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Differences of Convex Functions

Consider the problem

minimize f (x) := g(x)− h(x) , x ∈ Rn

where g : Rn → R and h : Rn → R are convex.

We call g − h a DC decomposition of f .

g(x) = x4

h(x) = 3x2 + x

f = g − h
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Examples of DC Programming

Fermat-
Torricelli

f (x) =
∑m

i=1 ci‖x−ai‖

Clustering

f (x1, . . . , x`) =∑m
i=1 mink

`=1‖x` − ai‖2

Multifacility
Location

f (x1, . . . , x`) =∑m
i=1 mink

`=1‖x` − ai‖
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Subgradients and Fenchel Conjugates of Convex Functions

Definition
Let f : Rn → (−∞,∞] be a convex function and let
x̄ ∈ dom(f ) := {x ∈ Rn | f (x) <∞}. A subgradient of f at x̄ is
any v ∈ Rn such that

〈v , x − x̄〉 ≤ f (x)− f (x̄) for all x ∈ Rn.

The subdifferential ∂f (x̄) of f at x̄ is the set of all subgradients
of f at x̄ .

Definition
Let f : Rn → (−∞,∞] be a function. The Fenchel conjugate of
f is defined by

f ∗(x) = sup
u∈Rn
{〈x ,u〉 − g(u)}, x ∈ Rn.

Note that if f is proper, i.e. dom(f ) 6=, then f ∗ : Rn → (−∞,∞] is
a l.s.c. convex function.
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DC Algorithm-The DCA

Consider the problem

minimize f (x) := g(x)− h(x) , x ∈ Rn

where g : Rn → R and h : Rn → R are convex.

The DCA1.

INPUT: x1 ∈ Rn, N ∈ N
for k = 1, . . . ,N do

Find yk ∈ ∂h(xk )
Find xk+1 ∈ ∂g∗(yk )

end for
OUTPUT: xN+1

1P.D. Tao, L.T.H. An, A d.c. optimization algorithm for solving the
trust-region subproblem, SIAM J. Optim. 8 (1998), 476–505.
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DC Algorithm-The DCA

Theorem

Let g,h : Rn → (−∞,∞] be proper lower semicontinuous
convex functions. Then v ∈ ∂g∗(y) if and only if

v ∈ argmin
{

g(x)− 〈y , x〉 | x ∈ Rn}.
Moreover, w ∈ ∂h(x) if and only if

w ∈ argmin
{

h∗(y)− 〈y , x〉 | y ∈ Rn}.
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DC Algorithm-The DCA

The DCA.

INPUT: x1 ∈ Rn, N ∈ N
for k = 1, . . . ,N do

Find yk ∈ ∂h(xk ) or find yk approximately by solving:

minimize ψk (y) := h∗(y)− 〈xk , y〉, y ∈ Rn.

Find xk+1 ∈ ∂g∗(yk ) or find xk+1 approximately by solving:

minimize φk (x) := g(x)− 〈x , yk 〉, x ∈ Rn.

end for
OUTPUT: xN+1
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An Example of the DCA

minimize f (x) = x4 − 3x2 − x , x ∈ R
Then f (x) = g(x)− h(x), where g(x) = x4 and h(x) = 3x2 + x .
We have

∂h(x) = {6x + 1}, ∂g∗(y) =

{
argmin

x∈Rn

(
x4 − yx

)}
=

{
3

√
y
4

}

xk+1 =
3

√
6xk + 1

4
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DC Algorithm-The DCA

Definition
A function h : Rn → (−∞,∞] is called γ-convex (γ ≥ 0) if there
exists γ ≥ 0 such that the function defined by
k(x) := h(x)− γ

2‖x‖
2, x ∈ Rn, is convex. If there exists γ > 0

such that h is γ−convex, then h is called strongly convex with
parameter γ.

Theorem
Consider the sequence {xk} generated by the DCA. Suppose
that g is γ1-convex and h is γ2-convex. Then

f (xk )− f (xk+1) ≥ γ1 + γ2

2
‖xk+1 − xk‖2 for all k ∈ N.



Minimizing Differences of Convex Functions-The DCA Nesterov’s Smoothing Technique via Convex Analysis The DCA and Nesterov’s Smoothing Technique for Weighted Fermat-Torricelli Problems The DCA and Nesterov’s Smoothing Technique for Multifacility Location

DC Algorithm-The DCA

Definition
We say that an element x̄ ∈ Rn is a stationary point of the
function f = g − h if ∂g(x̄)∩ ∂h(x̄) 6= ∅. In the case where g and
h are differentiable, x̄ is a stationary point of f if and only if
∇f (x̄) = ∇g(x̄)−∇h(x̄) = 0.

