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Synthetic-Aperture Radar




SAR Data Model

@ Starting from Maxwell's equations and assuming free space we find that the wave
equation is a good model for EM wave propagation:
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c(x) = c(;z — T(x)
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@ T(x) is called the reflectivity function and it models the scene of interest

@ We seek data of the form d = F[T]
@ Combining the two wave equations and using the Green's function for free space we

obtain the Lippmann-Schwinger integral equation
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SAR Data Model

@ The Born approximated scattered field is given by:

Eg(t,y) = // t=7—ly =xl/c) T(x)0?E™ (1, x)dTdx
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@ The actual data model is written as
d(s,t) = F[T](s,t) = / e wt=¢(=)) A(x, 5, w) T(x)dxdw

where s is the slow-time which parametrizes the antenna trajectory.

@ The phase function takes on a different form depending on which SAR modality you

consider:
#(s,x) = rsx=2]v(s) — x|/
#(s,x) = rsx=I|v7(s) —x|/co+ [vr(S) — x|/ 0
#(s,x) = r(s,5",%) = [x = YR ()] — [x — YR, (s + 5")|

where 7(s) is the antenna position and x is location of a scatterer.



SAR Imaging - Backprojection

@ To form an image we aim to invert by applying an imaging operator

I(z) = K[d](z) : = /eiw(t7¢(s’z))Q(z,s,w)dwd(s, t)dsdt
:/e_i“¢(s’Z)Q(z,s,w)D(s,w)dwdS

— KF[TI(z) = / @050 -6(52) (2, 5, w) A(x, 5, w)dwdsT (x)dx

@ [CF is called the image-fidelity operator and is a pseudodifferential operator = visible
singularities are preserved



Filtered backprojection

@ We seek a filtered BP type reconstruction method, i.e. our image is of the form:
I(z) = /e*Z"kszsQ(z, s, k)D(s, k)dkds
where Q is the backprojection filter and D is the 2D Fourier transform of d.

@ Note our image of the form:

I(z) = /K(z,x) T(x)dx

@ K is called the point-spread function, given below:

K(z,x) = /e’z"k(RLS’RX’S)Q(z, s, k)A(x, s, k) dkds



Imaging Continued

@ Ideally K would be of the form:

/ ei(z—x){ de

@ We perform the Stolt change of variables (s, k) — & where

1
6 - E(X7 z,s, k) = A Vflxﬁ»p,(xfz)du

where f(x) = —2kRxs.

@ After performing symbol calculus we obtain the following expression for K:

K~ [ e0€Q( Az €z )de
@ Therefore we choose @ as below:
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where xq(z, &) is a smooth cut-off function that prevents division by zero and 7 is the
Jacobian resulting from a Stolt change of variables.



BLUE

@ We now calculate the best linear unbiased estimate of the reflectivty function from the
collected data:

D(s,w) = /eZ’Ik'sﬂ‘A(w7 5,x) T(x)dx + n(s,w)

where we assume n is zero-mean independently, identically distributed noise in s and w,
i.e. we assume

E[n(s,w)] =0
E[n(s,w)n(s’,w’)] = 626(s — s")0(w — w')

where 02 is the variance of the noise for a single value of s and w and ¢ is the Dirac delta
function.

@ We aim to estimate T(x) from measurements D(s,w) via a linear estimator

z) :/Q(z,s,w)D(s,w)dsdw.



BLUE continued

@ In BLUE we aim to minimize variance while also forcing the estimator to be unbiased.

@ We seek to find the weights or filter Q such that the following functional is minimized

J(Q) = E[IT(2) - EIT(2IP] + AM(E[T](2) - T(2))

@ After some calculations and the Stolt change of variables the functional simplifies to

7(Q) = / 1Q(z, €)20%n(2,€)de

+ A( / [Q(z,€)e™ ¢ A(z, &)n(z, &) — e“**Z)'&]ds).



BLUE continued

@ To find the minimizer we seek Q such that the variational derivative of J(Q) with respect
to Q is zero and that the derivative of J(Q) with respect to A is also zero

I (I(Q+ Q)]0 = 2Re [ [ ez 60 oz e

+ A/QE €)A(z, £)e™Ede = 0.

