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Minimizing Differences of Convex Functions-The DCA

Differences of Convex Functions

Consider the problem

minimize f(x):=g(x)—h(x), xeR"”
where g: R" — R and h: R” — R are convex.

We call g — h a DC decomposition of f.
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Examples of DC Programming
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Minimizing Differences of Convex Functions-The DCA

Subgradients and Fenchel Conjugates of Convex Functions

Definition

Let f: R" — (—o0, o0] be a convex function and let

x € dom(f) :={x € R" | f(x) < co}. A subgradient of f at x is
any v € R" such that

(v,x — X) < f(x) — f(x) forall x € R".

The subdifferential 0f(x) of f at x is the set of all subgradients
of f at X.

Definition
Let f: R” — (—o0, o0] be a function. The Fenchel conjugate of
f is defined by

f*(x) = sup{(x,u) — g(u)}, x € R".

ueRr”n
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DC Algorithm-The DCA

Consider the problem

minimize f(x):=9(x)—h(x), xeR”
where g: R" — R and h: R"” — R are convex.
The DCA'.

INPUT: x4 e R", Ne N

fork=1,...,Ndo
Find Yk € 8h(Xk)
Find X1 € 99" (k)

end for

OUTPUT: XN 41

'PD. Tao, L.T.H. An, A d.c. optimization algorithm for solving the
trust-region subproblem, SIAM J. Optim. 8 (1998), 476-505.
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DC Algorithm-The DCA

Theorem

Letg, h: R" — (—o0, 00| be proper lower semicontinuous
convex functions. Then v € 9g*(y) if and only if

v € argmin {g(x) — (¥, X) | x € R"}.

Moreover, w € 0h(x) if and only if

w € argmin {h*(y) — (y,x) | y € R"}.
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DC Algorithm-The DCA

The DCA.

INPUT: x; e R", Ne N
fork=1,...,Ndo

Find yx € 0h(xk) or find yx approximately by solving:
minimize ¥k (y) = h*(y) — (X, y), y € R".

Find xx.1 € 09*(yx) or find xx ¢ approximately by solving:
minimize ¢k (X) := g(x) — (X, yk), X € R".

end for
OUTPUT: Xp41




Minimizing Differences of Convex Functions-The DCA

An Example of the DCA

minimize f(x) = x* —3x2 — x,x € R
Then f(x) = g(x) — h(x), where g(x) = x* and h(x) = 3x2 + x.

We have
= * = i 4 Y4
Oh(x) = {6x +1},09"(y) = { argmin (x —yx)} = { }
X€RN 4
Xoos = 8 6xx + 1
k1 = )
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DC Algorithm-The DCA

Definition

A function h: R" — (—o0, 0] is called y-convex (y > 0) if there
exists v > 0 such that the function defined by

k(x) := h(x) — %||x||?, x € R", is convex. If there exists v > 0
such that h is y—convex, then his called strongly convex with
parameter ~.

Theorem

Consider the sequence {xx} generated by the DCA. Suppose
that g is v1-convex and h is ~»-convex. Then

Y1+ 2

f(Xk) = f(Xk+1) > ||Xk+1 = Xk||2 for all k € N.
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DC Algorithm-The DCA

Definition

We say that an element x € R” is a stationary point of the
function f = g — hif 9g(x) N dh(x) # 0. In the case where g and
h are differentiable, x is a stationary point of f if and only if
Vi(x) =Vg(x) — Vh(x) = 0.

Consider sequence {xx} generated by the DCA. Then {f(xx)}
is a decreasing sequence. Suppose further that f is bounded
from below and that g is v1-convex and h is ~>-convex with

v1 + 72 > 0. If {xx} is bounded, then every subsequential limit
of the sequence {xx} is a stationary point of f.




Minimizing Differences of Convex Functions-The DCA

The DCA for Clustering

@ Problem formulation?®: Let g; for i = 1, ..., m be target points

in R".
m

Minimize f(x1,...,x;):=Y_min{[x;—a?® : I=1,...k}
i=

2L.TH. An, M.T. Belghiti, P.D. Tao, A new efficient algorithm based on DC
programming and DCA for clustering, J. Glob. Optim., 27 (2007), 503—608.
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K-Mean Clustering

Let x4, Xo, ..., Xm be the data points and let ¢y, .. ., ¢k denote
the centers.
@ Randomly select k cluster centers.
@ Assign each data point to the nearest center.
@ Find the average of the data points assigned to each
center.
@ Repeat the second step with the obtained new centers in
the third step until the centroids no longer move.
Although k—mean clustering is effective in many situations, it
also has some disadvantages.

@ The k-means algorithm does not necessarily find the
optimal solution

@ The algorithm is sensitive to the initial selected cluster
centers
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DCA for Clustering and K-Mean®

@ Both DCA1 and DCAZ2 are better than K-means: the
objective values given by DCA1 and DCA2 are much
smaller than that computed by K-means.

