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Problem (Image Denoising)

The presence of noise in images is unavoidable.

Problem: How to get clean images?

— ldeally, clean images should contain the most meaningful signals of given
images and also include no noise.

— Object boundaries are the most important signals depicted by images.
— Object corners, part of object boundaries, are also important signals.

Goal: Try to construct a model that is able to remove noise while keeping object
boundaries, corners and image contrasts.




Typical Methods of Image Denoising

 Variational method, PDE-based method, statistical method and
many other ones

 Variational method

Given image Desired clean image Noise

f-Q—R'

How to decompose the given noisy image using appropriate regularizers?



Classical Variational Models

* Mumford-Shah (89)

E(u,K) = [ (f-u)” +1 %MHI(K)
/ \

goal true image goal boundary positive parameters

* Rudin-Osher-Fatemi (92)
E(u) = KL‘Vu‘ +j;2(f—u)2, A>0

— Powerful & popular, excellent analytical properties
— Preserve edges and sweep noise efficiently

— Cannot preserve corner & image contrast

— Suffers from the staircase effect



Related high-order models

 Ambrosio-Masnou-Morel’s Euler’'s Elastica (03)

2
Vu

1
E) =fQ a+b(V~W] ‘Vu‘+§fg(f—u)2

— Originally proposed for the disocclusion problem
— Noise removal efficiently, no staircase effect
— Solving a fourth-order differential equation

» Lysaker-Lundervold-Tai (LLT)(03)

1
L(u,/'L)=/'Lj;2\/uix +uiy +u§x +u)2,y +§j;2(f_”)2

— Excellent noise suppression, no staircase effect
— Solving a fourth-order differential equation



Our Model

o Goal:

©)

sweep noise while keeping object edges

preserve object corners and image contrasts

ameliorate the staircase effect

ldea:

edges and corners are important concepts in differential geometry

geometry information of the given image function should be
incorporated in the denoising process

use the mean curvature of the graph (x, f(x)) defined by the image
function f(x). ( The idea of considering image graph is not new. Similar
idea has been used in other works, such as Sochen et al.(98), Lysaker
et al.(03) )



Mean curvature of image surface

Give an image :
f:Q—R', QCR”’

Consider the function :

O(x,z) =z-1(x), x&€Q

lts zero level set corresponds to the image surface (x,1(x)) , whose
mean curvature reads:
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Our Model (zh, chan sims 2012)

* Energy:
E(w) = [ |H, |+ [ (f-w)’

[+ [ (F-u)’

Zf (\/1+|éu|

« Gradient Descent Equation:

Ju _ AV - ! (I-P)V(D (k)| +2(f —u)

ot J1+[vuf
~ Vu Vu
v \/ 2 2
1+ [Vu]” | 1+]vyl
Ju

If |Vul<<l, —=-AA’u+2(f -u), the bi-harmonic equation, explaining why
small oscillation part can be removed effectively.

IG) =V, PH)=

, P(x) =[x




Why does our model preserve contrast?

- What is the value of the regularizer [..|H:!| for f = hy, , a multiplier

of the characteristic function of a set E ?

» When E=B(0,R) [.IH;[=27R

» choose an appropriate sequence of functions £, that approximate f
+ calculate [ .|H, |, and define its limitas [ H, .
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Cont'd

» Using the same procedure, we can show that:

If E is an open set with C? boundary, then LI H,. | =P(E,Q), the perimeter of
set Inside the domain Q

» These results suggest that the proposed model is able to preserve image
contrasts, as the regularizer doesn’t rely on the height of signal.

Theorem (contrast preservation):

Let f =hxy,x beanimage defined on Q =(-2R,2R)x (2R, 2R). Define
S=ueC’R?):ux,y)=g(/x* + "), g takes the same type of profileasshown.}then
there exists a constant C > 0, such that if A < C, then the following holds:

E(f) =inf{E(u) :u&ES}

This property shows that the model attains a minimum at f if A is small
enough, i.e. the model restores f exactly and thus preserves contrast.
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Why does our model preserve corners?

« Consider the function T =hy; with E=(0.R)x(0,R) defined on 2=(R.R)x(R,R)

0.5 | %WMWMW i
. | 5 mrmmmﬂm/ffff/f{ff,‘{l: i
0.5
) 2 Y25 0 05 1
a generatrix function a rotating orbit an approximation surface to f = h)(E

| H; | = 2R the perimeter of £ inside €2
Q

« Theorem (corner preservation)
Let T =hx o be animage defined on Q =(-R,R)x(-R,R). Define
Q = {u:the surface of z = u(x,y) is obtained by rotating the generatrix along the orbit. }, then
there exists a constant C > Q such thatif A < C, then the following holds

E(f) = inf{E(u) :ueQ}
12



Existing numerical methods for the model

Multigrid Algorithm by C. Brito-Loeza and K. Chen, 2010
Augmented Lagrangian method by W. Zhu, X.C. Tai, T. Chan, 2011

Augmented Lagrangian method by M. Myllykoski, R. Glowinski, T.
Karkkainen, 2015

A new augmented Lagrangian method by W. Zhu
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Augmented Lagrangian Method (ALM)

Related functionals

* nonlinear

E(u) = AL‘Vu‘ + %LOF —u)’ » non-differentiable

V| « non-differentiable
* nonlinear

ALM has been successfully applied to the minimization of these functionals by X.C.

