# Coherence-Pattern Guided Compressive Sensing with Unresolved Grids

Albert Fannjiang <sup>1</sup> Wenjing Liao <sup>2</sup>

<sup>1</sup>Department of Mathematics, University of California, Davis

<sup>2</sup>Department of Mathematics, Duke University

Selected papers from the SIAM Journal on Imaging Sciences SIAM Conference on Imaging Science May 24, 2016



### Compressive sensing

Find sparse solution to an underdetermined linear system:



- ▶ Pioneering work: Candès, Romberg and Tao 2004, Donoho 2004, . . .
- A: random rows of DFT matrix, i.i.d. gaussian, . . .

Benefit to imaging: save number of measurements/sensors



## Source localization with sensor array



Source locations and amplitudes:  $\{(\omega_j, c_j), j = 1, \dots, s\}$ Sensor locations:  $t_k \in (0, L), k = 1, \dots, N$ Signal model: at the sensor located at  $t_k$ 

$$y_k = \sum_{j=1}^{s} c_j e^{-2\pi i t_k \omega_j} + \underbrace{e_k}_{\text{measurement noise}}$$



<sup>&</sup>lt;sup>1</sup>Fannjiang, Strohmer and Yan 2010

#### Resolution limit

Rayleigh Length (RL) = 
$$\frac{1}{\text{Aperture}} = \frac{1}{L}$$

Without additional information, we can only hope to recover sources separated by one RL.

#### Grid model

Source located on the continuum of a bounded domain: i.e.  $\omega_j \in [0,1]$ 

$$y_k = \sum_{j=1}^{s} c_j e^{-2\pi i t_k \omega_j} + e_k, \quad k = 1, \dots, N$$

**Discretization:** approximate  $\omega_j$  by the closest point on a regular grid  $\mathcal{G} = \{(m-1)/M, m=1,\ldots,M\}$ .

**Amplitudes:** Write  $x = \{x_m\}_{m=1}^M \in \mathbb{C}^M$  where  $x_m = c_j$  whenever (m-1)/M is the closest grid point of  $\omega_i$  and zero otherwise.



### Linear inverse problem

$$y = Ax + e$$

▶ Sensing matrix  $A \in \mathbb{C}^{N \times M}$  with

$$A_{k,m} = e^{-2\pi i t_k(m-1)/M}$$

$$k = 1, \dots, N, m = 1, \dots, M.$$

ightharpoonup e = measurement noise + gridding error

## Gridding error

#### Refinement factor

$$F = \frac{RL}{grid \text{ spacing}} = M/L$$
: # grid points within one RL

#### Griding error

- arises from approximating sources by nearest grid points
- almost inversely proportional to refinement factor F



## Reconstruction on coarse grid: spacing = RL



minimum separation  $\geq$  3 RL, noise-free

## Compressive imaging

**Goal:** stably recover s sources from  $\mathcal{O}(s)$  or  $\mathcal{O}(s^2)$  sensors

**Condition:** Sensing matrix *A* satisfies either condition:

- Restricted Isometry Property (RIP)
- ▶ Incoherence: Coherence of  $A := \mu(A) = \max_{j \neq \ell} \mu(j, \ell) \sim 1/\sqrt{N}$

$$\mu(j,\ell) = \frac{|\langle A(:,j), A(:,\ell) \rangle|}{\|A(:,j)\|_2 \cdot \|A(:,\ell)\|_2}$$

[Foucart and Rauhut 2013] Suppose

- 1. grid spacing = RL, e.g., 1/M = 1/L,
- 2.  $\{t_k\}$  are independently and uniformly chosen from [0, L], then A satisfies RIP with high probability if  $N \geq \mathcal{O}(s \ln^4 M)$ .

#### Dilemma

#### Grid spacing = RL

Sensing matrix A satisfies RIP and incoherence but gridding error is large

**Grid spacing**  $\ll$  **RL** 

Gridding error is small but A is highly coherent.

## Compressive imaging on fine grid



minimum separation  $\geq$  3 RL, F= 50, SNR = 20

## Post-processing of $L_1$ minimization

Hard thresholding



Select the s largest spikes



K means clustering

Select the 2s largest spikes



K means



## Coherence pattern of A on fine grid



Left:  $A^*A$ ; right: average  $\mu(j,\ell)$  versus separation of the jth and the  $\ell$ th column.

$$\mu(A) = \max_{i \neq \ell} \mu(j, \ell) = 0.996 \approx 1 \text{ when } F = 20.$$

- large pairwise coherence only occurs at adjacent columns.
- ▶ pairwise coherence is small if two columns are separated by 1 RL.

