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@ Vectorial Total Variation
@ A Unified Framework using Mixed Matrix Norms
@ Primal-Dual Minimization
@ Experimental Evaluation

@ Nonlocal Vectorial Total Variation
@ Nonlocal Vectorial TV using Mixed Matrix Norms
@ Experimental Evaluation

© Nonconvex Extensions of V-TV ang V-TGV
@ Nonconvex Versions of Vectorial TV
@ A Primal-Dual Algorithm for Nonconvex Regularizers
@ Nonconvex Versions of Vectorial TGV
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Vectorial Total Variation A Unified Framework using Mixed Matrix Norms
Primal-Dual Minimization
Experimental Evaluation

Inverse Problems and Total Variation

Consider the inverse problem

A
. MAu — F112
uEBr\gl(gl;Rc)J(u)JrQH u— fll3,

with a noisy input image f € L?(,R%),Q ¢ R and a linear
operator A. We focus on the design of an effective regularizer J(u).
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Inverse Problems and Total Variation

Consider the inverse problem

A
. MAu — F112
uEBr\gl(gl;Rc)J(u)JrQH u— fll3,

with a noisy input image f € L?(,R%),Q ¢ R and a linear
operator A. We focus on the design of an effective regularizer J(u).

In the scalar-valued setting (C'=1), a popular convex regularizer is
the total variation [Herve, Shulman '89, Rudin, Osher, Fatemi '92]:

J(u) = / |IVu(x)|2 de = sup/ udivé da.
Q

[€1<1
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Inverse Problems and Total Variation

Consider the inverse problem

A
. MAu — F112
uEBr\gl(gl;Rc)J(u)JrQH u— fll3,

with a noisy input image f € L?(,R%),Q ¢ R and a linear
operator A. We focus on the design of an effective regularizer J(u).

In the scalar-valued setting (C'=1), a popular convex regularizer is
the total variation [Herve, Shulman '89, Rudin, Osher, Fatemi '92]:

J(u) = / |IVu(x)|2 de = sup/ udivé da.
Q

[€1<1

How can we generalize TV (u) to vector-valued images (C'>1)?
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Vectorial Total Variation A Unified Framework using Mixe atrix Norms
Primal-Dual Minimization
Experimental Evaluation

Vectorial Total Variation

@ Channelwise summation [Blomgren, Chan '98]:

TVs(u ZTV u;) = sup Z/ u; div &;dx

£Q—(E4)C
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Vectorial Total Variation Framework using Mixed Matrix Norms
1al Minimization
Expenmenhl Evaluation

Vectorial Total Variation

@ Channelwise summation [Blomgren, Chan '98]:

TVs(u TV (u;) = sup / u; div &;dx
Z o Z
@ Global channel coupling [Sapiro, Ringach '96]:

TVr(u /HVuHFda: = sup Z/uZ div §;dx

£:Q—EIxC
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Vectorial Total Variation

@ Channelwise summation [Blomgren, Chan '98]:
TVs(u TV (u;) = sup / u; div &;dx
Z o Z
@ Global channel coupling [Sapiro, Ringach '96]:

TVr(u /HVuHFda: = sup Z/uZ div §;dx

£:Q—EIxC

@ Spectral norm coupling [Goldliicke et al. '12]:

C

TV;(u / |Vu||gdz = sup Z/ u; div(n;&)dz
£O—Edn:Q—EC ;7 /Q
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Vectorial Total Variation A Unified Framework using Mixed Matrix Norms
Primal-Dual Minimization
Experimental Evaluation

Mixed Matrix Norms for Vectorial Total Variation

Represent an image u with N pixels and C colors by the matrix:

u=(uy,...,u.) e RN st uy e RN, Vke {1,...,C}.
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Mixed Matrix Norms for Vectorial Total Variation

Represent an image u with N pixels and C colors by the matrix:
u=(uy,...,u.) e RN st uy e RN, Vke {1,...,C}.