@ DCAZ2 is the best among the three algorithms: it provides
the best solution with the shortest time. DCA2 is very fast
and can then handle large-scale problems.

m

f(x1,..., Xk) = Zef1ink||xz—ai||1

=1
This is a nonsmooth nonconvex program for which there are
rarely efficient solution algorithms, especially in the large scale
setting.
SL.T.H. An, L.H. Minh, P.D. Tao, New and efficient DCA based algorithms

for minimum sum-of-squares clustering, Pattern Recognition, 47 (2014),
388—-401.
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Nesterov’s Smoothing Technique via Convex Analysis

Consider the function
fo(x) := max{(Ax,u) — ¢(u) | u € Q},

where A is an m x n—matrix, Q is a nonempty closed bounded
convex subset of R”, and ¢: R™ — R is a convex function.
Define [|Al| = sup{[|Ax]| | [|x|| < 1}.

For u > 0, define

fu(x) := max{ (Ax, u) — ¢(u) — guu —wl|ueQlue Q.

Then f, is a C' function with ¢/—Lipschitz gradient where

(= W and Vf,(x) = ATu,(x). Here u,(x) € Qis the element

for which the maximum is attained in the definition of f,(x). 4

“Nesterov: Smooth minimization of non-smooth functions. Math.Program.,
Ser. A 103, 127-152 (2005).
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Nesterov’s Smoothing Technique via Convex Analysis

f*(x) = sup{(x,u) — f(u) | u e R"}.

Theorem

If fis u—strongly convex, then f* has a Lipschitz continuous
gradient with modulus 1. Moreover, Vf*(x) = u(x), where u(x)
is the unique element of R" for which the maximum is attained
in the definition of f*(x).2

@J. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization
Algorithms | & Il. Springer, New York, 1993.
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Nesterov’s Smoothing Technique via Convex Analysis

Theorem

Let A be an n x m-matrix. Suppose that p: R™ — R is a
strongly convex function with parameter 1 > 0. Then the
function .- R" — R defined by

f(x) := max{(Ax,u) — o(u) | u € Q}

is differentiable with Vf(x) = ATv(x), where v(x) is the unique
element for which the maximum is attained in the definition of

f(x). The gradient is Lipschitz continuous with constant

¢ — AR
L




Nesterov’s Smoothing Technique via Convex Analysis

Nesterov’s Smoothing Technique via Convex Analysis

We have
f(x) = max{{ATx,) — [p(u) + 6(u; Q)] | u € R™} = g*(ATx),
where g(u) := p(u) + 6(u; Q).

By the chain rule, Vf(x) = ATVg*(ATx) = ATu(Ax) = ATv(x).
We also have

IVf(x1) = Vi) = [ATu(Axi) — ATu(Axe)||
< [IAT[[[lu(Axr) — u(Axe)|

1 All?
< A1 jaxs — Al < VA 1 — .
K o



The DCA and Nestero

The Minkowski Gauge

Let F be a nonempty closed bounded convex set in R” that
contains the origin in its interior. Define the Minkowski gauge
associated with F by

pr(x) = inf{t > 0 | x € tF}.

Note that if F is the closed unit ball in R”, then pr(x) = || x||.

Given a nonempty bounded set K, the support function
associated with K is given by

ok(x) :=sup{(x,y) | y € K}.

It follows from the definition of the Minkowski function that
pr(X) = opo(X), where

Fo:={yeR"|(x,y) <1forall x € F}.



The DCA and Nestero

Weighted Fermat-Torricelli problem

Letaie R"fori=1,...,mandletci#A0fori=1,...,mbe
real numbers. In the remainder of this section, we study the
following generalized version of the Fermat-Torricelli problem:

minimize f(X) : Z cipr(x — aj), x € R".

The function f has the following obvious DC decomposition:
= cipr(x —a) = D _(—c)pr(x — a).
¢;i>0 ¢i<0
Let/:={i|¢ci>0}and J:={i| ci <0} witha;=c;ifi € I, and
Bi=—c;ifie J. Then

X) = aipr(x—a) = _ Bipr(x — a).

icl jed
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Weighted Fermat-Torricelli problem
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The DCA and Nestero

Weighted Fermat-Torricelli problem

Theorem
Let~y :=sup{r >0 B(0;r) C F} and
v2 :=inf{r >0 | F C B(0;r)}. Suppose that

MnY ai>%> B

i€l jed

Then the function f and its approximation f,, have absolute
minima.




The DCA and Nestero

Smoothing the Minkowski Gauge

Given any a € R and 1 > 0, a Nesterov smoothing
approximation of p(x) := pr(x — a) has the representation

n X—a

eulo) = gl alt = el

0N 2
L F°))".
Moreover, Vg, (x) = p(%a; F°) and

eulx) < 0(x) < 0u(0) + 5IIF°IP.

where ||F°|| := sup{||u|| | u € F}.



