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Synthetic-Aperture Radar



SAR Data Model
Starting from Maxwell’s equations and assuming free space we find that the wave
equation is a good model for EM wave propagation:

(∇2 − c−2
0

∂2

∂t2
)E in(t, x) = j(t, x)

(∇2 − c−2(x)
∂2

∂t2
)E tot(t, x) = j(t, x)

where

c−2(x) = c−2
0 − T (x)

E tot = E in + Esc

T (x) is called the reflectivity function and it models the scene of interest

We seek data of the form d = F [T ]

Combining the two wave equations and using the Green’s function for free space we
obtain the Lippmann-Schwinger integral equation

Esc (t, y) =

∫ ∫
δ(t − τ − |y − x |/c)

4π|y − x |
T (x)∂2

t E tot(τ, x)dτdx



SAR Data Model

The Born approximated scattered field is given by:

EscB (t, y) =

∫ ∫
δ(t − τ − |y − x |/c)

4π|y − x |
T (x)∂2

t E in(τ, x)dτdx

The actual data model is written as

d(s, t) = F [T ](s, t) =

∫
e−iω(t−φ(s,x))A(x , s, ω)T (x)dxdω

where s is the slow-time which parametrizes the antenna trajectory.

The phase function takes on a different form depending on which SAR modality you
consider:

φ(s, x) = rs,x = 2|γ(s)− x|/c0

φ(s, x) = rs,x = |γT (s)− x|/c0 + |γR(s)− x|/c0

φ(s, x) = rij (s, s
′, x) = |x− γRi

(s)| − |x− γRj
(s + s′)|

where γ(s) is the antenna position and x is location of a scatterer.



SAR Imaging - Backprojection

To form an image we aim to invert by applying an imaging operator K

I (z) = K[d ](z) : =

∫
e iω(t−φ(s,z))Q(z, s, ω)dωd(s, t)dsdt

=

∫
e−iωφ(s,z)Q(z, s, ω)D(s, ω)dωds

= KF [T ](z) =

∫
e iω(φ(s,x)−φ(s,z))Q(z, s, ω)A(x , s, ω)dωdsT (x)dx

KF is called the image-fidelity operator and is a pseudodifferential operator ⇒ visible
singularities are preserved



Filtered backprojection

We seek a filtered BP type reconstruction method, i.e. our image is of the form:

I (z) =

∫
e−2ikRz,sQ(z, s, k)D(s, k)dkds

where Q is the backprojection filter and D is the 2D Fourier transform of d .

Note our image of the form:

I (z) =

∫
K(z, x)T (x)dx

K is called the point-spread function, given below:

K(z, x) =

∫
e−2ik(Rz,s−Rx,s )Q(z, s, k)A(x , s, k)dkds



Imaging Continued
Ideally K would be of the form: ∫

e i(z−x)·ξdξ

We perform the Stolt change of variables (s, k)→ ξ where

ξ = Ξ(x , z, s, k) =

∫ 1

0
∇f |x+µ(x−z)dµ

where f (x) = −2kRx,s .

After performing symbol calculus we obtain the following expression for K :

K ≈
∫

e i(z−x)·ξQ(z, ξ)A(z, ξ)η(z, ξ)dξ

Therefore we choose Q as below:

Q(z, ξ) =
χΩ(z, ξ)

A(z, ξ)η(z, ξ)

where χΩ(z, ξ) is a smooth cut-off function that prevents division by zero and η is the
Jacobian resulting from a Stolt change of variables.



BLUE

We now calculate the best linear unbiased estimate of the reflectivty function from the
collected data:

D(s, ω) =

∫
e2ikrs,xA(ω, s, x)T (x)dx + n(s, ω)

where we assume n is zero-mean independently, identically distributed noise in s and ω,
i.e. we assume

E [n(s, ω)] = 0

E [n(s, ω)n(s′, ω′)] = σ2δ(s − s′)δ(ω − ω′)

where σ2 is the variance of the noise for a single value of s and ω and δ is the Dirac delta
function.

We aim to estimate T (x) from measurements D(s, ω) via a linear estimator

T̂ (z) =

∫
Q(z, s, ω)D(s, ω)dsdω.



BLUE continued

In BLUE we aim to minimize variance while also forcing the estimator to be unbiased.

We seek to find the weights or filter Q such that the following functional is minimized

J (Q) = E [|T̂ (z)− E [T̂ (z)]|2] + λ(E [T̂ ](z)− T (z))

After some calculations and the Stolt change of variables the functional simplifies to

J (Q) =

∫
|Q(z, ξ)|2σ2η(z, ξ)dξ

+ λ

(∫
[Q(z, ξ)e ix·ξA(z, ξ)η(z, ξ)− e i(x−z)·ξ]dξ

)
.