Tai et al. (SIIMS 2010 & 2017)

» convert the original minimization problem to be a constrained optimization one;

» search for saddle points of the resulting problem by solving several associated
sub-problems alternatingly and repeatedly

Key of ALM: whether the sub-problems can be solved efficiently

14



ALM for the Mean Curvature Denoising (Zhu, Tai,Chan IPl 2013)

The functional of the mean curvature denoising model:

Vu 1
V- — [ (f-u)*
[\/1+|Vu|2]+2‘£2( u)

E(u) = /'LJ;2

Consider an equivalent constrained optimization problem
: 1
mlnu,p,q,n A’L‘Q‘ + EL (f - u)z

subjectto p=Vu, n=Vu/\/1+‘Vu2, q=V-n

How to handle the following constraint?

n=p/\/1+|p|2
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Cont'd

Instead, introduce the following new variables

p=(Vu1), n=(Vu,1)/[(Vu,1)
NOT p=Vu

,gq=V-n

Obtain a new constrained optimization problem
: 1 5
min, , 4.n A’ﬁz‘q‘ + Ej;z (f -u)

subject to p=(Vu,l), ¢=V-(n,n,),

The way to treat the last constraint (the idea borrowed from Tai et al. SIIMS 2011)
If m=0,p=0, and ‘m‘sl, then

m=pllp|ep=mep
Consider a modified constrained problem
: 1 5
min, , .., /lﬁz‘q‘ + 5‘!;2 (f —u)

subjectto p =<Vu,1>, q =V'<nl,n2>, n =<n1,n2,n3>, n=m,m =p/‘p

m‘sl

9
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Details of the proposed ALM

« The associated augmented Lagrangian functional
1 2
L(uaqapanamsj'lﬂ/’lzﬁ/’l’iajﬂ) = ﬂ'f‘Q‘ +§f(f_u)

+r[(p|=p-m)+ [A(p|-p-m) €==|| 1 penalization for m = p/|p|

+ 2 flp = (Vi) + [ (p - (V)

+%3ﬂq—8xn1 —aynz‘z "‘f%(q_axnl —8yn2)

+%f‘l’l—m‘2 +f/14 ’(”—m)+5R(m)

0 meR

. _ 2 . .
o otherwise R= {mEL (€2) ‘m‘ = la.e.mQ}

Or(m) = {
* The sub-problems

gl(u)=%f(f—u)2 +%ﬂp—<Vu,l>‘2 +fA2-(p—<Vu,1>),
gz(q)=if|q|+%3ﬂq—axnl —aynz‘2 +fﬂg(qr—é1xnl —aynz),

£5(p) =f’lf(lpl—p'm)+fﬂj(|p|—p'm)+%ﬂp—<w,l>\2 +f/12'(p—<Vu,1>l
g,(n)= r—;ﬂq—axnl —aynz‘2 +fﬂ,3(q—8xn1 —aynz)+%‘ﬂn—m|2 +f;t4-(n—m),

es(m) =r [(pl=p m)+ fApl=prm)+ 2 fln=mf + [2,-(n~m)+ 5, (m). 7



Cont'd

Minimizers of &,(q),e,(p),e;(m) have closed-form solutions

Argmine) (g) = max{0,1 - LN
r3/4|

}6’, g =V-(n,n2),
q

Argmin ez (p) = maX{O,l _AtA }ﬁ, B = (Vul) 4 LXMW=

p |D| "
Argmineg(m) = NmN ‘nj‘ = 1, =+ (n+ADp+4A4
m m/‘m‘ ‘m‘ >1 4

Euler-Lagrange equations for £€1(u), €4 (n)

—mAu+u=f~(mp1+221), - (p2+422),, €= can be solved
—r3(6xn1 +d yno )x +r4n] = ram) — 41 —(3q + A3),.. / using FFT
—r3(axn1 + Gynz)y +r4np =r4mp — A4 —(VBQ"'/I?) )y:
n3 =m3 —A43 /14

I All the sub-problems can be solved efficiently and accurately.
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Experiments (1D)

1

X

Original curve . Noisy curve
(f)
Result by our 0 Difference
Model (u) (f-u)
-0.15
— .
Jumps preserved 0} — * Removed noise more
better uniform
0.3 /
Staircase alleviated /
/ :
Result by ROF o ?f'fze; ence

Model (u)

-0.15
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Experiments (1D)
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1

Original curve 0% Noisy curve
(f)
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Result by our 0 ﬂ ” Difference
Model (u) (f-u)
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Experiments (2D)

Original “Bars”

Result by our
Model (u)

Result by ROF
Model (u)

Noisy “Bars”

(f)

Difference
(f-u)

Contrast preserved
better

Difference
(f-u)
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Experiments (2D)

Noisy “Shapes”
(f)

Original “Shapes”

Result by our Difference

o - -
As indicated in f-u,

Contrast and corners
Preserved better

Difference

Result by ROF (fu)