The Jacobi matrix at each pixel defines a 3D tensor given by

Ku = (Ku), ;, € RVM*C,

Cremers, Goldliicke, Strekalovskiy, Duran, Mallenhoff, Moeller Novel Algorithms for Vectorial Total Variation



Vectorial Total Variation A Unified Framework using Mixed Matrix Norms
Primal-Dual Minimization
Experimental Evaluation

Mixed Matrix Norms for Vectorial Total Variation

Represent an image u with N pixels and C colors by the matrix:
u=(uy,...,u.) e RN st uy e RN, Vke {1,...,C}.

The Jacobi matrix at each pixel defines a 3D tensor given by

Ku = (Ku), ;, € RVM*C,

For A € RNV*MXC  the mixed matrix £7%" norm is defined as

r/q 1/r

M C qa/p
Alar = [ (3 \Ai,jw)
3 1

i=1 \j=1 \k=
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Vectorial Total Variation ied Framework using Mixed Matrix Norms
imal-Dual Minimization
Experimental Evaluation

Mixed Matrix Norms for Vectorial Total Variation

Schatten p-norms penalize the singular values of a given matrix
with an ¢P-norm.
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Mixed Matrix Norms for Vectorial Total Variation

Schatten p-norms penalize the singular values of a given matrix
with an ¢P-norm.

For p = 1, we get the nuclear norm, a convex relaxation of the
rank. For p = 2, we get the Frobenius norm. And for p = oo, we
penalize the largest singular value.
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Mixed Matrix Norms for Vectorial Total Variation

Schatten p-norms penalize the singular values of a given matrix
with an ¢P-norm.

For p = 1, we get the nuclear norm, a convex relaxation of the
rank. For p = 2, we get the Frobenius norm. And for p = oo, we
penalize the largest singular value.

Definition

For a tensor A € RV*MXC the mixed matrix Schatten (SP, £9)
norm is defined as

N A1 o Asic 23 e
(87,0 (A) = [ > : :
=1

Aima - Aimce /|l
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Primal-Dual Minimization
Experimental Evaluation

A Unified Framework for Vectorial Total Variation

Variant Continuous Formulation Our Framework
Isotropic f C 2 2 2,1,1 :
uncoupled Q St V(O uk (2))2 + (Ozp ur (v))2dz 14 (der, col, pix)
Anisotropic f c LLY(der col. vir
uncouplgd Q > biet (102 ug ()] + |0zy ug(z)])da 14 (der, col, piz)

C 2
P kZ_:l(/Q%(611%(2))2+<awuk<z>>2dx) (212 (der, piz, col)

an
. . C 2
Ariewopie |\ 3 ([ (0r (@) + 10un())ae) | 02 (der,pis,con

(e} 2 2 .
Béehsasgn fQ \/Zk:l Oz uk(2))” + 3 (Oepuk () da | €221 (col, der, piz)

. . C 2 .
Anisotropic fQ@k:l (102, uk(@)| + Dz (2)]) *dz | €421 (der, col, piz)
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A Unified Framework for Vectorial Total Variation

Variant Continuous Formulation Our Framework

variant

Anisotropic | [ (szzl (9 (@) 1/ S (amuku))?)dx 211 (col, der, pic)

Strong f (maxy, |0, g ()] + maxy, |Op,up(z)|) dz 22211 (col, der, pix)
coupling Q

Isotropic fQ \/(maxk |8Iluk(x)|)2+ (maxk |8a:2uk(x)|)2dx EOOYQ’I(COlv der, piz)

version
Isotropic f maxy, \/(8zluk(:v))2+(8zguk($))2dx €21 (der, col, piz)
variant Q
Sapiro f ( (Ozyug (%)=, 0 ) dz S1(col, der), £* (pix)
Q (3902“1%(17))1@:1,4..,0 S1
Goldluecke f ( (D1 uk (%)) h=1,....c ) dx S (col, der), £* (piz)
Q (8m2uk(z))k:1,“.,c Soo
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Vectorial Total Variation A Unified Framework using Mixed Matri
Primal-Dual Minimization
Experimental Evaluz

Minimization using a Primal-Dual Hybrid Gradient Method

Consider the linearly constrained convex optimization problem:
min G(u) + F(g) s.t. Ku =g,
u7g

with data term G and ¢P*%"-norm or (SP, ¢%)-norm F'.
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Minimization using a Primal-Dual Hybrid Gradient Method

Consider the linearly constrained convex optimization problem:
min G(u) + F(g) s.t. Ku =g,
u7g

with data term G and ¢P*%"-norm or (SP, ¢%)-norm F'.