The DCA and Nestero

Smoothing the Minkowski Gauge

Given any u > 0, an approximation of the function f is the
following DC function:

f(x) == gu(x) — hu(x), x e R,

where
o i, o2
9u(x) '_%;Z,U,HX aills,
X—a
hu(x) S AR+ X Bee(x - )
i€l

Moreover, f,(x) < f(x) < f,(x) + 1IE1E S~ o, for all x € R™.
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The DCA for Weighted Fermat-Torricelli Problems

Given any u > 0, an approximation of the function f is the
following DC function:

f(x) == gu(x) — hu(x), x e R,

where
o i, o2
9u(x) '_%;Z,U,HX aills,
X—a
hu(x) S AR+ X Bee(x - )
i€l

Moreover, f,(x) < f(x) < f,(x) + 1IE1E S~ o, for all x € R™.
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The DCA for Weighted Fermat-Torricelli Problems

Algorithm 3.

INPUTS: u>0,x; e R, Ne N, F,a',...,.a"eR", ¢,...,Cmn €R.
fork=1,...,Ndo
Find yx = ux + vk, where

U = Siepeu[ 552 = PLE ).

Vk € X jey Biopr(Xk — &).

; Yet2ies cidi/p
Find X1 = Zielf;i/lﬂl :

OUTPUT: Xn41-




Multifacility Location

We now consider the multifacility location problem: given m
points ay,...,am € R,
m
minimize f(X1,...,Xk) = in X¢ — &@j).
(X1, Xk) 26_1 ' PF(X— a)

=1
where F is a nonempty, closed and bound convex set
containing the origin, and pr(x) = inth{t > 0} is the Minkowski
xe

gauge.

When F is the closed unit ball B, the problem becomes

m
minimize  f(x,...,Xx) = ZH in X — al.

i=1 "

It can be shown that a globally optimal solution exists.



DC Decomposition

m

f(X1,. .., Xk) = Zé_r?in xe = ail
=1

We will utilize the fact that

m

(R AESY ZHX@ ajf| — max Zuxg ajl|
é#r

i=1

= (Ekjnxe—a,-u) —Em: max, ZHXz—a/H

i=1 \¢=1 i=1
E#r



DC Decomposition

We obtain the p-smoothing approximation f, = g,, — h,, where

Xt ) = ‘Zanf—a,n

I1Z1

=538 [o (5]

1 4=1

m k 2
Z Z Xp — @j
o A (W_a'z_? [d( [/t l;B>] )

.....

To implement DCA, we need 8g/j and oh,,. ..



Using the Frobenius norm in a space of matrices, we express
g, as

m 1 k
Gu(X) = 5 IX|I” - f<X, B) + oAl
2u 2u

with the inner product (A, B) = ZZa@b@,

X is the k x n matrix with rows x1 s Xk
Ais mx nwith rows ay,...,am, and
Bis k x nwhose every row is the sum a; + - -- + am.

VG.(X)="TX - 1B (X € 0G(Y)iff Y € 0G(X)|
VGL(Y)=L(B+pY)







X1 —a; X1 —a;
Zi 1M I_PB( 1M I)

Xk —aj Xk —aj
Zi ka I_PB( ku I)

Foreachi=1,..., m, there is some R; such that the
R-excluded sum is maximal. If we call this sum Fg, then VFpg

is a k x n matrix whose /" £ R row is Pg (%‘ﬂ and R" row
is 0.

m
V € 0Hy(X) iff V=" Fg
i=1



Multifacility Location Algorithm

INPUT: X; € domg, N € N
fork=1,...,Ndo
Compute Yy = VHi(Xk)+ Vi
Compute Xg1 = +(B+ uY)
end for
OUTPUT: Xpn1







Clustering

XXXXXXXXXXXXXXXXXXXXX

0000000000000 00000CO0COO



Clustering

—



Fermat Torricelli, R10

Eight Rings, R2

Multifacility, R2

Y o s 10 10 0 20 a0 30

Multifacility, R10

Multitacility Sets, R2

a0 s000
x00 4500
4000
~ 5200 <
2 £ as00
s100
3000
s000
2500
4900
2000
800

0

700

00

0 10 200 30 40 500 600 700 800 900 1000 2 4 6 8 0 12 1 1 1 2



References

[1] An, Belghiti, Tao: A new efficient algorithm based on DC
programming and DCA for clustering. J. Glob. Optim., 27 (2007),
503-608.

[2] Nam, Rector, Giles: Minimizing Differences of Convex Functions
and Applications to Facility Location and clustering.
arXiv:1511.07595 (2015).

[3] Nesterov: Smooth minimization of non-smooth functions.
Math.Program., Ser. A103 , 127-152 (2005).

[4] Rockafellar: Convex Analysis, Princeton University Press,
Princeton, NJ, 1970.



	Minimizing Differences of Convex Functions-The DCA
	Nesterov's Smoothing Technique via Convex Analysis
	The DCA and Nesterov's Smoothing Technique for Weighted Fermat-Torricelli Problems
	The DCA and Nesterov's Smoothing Technique for Multifacility Location

