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• Sensor array imaging.

• Introduce iterative approaches for imaging extended inclusions from far field

measurements.

• Study stability and resolution analysis (with measurement noise).
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The array response matrix

• Time-harmonic 2D wave equation with point source:

∇x ·
( 1

µ(x)
∇xû(x,y)

)

+ ω2ε(x)û(x,y) = − 1

µ0
δy(x)

• Array of N elements {y1, . . . ,yN}.

• û(yn,ym) = field recorded by the sensor at yn

when the sensor at ym emits a time-harmonic

signal at frequency ω.

• In the presence of an inclusion Dtrue:

µ(x) = µ01Dc
true

(x) + µ1Dtrue
(x), ε(x) = ε01Dc

true
(x) + ε1Dtrue

(x).

Here

- µ0 (magnetic permeability) and ε0 (electrical permittivity) are the known

background parameters,

- Dtrue is the unknown compactly supported domain with size larger than the

wavelength λ0 = 2π/k0, k0 = ω/c0, c0 = 1/
√
ε0µ0,

- µ and ε are the known inclusion parameters.
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The array response matrix

• Multi-static response matrix A = (Anm)Nn,m=1:

Anm = û(yn,ym)− Ĝ0(yn,ym) +Wnm,

where

- û(yn,ym) the field recorded by the sensor at yn when the sensor at ym emits,

- Ĝ0(yn,ym) is the incident field:

Ĝ0(x,y) =
i

4
H

(1)
0

(

k0|x− y|
)

,

- Wnm represents measurement noise ((Wnm)Nn,m=1 are independent and identically

distributed zero-mean random variables).

By reciprocity A is complex symmetric in the absence of measurement noise.

Symmetrize the matrix (A+A
T )/2 in the presence of measurement noise.
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First imaging algorithm

• Assume we measure Ameas and we can compute the MSR matrix A[D] associated

with the inclusion D.

• Standard least-square algorithm to image the inclusion: minimize over D in the

class of C1-curves (for ∂D) the cost functional defined by

J1[D] :=
1

2

N
∑

n,m=1

∣

∣Anm[D]−Ameas,nm

∣

∣

2 (

+Reg(D)
)

.

(perimeter regularization [Ben Ameur et al, 2004], total variation regularization

[Chan and Tai, 2003, 2004], ...).

• Two critical questions:

- weighting of the least square functional (appropriate weights adapted to the sensor

array and to the inclusion).

- representation of the domain D (appropriate parametrization of the boundary ∂D,

adapted to the sensor array and to the inclusion).
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Second imaging algorithm

• Let σ
(l)
meas, l = 1, . . . , N , be the singular values of Ameas counted according to

multiplicity and v
(l)
meas be the singular vector associated with σ

(l)
meas.

Here we use the symmetric Singular Value Decomposition (SVD) of a symmetric

complex matrix A = VΣV
T
.

• Minimize over D the cost functional defined by

J2[D] :=
1

2

L
∑

l=1

W (σ(l)
meas)

∥

∥

∥

(

A[D]−Ameas

)

v
(l)
meas

∥

∥

∥

2

with L ≤ N and W a weight (nonnegative) function.

• Use an iterative method. We need:

- an initial guess D0,

- an update procedure Dj → Dj+1.
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Initial guess

• Use

IRT(x) = g(x)
T
Ameasg(x),

with

g(x) =
(exp(ik0|x− yn|)√

N

)N

n=1
.

→֒ Determine center (argmax of IRT) and equivalent disk of the inclusion.

Remark: Bayesian analysis shows that it is the optimal method (for minimizing the

localization error) in the presence of measurement noise.
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Shape derivatives

• The shape derivative of a functional J [D] is

(dSJ [D], h) = lim
δ→0

J [Dδh]− J [D]

δ
,

where ∂Dδh :=
{

x+ δh(x)ν(x),x ∈ ∂D
}

, ν(x) is the outward unit normal to ∂D,

and h is a C1 function on ∂D.

• Examples of Dh for D =
{

x = r(cos θ, sin θ), r ≤ 1, θ ∈ [0, 2π]
}

:

Dh =
{

x = r(cos θ, sin θ), r ≤ 1 + h(θ), θ ∈ [0, 2π]
}
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Shape derivatives

• The shape derivative of a functional J [D] is

(dSJ [D], h) = lim
δ→0

J [Dδh]− J [D]

δ
,

where ∂Dδh :=
{

x+ δh(x)ν(x),x ∈ ∂D
}

, ν(x) is the outward unit normal to ∂D,

and h is a C1 function on ∂D.

• Expansion for small perturbation δh:

Anm[Dδh]− Anm[D] = δ

∫

∂D

h(x)Bnm[D](x)dσ(x) + o(δ),

where

Bnm[D](x) := ∇xu[D](x,yn)
T
M[

µ0

µ
](x)∇xu[D](x,ym)

+ω2(ε− ε0)µ0u[D](x,yn)u[D](x,ym),

M is the polarization tensor

M[
µ0

µ
](x) =

(µ0

µ
− 1

)

(µ0

µ
ν(x)⊗ ν(x) + τ (x)⊗ τ (x)

)

, x ∈ ∂D,

and τ (x) is the unit tangential vector to ∂D at x.

Note that the matrix B is a propagator.
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• For the two cost functionals:

(dSJ1[D], h) =
N
∑

n,m=1

Re
[

(

Anm[D]−Ameas,nm

)

∫

∂D

h(x)Bnm[D](x) dσ(x)
]

,

(dSJ2[D], h) = Re
L
∑

l=1

W (σ(l)
meas)

∫

∂D

h(x)
〈

(A[D]−Ameas)v
(l)
meas, B[D](x)v(l)

meas

〉

dσ(x).