It can be solved by means of the following primal-dual algorithm
[Pock, Cremers, Bischof, Chambolle '09]:
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Minimization using a Primal-Dual Hybrid Gradient Method

Consider the linearly constrained convex optimization problem:
min G(u) + F(g) s.t. Ku =g,
u7g

with data term G and ¢P*%"-norm or (SP, ¢%)-norm F'.

It can be solved by means of the following primal-dual algorithm
[Pock, Cremers, Bischof, Chambolle '09]:

Iterate for n > 0 the following:
gntl = prox, g (§" + o Ka"),

u"t = prox, g (u" — TKTE ),

an—&-l — un—l—l + a(un—l-l o un)

Cremers, Goldliicke, Strekalovskiy, Duran, Mallenhoff, Moeller

Novel Algorithms for Vectorial Total Variation



Vectorial Total Variation A Unified Framework using Mixed Matrix Norms

Primal-Dual Minimization
Experimental Evaluation

Minimization using a Primal-Dual Hybrid Gradient Method

Consider the linearly constrained convex optimization problem:
min G(u) + F(g) s.t. Ku =g,
u7g

with data term G and ¢P*%"-norm or (SP, ¢%)-norm F'.

It can be solved by means of the following primal-dual algorithm
[Pock, Cremers, Bischof, Chambolle '09]:

Iterate for n > 0 the following:
gntl = prox, g (§" + o Ka"),
u"t = prox, g (u" — TKTE ),
an—&-l — un—l—l + 9(un+1 o un)

Converges to a saddle-point (4, §) for 7o || K |2 < 1.
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Vectorial Total Variation A Unified Framework using Mixed Matrix Norms
Primal-Dual Minimization
Experimental Evaluation

Which is the best channel coupling?

(Y1 (col, der, pix)

0211 (col, der, pix) 2> (col, der, pix)
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Which is the best channel coupling?

¢+ (col, der, pix) 0221 (col, der, pix)

Y(piz

(xll

col, der, piz) (S(col, der), (S°°(col, der), £* (pix))
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Vectorial Total Variation A Unified Framework using Mixed Matrix Norms
Primal-Dual Minimization
Experimental Evaluation

Experimental Results on Image Denoising

Figure: Noisy image with standard deviation 25. PSNR = 0.1
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Vectorial Total Variation A Unified Framework using Mixed Matrix Norms
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Experimental Results on Image Denoising

Figure: £>°1:1 —regularization with A = 0.1. PSNR = 24.92.
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Vectorial Total Variation A Unified Framework using Mixed Matrix Norms
Primal-Dual Minimization
Experimental Evaluation

Experimental Results on Image Denoising

: 11 _regularization with optimal A = 0.04. PSNR = 27.93.
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Vectorial Total Variation

Experimental Evaluation

Experimental Results on Image Denoising

Figure: £>>1:1 —regularization with A = 0.01. PSNR = 24.09.
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Vectorial Total Variation

Experimental Evaluation

Quantitative Evaluation on Kodak Database

Kodak 9 " Kodak 10 Kodak 11 “Kodak 12
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Quantitative Evaluation on Kodak Database