BLUE continued

To find the minimizer we seek Q such that the variational derivative of J (Q) with respect
to Q is zero and that the derivative of J (Q) with respect to λ is also zero

d

dε
(J (Q + εQε))|ε=0 = 2 Re

[ ∫
σ2Qε(z, ξ)Q(z, ξ)η(z, ξ)dξ

]
+ λ

∫
Qε(z, ξ)A(z, ξ)e ix·ξdξ = 0.

Taking the derivative of J (Q) with respect to λ we obtain

dJ
dλ

=

∫
[Q(z, ξ)e ix·ξA(z, ξ)η(z, ξ)− e i(x−z)·ξ]dξ = 0

which implies Q must satisfy

Q(z, ξ) =
e−iz·ξ

A(z, ξ)η(z, ξ)
.



BLUE continued

If we insert the expression found for Q into the definition for T̂ (z) we obtain

T̂ (z) =

∫
e−iz·ξ

A(z, ξ)η(z, ξ)
e ix·ξA(z, ξ)T (x)η(z, ξ)dξdx +

∫
Q(z, ξ)n(ξ)dξ.

Looking at the first term above we see that we obtain precisely the backprojected image
from the previous section, i.e.

T̂ (z) =

∫
e i(x−z)·ξQ̃(z, ξ)η(z, ξ)A(z, ξ)T (x)dξdx +

∫
Q(z, ξ)n(ξ)dξ

where

Q̃(z, ξ) =
1

A(z, ξ)η(z, ξ)

where in this case we have assumed the data collection manifold is the entire ξ−plane.



Observations

We first conclude that in ‘ideal’ circumstances we can say the backprojected image in
SAR is equivalent to the BLUE of the reflectivity function.

By ‘ideal’ we mean a full data collection manifold and that the imaging plane is R2.

In practice these ‘ideal’ conditions are never met and hence using these techniques do not
result in a truly unbiased estimator of the reflectivity function (also there is the step when
we ignore higher order terms after performing the Stolt change of variables).

This does lead to interesting questions about how to find an unbiased estimator.



Bias

If we return to the unbiased constraint from the BLUE calculation, note an unbiased
estimator is defined by:

E [T̂ (z)] = T (z) =

∫
K(x , z)T (x)dx

We note this requires that K is a reproducing kernel or evaluator

The question becomes does T lie in a reproducing kernel Hilbert space and can we find a
kernel such that our estimator is unbiased?



RKHS definitions and background

Definition. An evaluation functional over the Hilbert space of functions H is a linear
functional Ft : H → R that evaluates each function in the space at the point t, or

Ft [f ] = f (t), ∀f ∈ H.

Definition. A Hilbert space H is a reproducing kernel Hilbert space (RKHS) if the
evaluation functionals are bounded, i.e. if for all t there exists some M > 0 such that

|Ft [f ]| = |f (t)| ≤ M||f ||H ∀f ∈ H.

Theorem. If H is a RKHS then for each t ∈ X there exists a function Kt ∈ H (called the
representer of t or reproducing kernel) with the reproducing property

Ft [f ] = 〈Kt , f 〉H = f (t) ∀f ∈ H.

Note a reproducing kernel is symmetric and positive definite. Also an RKHS defines a
corresponding RK and a RK defines a unique RKHS.



SAR in an RKHS framework

We begin by supposing the reflectivity function we wish to reconstruct lies in the Hilbert
space L2(Y ) where Y is the imaging plane, for simplicity say it is the rectangle
Y = {−a ≤ x ≤ a,−b ≤ y ≤ b}.

Note the inner product on this space is given by

〈f (x), g(x)〉L2(Y ) =

∫
Y
f (x)g(x)dx .

We also note we may express the reflectivity in terms of its Fourier transform:

T (x) =
1

2π2

∫
R2

e−ix·ξT̂ (ξ)dξ.



SAR in RKHS framework continued

We now consider the SAR data expression, and observe it is the result of a linear operator
F acting on T :

D(k, s) = F [V (x)] =

∫
Y
e2ikRx,sA(x , s, k)T (x)dx

The Reisz representation theorem states we may rewrite the data expression as an inner
product of V with a unique element of L2(Y ), i.e.

D(k, s) = 〈T (x), L(x ; s, k)〉L2(Y )

where L(x ; s, k) = e−2ikRx,sA(x , s, k).



SAR in RKHS framework continued

Now consider the SAR image

I (z) =

∫
Ω
Q(z, s, k)D(s, k)dsdk

where Q is to be determined and Ω is the data collection manifold.

Note we may say D ∈ L2(Ω), a Hilbert space, with the inner product

〈D(s, k),P(s, k)〉L2(Ω) =

∫
Ω
D(s, k)P(s, k)dsdk

Now I is a linear operator acting on D and again by the Reisz representation theorem we
have that

I (z) = 〈D(s, k),Q(z, s, k)〉L2(Ω)



SAR in RKHS framework continued

Now inserting the data expression into the image we have

I (z) = 〈D(s, k),Q(z, s, k)〉L2(Ω)

= 〈F [T (x)](s, k),Q(z, s, k)〉L2(Ω)

= 〈T (x),F∗[Q(z, s, k)](x)〉L2(Y )

where F∗ is the formal adjoint of the operator F .