@ Taking the derivative of J(Q) with respect to A we obtain

= / [Q(z,€)e™ € A(z,£)n(z, &) — e/*~2)€]dE = 0

which implies @ must satisfy
e—iz{

=0 = Az omz e



BLUE continued

@ If we insert the expression found for Q into the definition for :I:(z) we obtain

~ e—iz§ .
)= [ ——— ™Az x)n(z X z,€)n .
)= [ s AEOTN(z Qdedx+ [ Qz en(e)de

@ Looking at the first term above we see that we obtain precisely the backprojected image
from the previous section, i.e.

(@) = [ 06z On(z, AR O T(x)dgdx + [ @z, n(e)de
where

~ 1
=8 = Az oni o

where in this case we have assumed the data collection manifold is the entire £—plane.



Observations

@ We first conclude that in ‘ideal’ circumstances we can say the backprojected image in
SAR is equivalent to the BLUE of the reflectivity function.

@ By ‘ideal’ we mean a full data collection manifold and that the imaging plane is R2.

@ In practice these ‘ideal’ conditions are never met and hence using these techniques do not
result in a truly unbiased estimator of the reflectivity function (also there is the step when
we ignore higher order terms after performing the Stolt change of variables).

@ This does lead to interesting questions about how to find an unbiased estimator.



Bias

@ If we return to the unbiased constraint from the BLUE calculation, note an unbiased
estimator is defined by:

E[T(2)] = T(2) = /K(x, 2)T(x)dx

@ We note this requires that K is a reproducing kernel or evaluator

@ The question becomes does T lie in a reproducing kernel Hilbert space and can we find a
kernel such that our estimator is unbiased?



RKHS definitions and background

@ Definition. An evaluation functional over the Hilbert space of functions H is a linear
functional F; : H — R that evaluates each function in the space at the point t, or

Filf] = f(t), VfeEH.

@ Definition. A Hilbert space H is a reproducing kernel Hilbert space (RKHS) if the
evaluation functionals are bounded, i.e. if for all t there exists some M > 0 such that

[Ze[fll = [F(D)] < M[f]l VF €M

@ Theorem. If H is a RKHS then for each t € X there exists a function K; € H (called the
representer of t or reproducing kernel) with the reproducing property

Fie[f] = (Ke, f) = f(t) VFEH.

@ Note a reproducing kernel is symmetric and positive definite. Also an RKHS defines a
corresponding RK and a RK defines a unique RKHS.



SAR in an RKHS framework

@ We begin by supposing the reflectivity function we wish to reconstruct lies in the Hilbert
space L2(Y) where Y is the imaging plane, for simplicity say it is the rectangle
Y={-a<x<a-b<y<bh}

@ Note the inner product on this space is given by
(F(x), (X)) 2(v / f(x

@ We also note we may express the reflectivity in terms of its Fourier transform:

T0) = 55 [ € €T (€)de



SAR in RKHS framework continued

@ We now consider the SAR data expression, and observe it is the result of a linear operator
F actingon T:

D(k,s):]—'[V(x)]:/ e2kReis A(x, s, k) T(x)dx
Y

@ The Reisz representation theorem states we may rewrite the data expression as an inner
product of V with a unique element of L2(Y), i.e.

D(k,s) = (T(x), L(x; s, k))Lz(y)

where L(x;s, k) = e~ 2*Rxs A(x, s, k).



SAR in RKHS framework continued

@ Now consider the SAR image
I(z) = / Q(z, s, k)D(s, k)dsdk
Q

where Q is to be determined and Q is the data collection manifold.

@ Note we may say D € L2(Q), a Hilbert space, with the inner product

(D(s, k), P(s, k) 2y = /Q D(s, k)P(s, K)dsdk

@ Now / is a linear operator acting on D and again by the Reisz representation theorem we
have that

I(z) = (D(s, k), Q(z,s, k)>L2(Q)



SAR in RKHS framework continued

@ Now inserting the data expression into the image we have

I(z) = (D(s, k), Q(z,s, k)>L2(Q)
= (‘F[T(X)](Sv k)7 Q(szv k)>L2(Q)
=(T(x), 7 [Q(z, s, K)](x)) 12(v)

where F* is the formal adjoint of the operator F.