NOiSy 51,1,1 @2’1’1 £2,2,1 Eoo,l,l 500,2,1 eQ,oo,l (Sl,fl) (Soo,él)
1 | 24.78 | 28.14 | 29.07 | 28.51 | 29.90 | 29.19 | 29.07 29.20 27.96
2 | 24.76 | 28.54 | 29.48 | 29.22 | 30.18 | 29.87 | 29.66 29.83 28.62
3 | 24.80 | 29.20 | 30.15 | 29.81 | 30.85 | 30.51 | 30.25 30.33 29.24
4 | 24.68 | 30.92 | 32.22 | 31.80 | 32.73 | 32.71 32.13 32.32 31.01
5 | 24.71 | 31.50 | 32.75 | 32.41 | 33.13 | 33.30 | 32.64 32.81 31.65
6 |24.72 | 27.36 | 28.19 | 27.98 | 29.01 | 28.64 | 28.52 28.59 27.47
7 |24.71 | 29.46 | 30.39 | 30.12 | 30.86 | 30.71 | 30.35 30.57 29.53
8 | 24.96 | 31.08 | 32.10 | 31.84 | 32.41 | 32.40 | 32.02 32.20 31.22
9 | 25.68 | 30.92 | 31.74 | 31.54 | 32.10 | 32.00 | 31.78 31.85 31.11
10 | 24.66 | 29.75 | 30.81 | 30.49 | 31.48 | 31.29 | 30.94 31.05 29.84
11 | 24.66 | 30.14 | 31.10 | 30.84 | 31.49 | 31.46 | 31.07 31.22 30.25
12 | 24.71 | 31.85 | 33.15 | 32.84 | 33.45 | 33.69 | 33.03 33.25 32.05
@ | 24.82 | 2991 | 30.93 | 30.62 | 31.47 | 31.31 | 30.96 31.10 30.00

Table: For each matrix TV method, the optimal A in terms of PSNR was
computed on the first Kodak image and then used on the others. The
input noise standard deviation was 15.
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Quantitative Evaluation on McMaster Database
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Quantitative Evaluation on McMaster Database

el,l,l 52,1,1 @2’2’1 goo,l,l foo,Q,l Eoo,oo,l 52,00,1 (Sl’el) (Soo7£1)
1 129.29 | 29.83 | 29.64 | 29.74 29.52 28.97 29.25 29.98 29.16
2 | 27.80 | 28.41 | 28.26 | 28.43 28.32 27.80 28.02 28.60 27.75
3 | 30.44 | 30.96 | 30.84 | 30.78 30.66 30.16 30.39 | 31.17 30.33
4 129.26 | 29.91 | 29.75 | 29.95 29.82 29.30 29.54 30.13 29.22
5 | 31.11 | 31.46 | 31.40 | 30.97 | 30.84 30.33 30.55 | 31.64 30.89
6 |29.83 | 30.49 | 30.32 | 30.34 | 30.13 29.55 29.84 | 30.74 29.68
7 13096 | 31.63 | 31.48 | 31.41 31.21 30.66 30.98 | 31.80 30.87
8 | 31.98 | 32.72 | 32.60 | 32.50 32.30 31.78 32.15 | 32.88 31.99
9 | 32.54 | 33.36 | 33.32 | 33.08 32.93 32.50 32.85 | 33.53 32.70
10 | 32.26 | 33.06 | 33.02 | 32.70 32.54 32.10 32.49 | 33.20 32.37
11 | 30.21 | 30.85 | 30.75 | 30.87 | 30.73 30.35 30.59 | 30.98 30.29
12 | 30.58 | 31.18 | 30.99 | 31.11 30.87 30.36 30.69 | 31.30 30.50
@ | 30.52 | 31.16 | 31.03 | 30.99 30.82 30.32 30.61 31.33 30.48

Table: For each matrix TV method, the optimal X in terms of RMSE was
computed on the first McMaster image and then used on the others.
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Nonlocal Vectorial Total Variation Nonlo_cal Vectorial Ty using Mixed Matrix Norms
Experimental Evaluation

Nonlocal Vectorial Total Variation

Variant Continuous Formulation Our Framework

C
Isotropic /
uncoupled (Z \/

(ug(y) — ug(2)? w(z,y) dy) dz | €21Y(der, col, piz)
|

Anisotropic
uncoupled

L
S i( /. ¢ @) = wn(@)? o y)dydz> (212 (der, piz, col)

u(y) — u(z)|vVw(z,y dy) dx 511 (der, col, pix)

