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k-means SDP

k-means objective:
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∑
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∑
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SDP relaxation:

minimize Tr(DX )

subject to Tr(X ) = k

X1 = 1

X ≥ 0

X � 0

Peng, Wei, SIAM J. Optim., 2007
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What about outliers?

We exploited the SDP being tight.

SDP guarantees for more realistic data?



The big idea

X1 = 1, X ≥ 0 and X> = X , so X is doubly stochastic

Xopt integral =⇒ PXopt =
[
γ̂1 · · · γ̂1︸ ︷︷ ︸
n1 copies

γ̂2 · · · γ̂2︸ ︷︷ ︸
n2 copies

· · · γ̂k · · · γ̂k︸ ︷︷ ︸
nk copies

]
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How to explain denoising?

Xplant = planted clustering (integral)

Denoising ←→ small “mean squared error”

MSE =
1

N

k∑
t=1

n∑
i=1

‖ct,i − γ̂t‖2

=
1

N
‖PXopt − PXplant‖2

F ≤
1

N
‖P‖2

2‖Xopt − Xplant‖2
F

Triangle: ‖P‖2 ≤ ‖Gaussian centers‖2 + ‖Gaussian noise‖2

Remaining task: Estimate ‖Xopt − Xplant‖F



How to explain denoising?

M(v) := arg max
x∈S
〈x , v〉

a ≈S b =⇒ M(a) ≈ M(b)

Trick: Find R such that

I M(R) = Xplant

I R ≈S −D

b
a

M(b)
M(a)

S

Theorem

‖Xopt − Xplant‖F ≤ ε whp provided min
i 6=j
‖γi − γj‖ &

kσ

ε
.

Guédon, Vershynin, arXiv:1411.4686

Mixon, Villar, Ward, arXiv:1602.06612
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Estimating Gaussian centers

After denoising, “round”:

for i = 1 : k
vi ← denoised point with most neighbors
delete denoised point and neighbors

endfor

Theorem

1

k

k∑
i=1

‖vi − γ̂i‖2 . k2σ2 whp provided min
i 6=j
‖γi − γj‖ & kσ.

(Trade Dasgupta’s m-dependence for k-dependence)

How to remove the k-dependence in SNR and MSE?

Mixon, Villar, Ward, arXiv:1602.06612

Dasgupta, FOCS, 1999
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Fundamental limits of k-means clustering

We say Γ ⊆ Rm is a stable isogon if

I |Γ| > 1

I the symmetry group G ≤ O(m) acts transitively on Γ

I for each γ ∈ Γ, the stabilizer Gγ has the property that{
x ∈ Rm : Qx = x ∀Q ∈ Gγ

}
= span{γ}

Example: Platonic solids

Broome, Waldron, preprint, 2010



Fundamental limits of k-means clustering

Given Γ ⊆ Rm, consider the Voronoi cells {Vγ}γ∈Γ

D = mixture of Gaussians centered at Γ

Define the Voronoi means by

µγ := E
X∼D

[
X
∣∣X ∈ Vγ

]



Fundamental limits of k-means clustering
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Voronoi Means Conjecture

Draw N points from a balanced mixture of spherical Gaussians of
equal variance centered at points in a stable isogon. Then the
k-means-optimal centroids converge in probability to the Voronoi
means as N →∞.
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Fundamental limits of k-means clustering

Γ = standard orthoplex in first k/2 dimensions of Rm

D = balanced Gaussian mixture with centers Γ, covariance σ2I

Theorem

For every σ > 0, either

min
γ,γ′∈Γ
γ 6=γ′

‖γ − γ′‖ & σ
√

log k or min
γ∈Γ
‖µγ − γ‖ & σ

√
log k

Moral: If VMC, then either SNR or MSE exhibits k-dependence

Mixon, Villar, Ward, arXiv:1602.06612



Numerical experiment on MNIST dataset

1. Train a simple (one layer) neural network using TensorFlow.

2. Use it to map 1000 testing digits to feature space.

3. Run SDP denoising.

4. Find clusters using rounding scheme.

(a) (b) (c)

Figure 3: (a) After applying TensorFlow [AAB+15] to learn a 9-dimensional feature space of MNIST digits [LC10],
determine the features of the first 1,000 images in the MNIST test set, compute the 1000⇥ 1000 matrix D of squared
distances in feature space, and then solve the k-means semidefinite relaxation (3) using SDPNAL+v0.3 [YST15].
(The computation takes about 6 minutes on a standard MacBook Air laptop.) Convert the SDP-optimizer X to a
grayscale image such that white pixels denote zero entries. By inspection, this matrix is not exactly of the form (2),
but it looks close, and it certainly appears to have low rank. (b) Letting P denote the 9 ⇥ 1000 matrix whose
columns are the feature vectors to cluster, compute the denoised data PX and identify the 10 most popular locations
in R9 (denoted by red circles) among the columns of PX (denoted by black dots). For the plot, we project the
9-dimensional data onto a random 2-dimensional subspace. (c) The 10 most popular locations form our estimates
for the centers of digits in feature space. We plot these locations relative to the original data, projected in the same
2-dimensional subspace as (b).

Since each run of k-means++ uses a random initialization that impacts the partition, we ran this
algorithm 100 times. In fact, the k-means value of the output varied quite a bit: the all-time low
was 39.1371, the all-time high was 280.4174, and the median was 108.2358; the all-time low was
reached in 34 out of the 100 trials. Since our relax-and-round alternative has no randomness, the
outcome is deterministic, and its k-means value was 39.1371, i.e., identical to the all-time low from
k-means++. By comparison, the k-means value of the planted solution (i.e., clustering according to
the hidden digit label) was 103.5430, and the value of the SDP (which serves as a lower bound on the
optimal k-means value) was 38.5891. As such, not only did our relax-and-round alternative produce
the best clustering that k-means++ could find, it also provided a certificate that no clustering has
a k-means value that is 1.5% better.

Recalling the nature of our approximation guarantees, we also want to know well the relax-and-
round algorithm’s clustering captures the ground truth. To evaluate this, we determined a labeling
of the clusters for which the resulting classification exhibited a minimal misclassification rate. (This
amounts to minimizing a linear objective over all permutation matrices, which can be relaxed to
a generically tight linear program over doubly stochastic matrices.) For k-means++, the all-time
low misclassification rate was 0.0971 (again, accomplished by 34 of the 100 trials), the all-time high
was 0.4070, and the median was 0.2083. As one might expect, the relax-and-round output had a
misclassification rate of 0.0971.

3 Proof of Theorem 2

By the following lemma, it su�ces to bound Tr(R(XD �XR)):

10



Questions?

Clustering subgaussian mixtures by semidefinite programming
D. G. Mixon, S. Villar, R. Ward
arXiv:1602.06612
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