## Summary of our work

- Define coherence band
- ▶ Propose techniques of band exclusion and local optimization
- Embed these techniques into standard compressive sensing algorithms
- Prove approximate support recovery

#### Coherence band

Coherence band: Let  $\eta \in (0,1)$ . Define the  $\eta$ -coherence band of Column k to be the set

$$B_{\eta}(k) = \{i \mid \mu(i,k) > \eta\},\$$

and the  $\eta$ -coherence band of the column set S to be the set

$$B_{\eta}(S) = \cup_{k \in S} B_{\eta}(k).$$

**Double coherence band:** 

$$B_{\eta}^{(2)}(k) := B_{\eta}(B_{\eta}(k)) = \cup_{j \in B_{\eta}(k)} B_{\eta}(j)$$
  
 $B_{\eta}^{(2)}(S) := B_{\eta}(B_{\eta}(S)) = \cup_{k \in S} B_{\eta}^{(2)}(k)$ 

## Technique I: Band exclusion(BE)

Idea: exclude the double coherence band of recovered objects Example:



## Band Excluding Orthogonal Matching Pursuit (BOMP)

#### **Algorithm 1.** BOMP

```
Input: A, y, s, \eta > 0
Initialization: x^0 = 0, r^0 = y and S^0 = \emptyset
Iteration: For n = 1, ..., s

1) i_{\max} = \arg\max_i |\langle r^{n-1}, A(:,i) \rangle|, i \notin B_{\eta}^{(2)}(S^{n-1})
2) S^n = S^{n-1} \cup \{i_{\max}\}
3) x^n = \arg\min_z ||Az - y||_2 s.t. \operatorname{supp}(z) \in S^n
4) r^n = y - Ax^n
Output: x^s.
```

#### Theorem (Fannjiang and L.)

Let x be s-sparse and  $\eta > 0$  be fixed. Suppose that

$$\begin{split} &B_{\eta}(i) \cap B_{\eta}^{(2)}(j) = \emptyset, \quad \forall i, j \in \textit{supp}(x), \\ &\eta(5s-4)\frac{x_{\text{max}}}{x_{\text{min}}} + \frac{5\|e\|_2}{2x_{\text{min}}} < 1 \end{split}$$

where  $x_{\max} = \max_k |x_k|$ ,  $x_{\min} = \min_k |x_k|$ . Let  $\hat{x}$  be the BOMP reconstruction. Then every nonzero component of  $\hat{x}$  is in the  $\eta$ -coherence band of a unique nonzero component of x.

- ▶ separation of sources ~ 3 RL
- lacktriangle approximate support recovery  $\sim 1~\text{RL}$
- compression: for moderate SNR

$$\eta = \frac{1}{\sqrt{N}}$$
  $N \ (\# \ {
m sensor}) \sim s^2 x_{
m max}^2 / x_{
m min}^2$ 

#### recovered exact



## Spectral compressive sensing

#### Duarte and Baraniuk 2011

#### Model Based Compressive Sensing

$$IHT: x^{n+1} = T^{s}(x^{n} + A^{*}(y - Ax^{n}))$$

$$SIHT: x^{n+1} = T^{s}_{model based}(x^{n} + A^{*}(y - Ax^{n}))$$

Coherence-inhibiting structured sparse approximation is implemented by the heuristics of selecting the *s* largest, well separated entries.

## Technique II: Local optimization(LO)

#### Algorithm 2. Local Optimization (LO)

Input: 
$$A, y, \eta > 0, S^0 = \{i_1, ..., i_k\}$$
  
Iteration: For  $n = 1, 2, ..., k$   
1)  $x^n = \arg\min_z \|Az - y\|_2$   
 $\sup_z (z) = (S^{n-1} \setminus \{i_n\}) \cup \{j_n\}, j_n \in B_{\eta}(\{i_n\})$   
2)  $S^n = \sup_z (x^n)$ 

Output:  $S^k$ 



▶ LO is a residual reduction technique:

$$r(S^k) \leq r(S^{k-1}) \leq \ldots \leq r(S^1) \leq r(S^0)$$

where 
$$r(S) = \min_{\text{Supp}(z) \subset S} ||Az - y||$$
.