Pan, Tai
Anisotropic Z (ur(y) — (@) w(z,y)dyde | €25 (col, der, pix)
coupled Q Q ot
. C
sotropic | [\ [ 3 () — un(@)? el ) dyde | 2 (col, der,pin)
coupled Q Qi
Stror}g / / max ((uk () — up(x))? w(z, y)) dydz £2:1:1(col, der, pizx)
coupling QJao k
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Nonlocal Vectorial Total Variation E A 7
xperimental Evaluation

Local versus Nonlocal Color Total Variation

Clean image
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Nonlocal Vectorial Total Variation E A 7
xperimental Evaluation

Local versus Nonlocal Color Total Variation

Noisy image with noise s.d. 12.75. PSNR = 26.10.
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Nonlocal Vectorial Total Variation E A 7
xperimental Evaluation

Local versus Nonlocal Color Total Variation

HH1_TV regularization. PSNR = 33.60.
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Nonlocal Vectorial Total Variation E A 7
xperimental Evaluation

Local versus Nonlocal Color Total Variation

(LB _NLTV regularization. PSNR = 35.41.
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Nonlocal Vectorial Total Variation E A 7
xperimental Evaluation

Local versus Nonlocal Color Total Variation

¢>>L1_TV regularization. PSNR = 34.88.
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Nonlocal Vectorial Total Variation E A 7
xperimental Evaluation

Local versus Nonlocal Color Total Variation

¢>LL_NLTV regularization. PSNR = 35.65.
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Nonlocal Vectorial TV using Mixed Matrix Norms

Nonlocal Vectorial Total Variation 5 7
Experimental Evaluation

Quantitative Evaluation on Kodak Database

Kodak | Noisy | ¢&b1 L I L IV A
1 26.15 31.01 31.14 31.07 31.20
2 26.14 31.23 31.36 31.21 31.44
3 26.17 31.78 31.88 31.76 31.99
4 26.08 34.38 35.06 34.66 35.03
b 26.10 35.02 35.69 35.35 35.73
6 26.11 29.28 29.37 29.30 29.60
7 26.08 31.64 31.70 31.58 31.77
8 26.31 33.88 34.24 34.02 34.29
9 26.98 34.40 34.74 34.67 | 34.78
10 26.06 32.21 32.50 32.36 32.61
11 26.06 32.31 32.39 32.27 | 32.45
12 26.09 35.17 35.93 35.33 35.94
%] 26.19 32.69 33.00 32.80 33.07
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Nonconvex Versions of Vectorial TV
A Primal-Dual Algorithm for Nonconvex Regularizers
Nonconvex Extensions of V-TV ang V-TGV Nonconvex Versions of Vectorial TGV

Nonconvex Extension

The statistics of natural images [Huang, Mumford '99] suggest the
use of nonconvex regularizers.

—_—=2

[

q=05

—  Empirical

log-Probability

10.

-1 0 1
£[Vu

The nuclear norm is a convex relaxation of rank minimization.
Respective non-convex formulations should more directly penalize
the rank of the Jacobian thereby favoring parallel color gradients
(rank 1) and piecewise constant regions (rank 0).
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Nonconvex Versions of Vectorial TV
A Primal-Dual Algorithm for Nonconvex Regularizers
Nonconvex Extensions of V-TV ang V-TGV Nonconvex Versions of Vectorial TGV

Nonconvex Extension

We propose the following generalizations:

@ Vectorial TVY based on Frobenius norm:

TVi(u) = /Q IVullt dz, g 0.
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Nonconvex Versions of Vectorial TV
A Primal-Dual Algorithm for Nonconvex Regularizers
Nonconvex Extensions of V-TV ang V-TGV Nonconvex Versions of Vectorial TGV

Nonconvex Extension

We propose the following generalizations:

@ Vectorial TVY based on Frobenius norm:

ﬂ%@%34HVM@dm g3 0.

@ Schatten-¢ TV:

TV&W%iéHVﬂ&d% 00,
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Nonconvex Versions of Vectorial TV
A Primal-Dual Algorithm for Nonconvex Regularizers
Nonconvex Extensions of V-TV ang V-TGV Nonconvex Versions of Vectorial TGV

Nonconvex Extension

We propose the following generalizations:

@ Vectorial TVY based on Frobenius norm:

ﬂ%@%34HVM@dm g3 0.

