal feasible
- 2. Find y such that $(x_{opt}, y) \in S$
- 3. Check that y is dual feasible



Example: Minimum bisection in stochastic block model

- Easy to find **unique** y such that $(x_{opt}, y) \in S$
- Checking dual feasibility is an eigenvalue problem (easy)

Problem: y is **not unique** in the case of k-means (Choice of y is an art form, "optimal" choice remains open)

Bandeira, arXiv:1509.00824

A small technicality

Subproblem in checking dual feasibility:

Is span(v) the unique leading eigenspace of A?

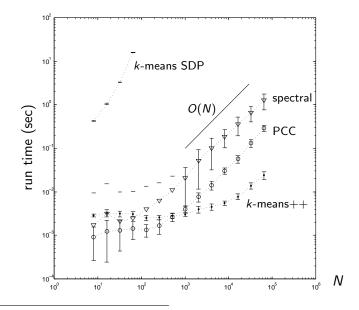
Fast solution: Power method from random initialization

Report $1 - \eta$ confidence after $O(\log(1/\eta))$ power iterations

Open problem: Remove the possibility of "false certificates"

Iguchi, M., Peterson, Villar, arXiv:1509.07983

It works, and it's fast!



Iguchi, M., Peterson, Villar, arXiv:1509.07983

Guarantee for random problem instances

(\mathcal{D}, γ, n) -stochastic ball model

- $\mathcal{D} =$ rotation-invariant distribution over unit ball in \mathbb{R}^m
- $\gamma_1, \ldots, \gamma_k =$ ball centers in \mathbb{R}^m
- ▶ Draw $r_{t,1}, \ldots, r_{t,n}$ i.i.d. from \mathcal{D} for each $i \in \{1, \ldots, k\}$
- $x_{t,i} = \gamma_t + r_{t,i} = i$ th point from cluster t

When does the PCC method certify the planted solution whp?

Nellore, Ward, arXiv:1309.3256 Iguchi, M., Peterson, Villar, arXiv:1509.07983

Guarantee for random problem instances

(\mathcal{D}, γ, n) -stochastic ball model

- $\mathcal{D} =$ rotation-invariant distribution over unit ball in \mathbb{R}^m
- $\gamma_1, \ldots, \gamma_k =$ ball centers in \mathbb{R}^m
- ▶ Draw $r_{t,1}, \ldots, r_{t,n}$ i.i.d. from \mathcal{D} for each $i \in \{1, \ldots, k\}$
- $x_{t,i} = \gamma_t + r_{t,i} = i$ th point from cluster t

When does the PCC method certify the planted solution whp?

Theorem

PCC certifies the planted solution under (\mathcal{D}, γ, n) -SBM w.p. $1 - e^{-\Omega_{\mathcal{D}, \gamma}(n)}$ if

$$\min_{i\neq j} \|\gamma_i - \gamma_j\| \ge 2 + \frac{k^2}{m}$$

Nellore, Ward, arXiv:1309.3256 Iguchi, M., Peterson, Villar, arXiv:1509.07983

Corollary

SDP recovers the planted solution under (\mathcal{D}, γ, n) -SBM w.p. $1 - e^{-\Omega_{\mathcal{D}, \gamma}(n)}$ if

$$\min_{i\neq j} \|\gamma_i - \gamma_j\| \geq \min\left\{\frac{2 + \frac{k^2}{m}}{2}, \frac{2\sqrt{2}(1 + \frac{1}{\sqrt{m}})\right\}$$

Bounds from different choices of dual certificate (art form)

Appears loose in the small-*m* regime

What is the best bound?

Awasthi, Bandeira, Charikar, Krishnaswamy, Villar, Ward, Proc. ITCS, 2015 Iguchi, M., Peterson, Villar, arXiv:1509.07983

Natural conjecture: SDP recovers whp provided $\min_{i \neq j} \|\gamma_i - \gamma_j\| > 2$

Natural conjecture: SDP recovers whp provided $\min_{i \neq j} \|\gamma_i - \gamma_j\| > 2$

Disproof: Cluster two unit circles in \mathbb{R}^2 with $\|\gamma_1 - \gamma_2\| = 2.08$

Natural conjecture: SDP recovers whp provided $\min_{i \neq j} \|\gamma_i - \gamma_j\| > 2$

Disproof: Cluster two unit circles in \mathbb{R}^2 with $\|\gamma_1 - \gamma_2\| = 2.08$



The planted clustering is not *k*-means-optimal!

Open problem: Necessary separation for two (m-1)-spheres?

Iguchi, M., Peterson, Villar, arXiv:1509.07983

What about outliers?

SBM allows for SDP tightness, but is the model good?

SDP guarantees for more realistic data? (see Soledad's talk)

Open problems

Derandomize leading eigenspace certifier

Optimal bounds for k-means under SBM

▶ How to pick k?

Questions?

A note on probably certifiably correct algorithms

A. S. Bandeira arXiv:1509.00824

Probably certifiably correct k-means clustering

T. Iguchi, D. G. Mixon, J. Peterson, S. Villar arXiv:1509.07983

Also, google short fat matrices for my research blog