Theorem
Consider sequence {xk} generated by the DCA. Then {f (xk )}
is a decreasing sequence. Suppose further that f is bounded
from below and that g is γ1-convex and h is γ2-convex with
γ1 + γ2 > 0. If {xk} is bounded, then every subsequential limit
of the sequence {xk} is a stationary point of f .
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The DCA for Clustering

Problem formulation2: Let ai for i = 1, ...,m be target points
in Rn.

Minimize f (x1, . . . , x`) :=
m∑

i=1

min{‖xl − ai‖2 : l = 1, ..., k}

over xl ∈ Rn, l = 1, ..., k .

2L.T.H. An, M.T. Belghiti, P.D. Tao, A new efficient algorithm based on DC
programming and DCA for clustering, J. Glob. Optim., 27 (2007), 503–608.
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K-Mean Clustering

Let x1, x2, . . . , xm be the data points and let c1, . . . , ck denote
the centers.

Randomly select k cluster centers.
Assign each data point to the nearest center.
Find the average of the data points assigned to each
center.
Repeat the second step with the obtained new centers in
the third step until the centroids no longer move.

Although k−mean clustering is effective in many situations, it
also has some disadvantages.

The k-means algorithm does not necessarily find the
optimal solution
The algorithm is sensitive to the initial selected cluster
centers
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DCA for Clustering and K-Mean3

Both DCA1 and DCA2 are better than K-means: the
objective values given by DCA1 and DCA2 are much
smaller than that computed by K-means.
DCA2 is the best among the three algorithms: it provides
the best solution with the shortest time. DCA2 is very fast
and can then handle large-scale problems.

f (x1, . . . , xk ) =
m∑

i=1

min
`=1,...,k

‖x` − ai‖1

This is a nonsmooth nonconvex program for which there are
rarely efficient solution algorithms, especially in the large scale
setting.

3L.T.H. An, L.H. Minh, P.D. Tao, New and efficient DCA based algorithms
for minimum sum-of-squares clustering, Pattern Recognition, 47 (2014),
388–401.



Minimizing Differences of Convex Functions-The DCA Nesterov’s Smoothing Technique via Convex Analysis The DCA and Nesterov’s Smoothing Technique for Weighted Fermat-Torricelli Problems The DCA and Nesterov’s Smoothing Technique for Multifacility Location

Nesterov’s Smoothing Technique via Convex Analysis

Consider the function

f0(x) := max{〈Ax ,u〉 − φ(u) | u ∈ Q},

where A is an m × n−matrix, Q is a nonempty closed bounded
convex subset of Rm, and φ : Rm → R is a convex function.
Define ‖A‖ = sup{‖Ax‖ | ‖x‖ ≤ 1}.
For µ > 0, define

fµ(x) := max{〈Ax ,u〉 − φ(u)− µ

2
‖u − u0‖2 | u ∈ Q},u0 ∈ Q.

Then fµ is a C1 function with `−Lipschitz gradient where
` = ‖A‖2

µ and ∇fµ(x) = AT uµ(x). Here uµ(x) ∈ Q is the element
for which the maximum is attained in the definition of fµ(x). 4

4Nesterov: Smooth minimization of non-smooth functions. Math.Program.,
Ser. A 103 , 127-152 (2005).
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Nesterov’s Smoothing Technique via Convex Analysis

f ∗(x) = sup{〈x ,u〉 − f (u) | u ∈ Rn}.

Theorem
If f is µ−strongly convex, then f ∗ has a Lipschitz continuous
gradient with modulus 1

µ . Moreover, ∇f ∗(x) = u(x), where u(x)
is the unique element of Rn for which the maximum is attained
in the definition of f ∗(x).a

aJ. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization
Algorithms I & II. Springer, New York, 1993.
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Nesterov’s Smoothing Technique via Convex Analysis

Theorem

Let A be an n ×m-matrix. Suppose that ϕ : Rm → R is a
strongly convex function with parameter µ > 0. Then the
function µ : Rn → R defined by

f (x) := max{〈Ax ,u〉 − ϕ(u) | u ∈ Q}

is differentiable with ∇f (x) = AT v(x), where v(x) is the unique
element for which the maximum is attained in the definition of
f (x). The gradient is Lipschitz continuous with constant
` = ‖A‖2

µ .
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Nesterov’s Smoothing Technique via Convex Analysis

We have
f (x) = max{〈AT x , 〉 − [ϕ(u) + δ(u; Q)] | u ∈ Rm} = g∗(AT x),
where g(u) := ϕ(u) + δ(u; Q).