@ We note that the formal adjoint is given by

F[Q(z, s, K)](x) = /Qe’z’-kavsA(x, 5 K)Q(z, s, k)dsdk

@ Ideally we would have
I(z) =T(z)

= I(z) = (T(x), F*[Q(z, 5, K)](x)) 12(v) = T(2)

which implies F*[Q(z, s, k)](x) should be the evaluator or reproducing kernel.



Finding the RK for L2(Y)

@ Now we seek the element K,(x) € L?(Y) such that

(T(), Kz())12(vy = T(2)

@ Therefore we consider the following integral equation:
/ TR ()dx = T(2)
Y

which is equivalent to

/Y [/Rz emi¢ f(ﬁ)dﬁ} Kz(x)dx = /RZ e 7€ T(¢)de



Finding the RK for L?(Y) continued

@ Rearranging the RHS we see that we require the following

X

(€)= e

or

K. (x) = / eZ8e™ ™ Ede = §(z — x)
R2
@ We note that §(z — x) ¢ L2(Y) as it is not bounded, hence it is not possible to find Q
such that F*[Q] = §(z — x).

@ Note there are methods to obtain something ‘close’ to the delta function, i.e. the
microlocal technique of Cheney and the Backus-Gilbert method.



A Different Hilbert space

@ Let us now suppose that our reflectivity function lies in a different Hilbert space, say
H={T(x) € L*(R%) | supp(T(£)) C Y}

with the inner product

(T, (Dn = [ TC0F)e

@ Note we have

T() = 55 [ e €T

@ Now again we look for K;(x) such that

(T(x), Kz(x))n = T(2)



A Different Hilbert space continued

@ We now consider the integral equation

L] [ e et@ae|mtaan = [ e=¢Terae

@ We find that

1 . .
Ke() =55 | e izEeixE g

— %Sinc(a(n — 21))sinc(b(x2 — 22))

supposing Y is a rectangle.



A different Hilbert space continued

@ Now considering the SAR image we have

I(z):/QQ(z,s,k)D(s,k)dsdk

= (D(s, k), Q(z, 5, k) 12(q)

=(T(x), F'[Q(z;s, K)(x))H
=T(2)

@ Therefore we see we require

F*Q(z,s, k)](x) = ;—gsinc(a(xl — z1))sinc(b(x2 — 22))



Choosing @

@ We obtain the following integral equation for @

S 1 )
/ e 2Res A(x, 5, k)Q(z, 5, k)xa(s, k)dsdk = — e~ (=2 Epect, & rect (iz dg
R2 272 g2 a b

where xq is an indicator function that is one on the data collection manifold and zero
elsewhere.

@ Using a technique similar to that used in backprojection, we perform the Stolt change of
variables on the LHS and let Q(z, s, k) = e?Re;s§j(z, 5, k)

/R e A €)a(z, €)xal€)n(x, 2,€)dE

:i e =) €pect é;l)rect &2 d¢
272 R2 a b



Choosing @ continued

@ Using symbol calculus we may say the LHS of above is equivalent to the LHS of below
plus higher order terms

/e_,(x VEA(z,€)d(z, €)xa(€)n(z, 2, €)dé

= 1 e =2 &rect (é) rect (62) dg
27T2 R2 a

@ This implies we may choose § to be

rect (5—1> rect (‘5—2)
a b

G(z, €) = Az, €)n(z, 2, €)xa(€)




Further questions

@ We see that the original filter Q is therefore given by:

o rect (%‘) rect (%)
Q(L 5) =e ¢ A(z,g)n(z,Z,S)XQ(g)

@ We note this Q is still approximate because of our use of the symbol calculus to find only
the first order term

@ Also note that typically a, b or the support of the Fourier transform of the reflectivity
function are unknown so actually implementing this filter in practice is not possible.

@ Question: is there a RKHS that contains T(x) for most scenarios in which we can find Q
such that are image is exact, i.e. unbiased?
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