We note that the formal adjoint is given by

F∗[Q(z, s, k)](x) =

∫
Ω
e−2ikRx,sA(x , s, k)Q(z, s, k)dsdk

Ideally we would have
I (z) = T (z)

⇒ I (z) = 〈T (x),F∗[Q(z, s, k)](x)〉L2(Y ) = T (z)

which implies F∗[Q(z, s, k)](x) should be the evaluator or reproducing kernel.



Finding the RK for L2(Y )

Now we seek the element Kz (x) ∈ L2(Y ) such that

〈T (x),Kz (x)〉L2(Y ) = T (z)

Therefore we consider the following integral equation:∫
Y
T (x)Kz (x)dx = T (z)

which is equivalent to∫
Y

[ ∫
R2

e−ix·ξT̂ (ξ)dξ

]
Kz (x)dx =

∫
R2

e−iz·ξT̂ (ξ)dξ



Finding the RK for L2(Y ) continued

Rearranging the RHS we see that we require the following

K̂z (ξ) = e−iz·ξ

or

Kz (x) =

∫
R2

e iz·ξe−ix·ξdξ = δ(z − x)

We note that δ(z − x) /∈ L2(Y ) as it is not bounded, hence it is not possible to find Q
such that F∗[Q] = δ(z − x).

Note there are methods to obtain something ‘close’ to the delta function, i.e. the
microlocal technique of Cheney and the Backus-Gilbert method.



A Different Hilbert space

Let us now suppose that our reflectivity function lies in a different Hilbert space, say

H = {T (x) ∈ L2(R2) | supp(T̂ (ξ)) ⊆ Y }

with the inner product

〈T (x), f (x)〉H =

∫
R2

T (x)f (x)dx

Note we have

T (x) =
1

2π2

∫
Y
e−ix·ξT̂ (ξ)dξ

Now again we look for Kz (x) such that

〈T (x),Kz (x)〉H = T (z)



A Different Hilbert space continued

We now consider the integral equation∫
R2

[ ∫
Y
e−ix·ξT̂ (ξ)dξ

]
Kz (x)dx =

∫
Y
e−iz·ξT̂ (ξ)dξ

We find that

Kz (x) =
1

2π2

∫
Y
e−iz·ξe ix·ξdξ

=
ab

π2
sinc(a(x1 − z1))sinc(b(x2 − z2))

supposing Y is a rectangle.



A different Hilbert space continued

Now considering the SAR image we have

I (z) =

∫
Ω
Q(z, s, k)D(s, k)dsdk

= 〈D(s, k),Q(z, s, k)〉L2(Ω)

= 〈T (x),F∗[Q(z, s, k)](x)〉H
= T (z)

Therefore we see we require

F∗[Q(z, s, k)](x) =
ab

π2
sinc(a(x1 − z1))sinc(b(x2 − z2))



Choosing Q

We obtain the following integral equation for Q∫
R2

e−2ikRx,sA(x , s, k)Q(z, s, k)χΩ(s, k)dsdk =
1

2π2

∫
R2

e−i(x−z)·ξrect

(
ξ1

a

)
rect

(
ξ2

b

)
dξ

where χΩ is an indicator function that is one on the data collection manifold and zero
elsewhere.

Using a technique similar to that used in backprojection, we perform the Stolt change of
variables on the LHS and let Q(z, s, k) = e2ikRz,s q̃(z, s, k)∫

R2
e−i(x−z)·ξA(x , ξ)q̃(z, ξ)χΩ(ξ)η(x , z, ξ)dξ

=
1

2π2

∫
R2

e−i(x−z)·ξrect

(
ξ1

a

)
rect

(
ξ2

b

)
dξ



Choosing Q continued

Using symbol calculus we may say the LHS of above is equivalent to the LHS of below
plus higher order terms ∫

e−i(x−z)·ξA(z, ξ)q̃(z, ξ)χΩ(ξ)η(z, z, ξ)dξ

=
1

2π2

∫
R2

e−i(x−z)·ξrect

(
ξ1

a

)
rect

(
ξ2

b

)
dξ

This implies we may choose q̃ to be

q̃(z, ξ) =
rect

(
ξ1
a

)
rect

(
ξ2
b

)
A(z, ξ)η(z, z, ξ)χΩ(ξ)



Further questions

We see that the original filter Q is therefore given by:

Q(z, ξ) = e−z·ξ
rect

(
ξ1
a

)
rect

(
ξ2
b

)
A(z, ξ)η(z, z, ξ)χΩ(ξ)

We note this Q is still approximate because of our use of the symbol calculus to find only
the first order term

Also note that typically a, b or the support of the Fourier transform of the reflectivity
function are unknown so actually implementing this filter in practice is not possible.

Question: is there a RKHS that contains T (x) for most scenarios in which we can find Q
such that are image is exact, i.e. unbiased?
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