By the chain rule, ∇f (x) = AT∇g∗(AT x) = AT u(Ax) = AT v(x).
We also have

‖∇f (x1)−∇f (x2)‖ = ‖AT u(Ax1)− AT u(Ax2)‖
≤ ‖AT‖‖u(Ax1)− u(Ax2)‖

≤ ‖A‖1
µ
‖Ax1 − Ax2‖ ≤

‖A‖2

µ
‖x1 − x2‖.
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The Minkowski Gauge

Let F be a nonempty closed bounded convex set in Rn that
contains the origin in its interior. Define the Minkowski gauge
associated with F by

ρF (x) := inf{t > 0 | x ∈ tF}.

Note that if F is the closed unit ball in Rn, then ρF (x) = ‖x‖.

Given a nonempty bounded set K , the support function
associated with K is given by

σK (x) := sup{〈x , y〉 | y ∈ K}.

It follows from the definition of the Minkowski function that
ρF (x) = σF◦(x), where

F ◦ := {y ∈ Rn | 〈x , y〉 ≤ 1 for all x ∈ F}.
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Weighted Fermat-Torricelli problem

Let ai ∈ Rn for i = 1, . . . ,m and let ci 6= 0 for i = 1, . . . ,m be
real numbers. In the remainder of this section, we study the
following generalized version of the Fermat-Torricelli problem:

minimize f (x) :=
m∑

i=1

ciρF (x − ai), x ∈ Rn.

The function f has the following obvious DC decomposition:

f (x) =
∑
ci>0

ciρF (x − ai)−
∑
ci<0

(−ci)ρF (x − ai).

Let I := {i | ci > 0} and J := {i | ci < 0} with αi = ci if i ∈ I, and
βi = −ci if i ∈ J. Then

f (x) =
∑
i∈I

αiρF (x − ai)−
∑
j∈J

βjρF (x − aj).
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Weighted Fermat-Torricelli problem

Let ai ∈ Rn for i = 1, . . . ,m and let ci 6= 0 for i = 1, . . . ,m be
real numbers. In the remainder of this section, we study the
following generalized version of the Fermat-Torricelli problem:

minimize f (x) :=
m∑

i=1

ciρF (x − ai), x ∈ Rn.

The function f has the following obvious DC decomposition:

f (x) =
∑
ci>0

ciρF (x − ai)−
∑
ci<0

(−ci)ρF (x − ai).

Let I := {i | ci > 0} and J := {i | ci < 0} with αi = ci if i ∈ I, and
βi = −ci if i ∈ J. Then

f (x) =
∑
i∈I

αiρF (x − ai)−
∑
j∈J

βjρF (x − aj).
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Weighted Fermat-Torricelli problem

Theorem
Let γ1 := sup{r > 0 | B(0; r) ⊂ F} and
γ2 := inf{r > 0 | F ⊂ B(0; r)}. Suppose that

γ1
∑
i∈I

αi > γ2
∑
j∈J

βj .

Then the function f and its approximation fµ have absolute
minima.
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Smoothing the Minkowski Gauge

Given any a ∈ Rn and µ > 0, a Nesterov smoothing
approximation of ϕ(x) := ρF (x − a) has the representation

ϕµ(x) =
1

2µ
‖x − a‖2 − µ

2
[
d(

x − a
µ

; F ◦)
]2
.

Moreover, ∇ϕµ(x) = P(x−a
µ ; F ◦) and

ϕµ(x) ≤ ϕ(x) ≤ ϕµ(x) +
µ

2
‖F ◦‖2,

where ‖F ◦‖ := sup{‖u‖ | u ∈ F}.
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Smoothing the Minkowski Gauge

Theorem

Given any µ > 0, an approximation of the function f is the
following DC function:

fµ(x) := gµ(x)− hµ(x), x ∈ Rn,

where

gµ(x) :=
∑
i∈I

αi

2µ
‖x − ai‖2,

hµ(x) :=
∑
i∈I

µαi

2
[
d(

x − ai

µ
; F ◦)

]2
+
∑
j∈J

βjρF (x − aj).

Moreover, fµ(x) ≤ f (x) ≤ fµ(x) + µ‖F◦‖2

2
∑

i∈I αi for all x ∈ Rn.
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The DCA for Weighted Fermat-Torricelli Problems

Theorem

Given any µ > 0, an approximation of the function f is the
following DC function:

fµ(x) := gµ(x)− hµ(x), x ∈ Rn,

where

gµ(x) :=
∑
i∈I

αi

2µ
‖x − ai‖2,

hµ(x) :=
∑
i∈I

µαi

2
[
d(

x − ai

µ
; F ◦)

]2
+
∑
j∈J

βjρF (x − aj).

Moreover, fµ(x) ≤ f (x) ≤ fµ(x) + µ‖F◦‖2

2
∑

i∈I αi for all x ∈ Rn.
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The DCA for Weighted Fermat-Torricelli Problems

Algorithm 3.