@ Schatten-¢ TV:

V) = [ [Vull ds g0,
Q
where the Schatten-¢q norm is defined as

1Alls, = (of + .. + )11
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Nonconvex Versions of Vectorial TV
A Primal-Dual Algorithm for Nonconvex Regularizers
Nonconvex Extensions of V-TV ang V-TGV Nonconvex Versions of Vectorial TGV

Nonsmooth and nonconvex optimization

e Majorization-minimization methods for non-convex problems
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Nonconvex Vers of Vectorial TV
A Primal-Dual Algorithm for Nonconvex Regularizers
Nonconvex Extensions of V-TV ang V-TGV Nonconvex Versions of Vectorial TGV

Nonsmooth and nonconvex optimization

e Majorization-minimization methods for non-convex problems

o lteratively reweighted L; minimization [Ochs et al. '12]
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Nonconvex Versions of Vectorial TV
A Primal-Dual Algorithm for Nonconvex Regularizers
Nonconvex Extensions of V-TV ang V-TGV Nonconvex Versions of Vectorial TGV

Nonsmooth and nonconvex optimization

e Majorization-minimization methods for non-convex problems
o lteratively reweighted L; minimization [Ochs et al. '12]

o lteratively reweighted nuclear norm min. [Gu et al. '14]

Cremers, Goldliicke, Strekalovskiy, Duran, Mallenhoff, Moeller Novel Algorithms for Vectorial Total Variation



Nonconvex Versions of Vectorial TV
A Primal-Dual Algorithm for Nonconvex Regularizers
Nonconvex Extensions of V-TV ang V-TGV Nonconvex Versions of Vectorial TGV

Nonsmooth and nonconvex optimization

Majorization-minimization methods for non-convex problems
Iteratively reweighted L; minimization [Ochs et al. '12]
Iteratively reweighted nuclear norm min. [Gu et al. '14]

Extend primal-dual algorithms to the nonconvex setting
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Nonsmooth and nonconvex optimization

Majorization-minimization methods for non-convex problems
Iteratively reweighted L; minimization [Ochs et al. '12]

Iteratively reweighted nuclear norm min. [Gu et al. '14]

Extend primal-dual algorithms to the nonconvex setting

Proposition

Let F(g) = |g|? and 0 < q < 1. The Fenchel conjugate is given by

0, ‘5’ =0,

F* =
©=1x,  |e#0,

and the biconjugate/convex envelope (F*)* is zero everywhere.

Direct application of the PDHG doesn’t impose any regularization!
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A Primal-Dual Algorithm for Nonconvex Regularizers

In [Strekalovskiy, Cremers '14], we consider the problem

min G(u) + F(g) s.t. g = Ku, with nonconvex F.
u7g
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A Primal-Dual Algorithm for Nonconvex Regularizers

In [Strekalovskiy, Cremers '14], we consider the problem

min G(u) + F(g) s.t. g = Ku, with nonconvex F.
u7g

Introducing a Lagrange multiplier y leads to

maxmin G(u) + F(g) + (y, Ku — g),
Y ug
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A Primal-Dual Algorithm for Nonconvex Regularizers

In [Strekalovskiy, Cremers '14], we consider the problem

min G(u) + F(g) s.t. g = Ku, with nonconvex F.
u7g

Introducing a Lagrange multiplier y leads to

maxmin G(u) + F(g) + (y, Ku — g),
Y ug

which is solved with primal-dual algorithm

. O _
gt = argmgln §||g — KU”H2 —{g,y") + F(g),
yn+1 _ yn +0’(Kﬂn - gn-i-l)’
1
un-f—l = arg min 2—Hu — u”H2 + <Ku,yn+1> + G(u)>
u T

,an+1 — unJrl + g(un+1 o un).
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A Primal-Dual Algorithm for Nonconvex Regularizers

Proposition (Strekalovskiy, Cremers ECCV '14)

For convex problems, the above algorithm is equivalent to the
primal-dual algorithm of [Pock, Cremers, Chambolle, Bischof '09].
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A Primal-Dual Algorithm for Nonconvex Regularizers

Proposition (Strekalovskiy, Cremers ECCV '14)

For convex problems, the above algorithm is equivalent to the
primal-dual algorithm of [Pock, Cremers, Chambolle, Bischof '09].