• Therefore, we look for the perturbation h in the vector spaces spanned by {ψp}Pp=1:

Algo 1: {ψp}Pp=1 = {Re(Bnm[D])}Nn,m=1 ∪ {Im(Bnm[D])}Nn,m=1,

Algo 2: {ψp}Pp=1 = {Re〈(A[D]−Ameas)v
(l)
meas, B[D]v(l)

meas 〉}Ll=1.

• For Algo 2:

• Use special propagated illuminations as a basis for the perturbation h (special

regularization).

• Given ∂Dj , compute ∂Dj+1 := ∂D
hj

j by applying the gradient descent method,

where ∂D
hj

j := {x+ hj(x)ν(x),x ∈ ∂Dj} and:

hj(x) = − Jm[Dj ]
∑L

l=1 |(dSJm[Dj ], ψl)|2
L
∑

l=1

(dSJm[Dj ], ψl) ψl.

(use Armijo’s rule [Nocedal and Wright, 1999] if Jm[Dj+1] > Jm[Dj ]).
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Resolution and stability analysis

• Resolution and stability are dependent.

• Assume Dtrue is a slightly perturbed disk:

Dtrue =
{

x = r(cos θ, sin θ), r ≤ r0+htrue(θ), θ ∈ [0, 2π]
}

, htrue(θ) =
∞
∑

p=−∞

ĥtrue,pe
ipθ,

the contrast is small, and the transducers are densely sampled at the surface a disk

with large radius (full and continuous aperture).

• With measurement noise, Algo 1 gives unbiased estimation of ĥtrue,p with the

variance

Var(ĥest,p) =
r20σ

2

4
∑

∞

l=−∞
J2
l (k0r0)J

2
p−l(k0r0)

.

• From the behavior of Ψ(p) :=
∑

∞

l=−∞
J2
l (k0r0)J

2
p−l(k0r0):

the estimation of ĥtrue,p is possible for p < 2k0r0

and impossible for p > 2k0r0.

• The coefficient ĥtrue,p corresponds to

a characteristic length scale 2πr0/p.

→֒ the limitation p < 2k0r0 corresponds to a length scale

larger than half a wavelength (diffraction limit). p
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Resolution and stability analysis

• General results with full aperture, star-shaped obstacles:

- σ
(l)
meas is large for l < Nmeas, with Nmeas ∼ |∂Dtrue|/λ0; the corresponding

propagated singular vectors are supported on the main reflective parts of ∂D and are

low-frequency,

- σ
(l)
meas plunges to zero for l in a transition region around Nmeas; the corresponding

propagated singular vectors are supported at the edges of ∂D and are high-frequency,

- σ
(l)
meas is small for l > Nmeas.

• Similar results with partial aperture:

The propagated singular vectors in the transition region are supported at the edges of

the domain.

Example: for a linear array, the singular vectors correspond to the ones of the sinc

kernel (prolate spheroidal functions) [Borcea et al, SIIMS 2008].

→֒ By choosing large weights for the singular values/vectors in the transition region,

one can enhance the illumination of the edges of the inclusion.
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Numerical illustrations

• Set up: 20 transducers at the surface of the disk with radius 10, ω = 2, λ0 = π.
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• Choice of the weights for Algo 2: The weights are taken successively as follows:

• W (σ
(l)
meas) = 1 for 1 ≤ l ≤ 5 and 0 elsewhere,

• W (σ
(l)
meas) = 1 for 6 ≤ l ≤ 10 and 0 elsewhere,

• W (σ
(l)
meas) = 1 for 1 ≤ l ≤ 10 and 0 elsewhere.
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Algo 1, 1% noise Algo 2, 1% noise
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Here ω = 2, λ0 = π, and full aperture array (20 transducers at the surface of the disk

with radius 10).
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Algo 1, 1% noise Algo 2, 1% noise
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Here ω = 1, λ0 = 2π, and full aperture array (20 transducers at the surface of the disk

with radius 10).

• Algo 2 can detect (highly compared to the wavelength) oscillatory boundary

perturbations which are undetectable with Algo 1.

• Algo 2 is more sensitive to measurement noise than Algo 1.
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Extension: A third algorithm

• Cost functional at step j:

J (j)
3 [Dj+δD] :=

1

2

L′

∑

l′=1

L
∑

l=1

W (σ(l)
meas)W

′(σ(l′)[Dj ])
∣

∣

∣

〈

(A[Dj+δD]−Ameas)v
(l)
meas,v

(l′)[Dj ]
〉
∣

∣

∣

2

.

• Shape derivative:

(dSJ (j)
3 [Dj ], h) = Re

L′

∑

l′=1

L
∑

l=1

W (σ(l)
meas)W

′(σ(l′)[Dj ])
〈

(A[Dj ]−Ameas)v
(l)
meas, v

(l′)[Dj ]
〉

×
∫

∂D

h(x)
〈

B[Dj ](x)v
(l)
meas , v(l′)[Dj ]

〉

dσ(x).

• Representation basis for the perturbation h at step j:

{ψp} = {Re〈B[Dj ]v
(l)
meas , v

(l′)[Dj ]〉} ∪ {Im〈B[Dj ]v
(l)
meas , v

(l′)[Dj ]〉}.
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Conclusions

• Original iterative optimization algorithms to recover the shape of an inclusion using

a multi-static response matrix.

• Backpropagating the singular vectors provides a natural basis for computing the

shape perturbation at each step.

• Increasing the weights of the contributions of the singular values/vectors in the

transition region enhances the illumination of the edges and allows to increase

resolution slightly beyond diffraction limit.

• Extensions:

- multiple frequencies (hopping algorithm).

- elastic case.

- level-set reconstruction algorithm.
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See also our more recent work:
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