INPUTS: µ > 0, x1 ∈ Rn, N ∈ IN, F , a1, . . . ,am ∈ Rn, c1, . . . , cm ∈ R.

for k = 1, . . . ,N do

Find yk = uk + vk , where

uk :=
∑

i∈I αi
[xk−ai

µ − P(xk−ai
µ ; F ◦)

]
,

vk ∈
∑

j∈J βj∂ρF (xk − aj).

Find xk+1 =
yk+

∑
i∈I αi ai/µ∑

i∈I αi/µ
.

OUTPUT: xN+1.



Minimizing Differences of Convex Functions-The DCA Nesterov’s Smoothing Technique via Convex Analysis The DCA and Nesterov’s Smoothing Technique for Weighted Fermat-Torricelli Problems The DCA and Nesterov’s Smoothing Technique for Multifacility Location

Multifacility Location

We now consider the multifacility location problem: given m
points a1, . . . ,am ∈ Rn,

minimize f (x1, . . . , xk ) =
m∑

i=1

min
`=1,...,k

ρF (x` − ai).

where F is a nonempty, closed and bound convex set
containing the origin, and ρF (x) = inf

x∈tF
{t > 0} is the Minkowski

gauge.

When F is the closed unit ball IB, the problem becomes

minimize f (x1, . . . , xk ) =
m∑

i=1

min
`=1,...,k

‖x` − ai‖.

It can be shown that a globally optimal solution exists.
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DC Decomposition

f (x1, . . . , xk ) =
m∑

i=1

min
`=1,...,k

‖x` − ai‖

We will utilize the fact that

f (x1, . . . , xk ) =
m∑

i=1

 k∑
`=1

‖x` − ai‖ − max
r=1,...,k

k∑
`=1
6̀=r

‖x` − ai‖



=
m∑

i=1

(
k∑
`=1

‖x` − ai‖

)
−

m∑
i=1

 max
r=1,...,k

k∑
`=1
6̀=r

‖x` − ai‖

 .
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DC Decomposition

We obtain the µ-smoothing approximation fµ = gµ − hµ, where

gµ(x1, . . . , xk ) =
1

2µ

m∑
i=1

k∑
`=1

‖x` − ai‖2

hµ(x1, . . . , xk ) =
µ

2

m∑
i=1

k∑
`=1

[
d
(

x` − ai

µ
; IB
)]2

+
m∑

i=1

max
r=1,...,k

k∑
`=1
6̀=r

(
1

2µ
‖x` − ai‖2 −

µ

2

[
d
(

x` − ai

µ
; IB
)]2

)

To implement DCA, we need ∂g∗µ and ∂hµ. . .
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∂gµ

Using the Frobenius norm in a space of matrices, we express
gµ as

Gµ(X ) =
m
2µ
‖X‖2 − 1

µ
〈X ,B〉+

k
2µ
‖A‖2,

with the inner product 〈A,B〉 =
k∑
`

n∑
j

a`jb`j ,

X is the k × n matrix with rows x1, . . . , xk ,
A is m × n with rows a1, . . . ,am, and
B is k × n whose every row is the sum a1 + · · ·+ am.

∇Gµ(X ) = m
µX − 1

µB X ∈ ∂G∗(Y ) iff Y ∈ ∂G(X )

∇G∗µ(Y ) = 1
m (B + µY )
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∂hµ

hµ(x1, . . . , xk ) =
µ

2

m∑
i=1

k∑
`=1

[
d
(

x` − ai

µ
; IB
)]2

+
m∑

i=1

max
r=1,...,k

k∑
`=1
` 6=r

(
1

2µ
‖x` − ai‖2 −

µ

2

[
d
(

x` − ai

µ
; IB
)]2)
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∂hµ

∇H1(X ) =


∑

i
x1−ai
µ − PIB

(
x1−ai
µ

)
...∑

i
xk−ai
µ − PIB

(
xk−ai
µ

)


For each i = 1, . . . ,m, there is some Ri such that the
R-excluded sum is maximal. If we call this sum FRi , then ∇FRi

is a k × n matrix whose `th 6= R row is PIB

(
x`−ai
µ

)
, and Rth row

is 0.

V ∈ ∂H2(X ) iff V =
m∑

i=1

FRi
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Multifacility Location Algorithm

INPUT: X1 ∈ dom g, N ∈ N

for k = 1, . . . ,N do

Compute Yk = ∇H1(Xk )+Vk

Compute Xk+1 = 1
m (B + µYk )

end for

OUTPUT: xN+1
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Clustering
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Results
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Algorithm 4
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Algorithm 5

iteration
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Algorithm 5

iteration
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Algorithm 5

iteration
2 4 6 8 10 12 14 16 18 20

f
(X

k
)

1500

2000

2500

3000

3500

4000

4500

5000

5500

Multifacility Sets, R2

Algorithm 7
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