Proposition (Strekalovskiy, Cremers ECCV '14)

For nonconvex regularizers F', the above algorithm still
incorporates the regularizer in a non-trivial manner.
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A Primal-Dual Algorithm for Nonconvex Regularizers

Proposition (Strekalovskiy, Cremers ECCV '14)

For convex problems, the above algorithm is equivalent to the
primal-dual algorithm of [Pock, Cremers, Chambolle, Bischof '09].

Proposition (Strekalovskiy, Cremers ECCV '14)

For nonconvex regularizers F', the above algorithm still
incorporates the regularizer in a non-trivial manner.

Proposition (Mdllenhoff, Strekalovskiy, Moller, Cremers SIIMS '15)

Let G— 5| -||3 and F + % - |3 be convex with ¢ > w||K||3. Then
the latter algorithm converges to the (unique) minimizer of

G(u) + F(Ku)
for 0 < o = 2w, 7o||K||3 < 1, and any 0 € [0, 1] with rate 1/N.
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Numerical results - convergence

TV A=T,q=05 . TGVE A =4T,a=1/3,¢=0.T5
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Numerical results - natural image denoising (¢ = 0.75)

Extending the Total Generalized Variation (TGV) [Bredies,
Kunisch, Pock '10] and the multichannel version TGVE [Bredies
'14], we proposed a nuclear-norm vectorial version TGVg1 and
respective non-convex formulations TGV and TGV, .

Noisy, TGVp, TGVE, TGVg1, TGV,
o =0.1 PSNR=28.5 PSNR=28.9 PSNR=29.0 PSNR=29.4
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Conclusion

@ We introduced a unified framework for Vectorial Total
Variation based on the mixed matrix norms (7%" and (S?, (7).
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Conclusion

@ We introduced a unified framework for Vectorial Total
Variation based on the mixed matrix norms (7%" and (S?, (7).

@ Depending on the amount of inter-channel correlation,
different matrix norms are suited.
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Conclusion

@ We introduced a unified framework for Vectorial Total
Variation based on the mixed matrix norms (7%" and (S?, (7).

@ Depending on the amount of inter-channel correlation,
different matrix norms are suited.

o >>Lland (S /') best exploit color-channel correlations.
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Conclusion

@ We introduced a unified framework for Vectorial Total
Variation based on the mixed matrix norms (7%" and (S?, (7).

@ Depending on the amount of inter-channel correlation,
different matrix norms are suited.

o >>Lland (S /') best exploit color-channel correlations.

@ We proposed respective Nonlocal Vectorial Total Variations.
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Conclusion

@ We introduced a unified framework for Vectorial Total
Variation based on the mixed matrix norms (7%" and (S?, (7).

@ Depending on the amount of inter-channel correlation,
different matrix norms are suited.

o (°>L1 and (S, /1) best exploit color-channel correlations.
@ We proposed respective Nonlocal Vectorial Total Variations.

@ We proposed non-convex formulations of respective Vectorial
TV and Vectorial TGV. In particular, TGVS‘?,, enables a more
direct rank penalization enforcing color channel alignment.
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Conclusion

@ We introduced a unified framework for Vectorial Total
Variation based on the mixed matrix norms (7%" and (S?, (7).

@ Depending on the amount of inter-channel correlation,
different matrix norms are suited.

o (°>L1 and (S, /1) best exploit color-channel correlations.
@ We proposed respective Nonlocal Vectorial Total Variations.

@ We proposed non-convex formulations of respective Vectorial
TV and Vectorial TGV. In particular, TGVS‘?,, enables a more
direct rank penalization enforcing color channel alignment.

@ We proposed two primal-dual algorithms for convex and
non-convex regularizers I which coincide for convex F'.
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