# Band-excluding, Locally Optimized Orthogonal Matching Pursuit (BLOOMP)

#### **Algorithm 3.** BLOOMP

```
Input: A, y, s, \eta > 0
Initialization: x^0 = 0, r^0 = y and S^0 = \emptyset
Iteration: For n = 1, ..., s

1) i_{\max} = \arg\max_i |\langle r^{n-1}, a_i \rangle|, i \notin B_{\eta}^{(2)}(S^{n-1})
2) S^n = \text{LO}(S^{n-1} \cup \{i_{\max}\})
3) x^n = \arg\min_z ||Az - y||_2 s.t. \sup(z) \in S^n
4) r^n = y - Ax^n
Output: x^s.
```

#### BLO-based CS algorithms

#### **Greedy algorithms**

**BLO Subspace Pursuit** 

BLO CoSaMP

**BLO** Iterative Hard Thresholding

 $L_1$  approach

BP-BLOT constrained  $L_1$  minimization

Lasso-BLOT  $L_1$  regularization

## $L_1$ approach to recover sources on a continuum

Candes and Fernandez-Granda 2012

$$||x_{\rm rec} - x||_1 \le {\sf Constant} \cdot {\sf F}^2 \cdot {\sf Noise}$$

- Full Fourier measurements
- ▶ Minimum separation ≥ 4 RL

Tang, Bhaskar, Shah and Recht 2013

- Compressive Fourier measurements
- Exact recovery without noise
- ▶ Minimum separation ≥ 4 RL

minimum separation  $\geq$  3 RL, F= 50, SNR = 20 OMP **BLOOMP** BP **BP-BLOT** 

BLO-based algorithms can handle larger dynamic range  $x_{\rm max}/x_{\rm min}$  and have better stability to noise.

#### MUltiple SIgnal Classification (MUSIC) algorithm (Schmidt 1981)

- Full Fourier measurement
- Sources are recovered at the peaks of an imaging function



- 1. Sources separated  $\geq$  2 RL: stable recovery.
- 2. Super-resolution: The noise tolerance of MUSIC obeys a power law with respect to the minimum separation of sources.

<sup>&</sup>lt;sup>1</sup>W. Liao and A. Fannjiang, "MUSIC for single-snapshot spectral estimation: stability and super-resolution," *ACHA* Vol. 40 No. 1, pp.33-67, 2016. ⟨₹⟩ ⟨₹⟩ ⟨₹⟩ ⟨₹⟩ ⟨₹⟩

#### References

- A. Fannjiang and W. Liao, "Coherence pattern-guided compressive sensing with unresolved grids", SIAM Journal on Imaging Science, Vol. 5, No. 1, 2012.
- A. Fannjiang and W. Liao, "Mismatch and resolution in compressive sensing", Wavelets and Sparsity XIV, Proceedings of SPIE, Vol. 8138, 2011.
- A. Fannjiang and W. Liao, "Super-resolution by compressive sensing algorithms," The Forty Sixth Asilomar Conference on Signals, Systems and Computers, 2012.
- 4. W. Liao and A. Fannjiang, "MUSIC for single-snapshot spectral estimation: Stability and super-resolution," *Applied and Computational Harmonic Analysis* Vol. 40 No. 1, pp.33-67, 2016.

# Thank you!

## Compressive sensing with highly redundant dictionary

$$y = \Phi x + e = \Phi D\alpha + e$$

- Φ is i.i.d. Gaussian matrix
- ▶ *D* is an oversampled, redundant DFT frame

Goal: recover x

Performance metric:

$$\frac{\|D(\alpha - \alpha_{\rm rec})\|}{\|D\alpha\|}$$

#### Coherence band

#### Coherence bands of the DFT frame D and $A = \Phi D$



## Analysis approach: frame-based $L_1$ minimization

Candès, Eldar, Needell and Randal 2010

$$\min_{z} \|D^*z\|_1 \quad \|\Phi z - y\|_2 \le \varepsilon$$

#### Assumptions:

- ► Frame adapted restricted isometry property √
- Sparsity or compressibility of analysis coefficients ×



Unless with a tight frame, analysis coefficients have long tail.

## Comparison

#### Stability and Compressibility