Model (u)
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Experiments (2D)

Noisy “Barbara”

(f)

Result by our Difference
Model (u) (f-u)
Large scale signal,
such as face
preserved better
Difference
Result by ROF (f-u)
Model (u)
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Experiments (2D)

Original “Barbara” Local patch

\

By our model Staircase effect alleviated By ROF model
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Experiments (2D)

Noisy “Peppers”
(f)

Original “Peppers”

Result by our Difference
Model (u) (f-u)
Large scale signal,
such as surface of
pepper, preserved
better
Result by ROF ?flf{le)rence
Model (u)
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Experiments (2D)

Original “Peppers” Local patch

\

By our model Staircase effect alleviated By ROF model
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Comparison with other high-order models

wwwwww
nnnnnnnnnn

noise-free image

] . i : % ' - % .
. a0 any |
100 100
. . 0 0 —nolsy
NOISY Image ::'(j;gm
00, 00, m ® 7 %
A slice of the noise-free (B),
noisy (R), and cleaned By Euler’s elastica model By the LLT model By our model

image (G) Contrast and corners preserved better than other models 27



Data-Driven Selection Property

[] []
E =
E = ] .
] ] When the regularization parameter
’ increases, objects of small scales
will be removed first and then the

ones of relatively larger scales.

= H . H . A L]
| | | |
E = — " " = ] .
= H - H - Ll
clean image u clean image u clean image u
A =3.0x10° A=2.5x%x10" A=4.0x10"

TV-L1 shares a similar property, but cannot preserve corners of objects
28



New ALM for the MC denoising (Z.,16)

Goal: reduce the number of Lagrange multipliers
» Ease the effort of choosing penalty parameters

» With fewer Lagrange multipliers, the connections among variables become more tight so
that curvature can be more faithfully captured

Consider the following constrained problem

. 1

subject to n=Vu/\/1+‘Vu2, g=V-n

and the following augmented Lagrangian functional

1
L(u.qsn 20, 25) = Afla| + 5 f(f —u)’
, Only two Lagrange multipliers!
+51f|q—V-n| +f/'t1(q—V-n)

Vu
+flz ( 1+ | Vu | _n]

Vu
1+ | Vu |?

29



Sub-problems

b =3 f(f —uwy + 2 [

Vu
VI+ | Vu

Cont’d

2

—n

+fﬂz-(%—n],

«92(q)=/1ﬂq\+%ﬂq—V°n\2 +fA(q—V°n),

ex(m) =2 flg=V-nl’+ fAlg-V-n)+ 2 f

Solving the sub-problems

Argmin_ &,(q) = maX{Ol ‘ ‘}

—I’IV(V'n)+r2n =-V(ng+4)+n,

V.

V14| Vu |

2

+J'A2

—n

Vu . Vu .
1+ | Vu [ J1+ | Vu 2

G=V-n _A. = _(Cl|osed-form solution

Vu
+

b

h

<= _Can be solved using FFT

A [ A Vu

el | Jievaf Jrevaf

Ji+ \w\

+(f-u)=0, A=7’2[L ]+ﬂ.2

Jrewvaf

Compared with the previous ALM, this equation is much more complex;
We can use FFT to solve it by fixing the nonlinear terms
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Quantities monitoring the convergence of iteration

Residuals: (leaRk) ‘glz‘ Qﬁk‘ ‘ﬁzk‘m)
R =q ~V-n*

RE - _
C e

Relative errors of Lagrange multipliers:

A oa, o,

k k
(2, 18 ) = PR k=12,...
L1 L1
Relative error of uk
ut -t

T k=12,..

u
L1
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Preservation of contrasts and corners

Consider an example

60 x&D

f(x) = { 0 veqrp @=[R22x[-221D=[-LIx[-LI]

A=1,N=128
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Preservation of contrasts and corners

 The difference function “u-f”

Ak

N =32 N =64 N =128

Image contrast and four corners can be well preserved
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Convergence
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The relative errors around 1e-16, the machine precision of Matlab, indicating
some minimizer is approached.
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Suffering from staircase?

SR
SRR
SR

2SN
2NN

23
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f =160* membrane (1,32)

The model is free from
u— the staircase effect
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u (A =1000)

data selection

128

u (A =2400)
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The role of spatial size h

128
128 128
“u
n “h” adjusts the competition ne
f Of the regularization and the (A — 1()(), h = 1)

fitting terms

128

00 00

u (A=100,4=0.25) u (A=100,2=02) 4
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How about L*p}-mean curvature denoising?

u(by Ll —=MC)  u(by ' - MC)

This comparison suggests that using /” -norm of mean curvature
with PE[L,2] as a regularizer is also be a good choice.
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Summary and future work

Summary of the proposed model

» sweep noise while keeping edges
» preserve image contrast and corners
» free of staircase effect

> nonconvex

Future work

> Explore the features of [ -norm of mean curvature based regularizers for
p€Jl,2]and apply them for other imaging problems

» Construct more efficient numerical method for solving the u-subproblem of the
new ALM
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Thank you for your attention!!!
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