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Photoacoustic computed tomography (PACT)

• PACT holds great potential for human and animal imaging (here, we 
focus on human breast imaging)

• PACT is a hybrid imaging modality.
» Utilizes optical radiation to interrogate the object, but ultrasound 

detection principles

» Measures absorbed optical energy within tissue

• PACT methods have 
» Strong (hemoglobin-based) contrast similar to pure optical methods

» High spatial resolution similar to pure ultrasonic methods

• Endogenous hemoglobin-based contrast can be exploited to 
» Image anatomical structures

» Serve as a functional contrast for imaging of oxygen saturation (sO2).
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• A variety of PACT imaging systems have been developed. 
• The acquisition process generally contains the following steps: 

» An optical pulse is employed to illuminate the breast
» Absorbed light gives rise to an initial pressure distribution via the 

photoacoustic effect 
» Pressure propagates outward based on the acoustic properties of the 

medium
» All transducers (receivers) measure the resultant wavefield data. 

• Goal: To reconstruct the initial pressure distribution from the measured 
wavefield data. 

Imaging physics & data acquisition for PACT
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Ultrasound computed tomography (USCT)

• USCT is based on the transmission of ultrasonic energy through an 
object, rather than reflection at an interface like conventional 
B‐mode ultrasound.

• Advantages of USCT for breast imaging
» Radiation-free

» Breast-compression-free

» Relatively inexpensive

» Large field-of-view

» Performance largely operator-independent

• Contrast mechanisms
» Acoustic reflectivity

» Acoustic attenuation 

» Speed-of-sound (SOS) 
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• A variety of USCT imaging systems have been developed. 

• One single shot: 
» A transducer (emitter) generates an acoustic pulse to insonify a breast. 

» All transducers (receivers) measure the resultant wavefield data. 

• One data set contains V single shots. 

• Goal: To reconstruct the breast sound speed distribution from the 
measured wavefield data. 

Imaging physics & data acquisition for USCT

6

breast breast breast

Emitter 1 Emitter V-1Emitter 0



Benefits of combined system

• Shared detection hardware

• Complementary tissue contrasts

• Automatically co-registered images

• Ability to correct for sound speed variations in PACT image 
reconstruction
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Optimization-based image reconstruction

• Flexible approach that can be utilized to accurately model the 
underlying imaging physics

• Can reconstruct image by (approximately) inverting imaging model

• Often too computationally burdensome to invert or compute 
pseudo-inverse of our imaging model directly

• Instead, we solve an optimization problem that balances 

» Matching the measured data with simulated data obtained by use of 
our model

» A priori knowledge about the objects being measured
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Full-wave equation model for PACT

• Time-domain wave equation (constant density & lossless medium)

• Numerical wave equation solver (solved by k-space pseudo-spectral 
method [Tabei 2002])
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Inverse problem formulation for initial pressure (PACT)

• Formulation of a minimization problem:

where 

• Optimization problem is solved by use of the Fast Iterative 
Shrinkage Thresholding Algorithm (FISTA) [Beck & Teboulle 2009, 
Huang et al. 2003]
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Data fidelity Penalty

Measurements

 𝒑𝟎 = argmin
𝒑𝟎

𝐹𝑃𝐴 𝒑𝟎, 𝒄 + 𝜆𝑅𝑝 𝒑𝟎

𝐹𝑃𝐴 𝒑𝟎, 𝒄 =
1

2
𝒈𝑃𝐴 −𝑴𝑯𝑃𝐴 𝒄 𝒑𝟎

2

2

𝑅𝑝 𝒑𝟎 = 𝛁𝒑𝟎 𝟏

Convex w.r.t. p0, 
Differentiable

Convex, Non-smooth



Computer-simulation studies
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• Numerical breast phantom, segmented and extracted from clinical 
MRI breast measurements [Lou 2016]

Initial pressure distribution [A.U.] Sound speed distribution [mm/μs]

Blood vessels

𝟐 𝒄𝒎



Computer-simulation studies
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Simulation of pressure
• Grid points: 2048 x 2048
• Pixel size: 0.125 mm
• Number of time points: 7000
• Time step: 0.025 μs (fs = 40 MHz) 

Reconstruction
• Grid points: 1024 x 1024
• Pixel size: 0.25 mm
• Number of time points: 3500
• Time step: 0.05 μs (fs = 20 MHz) 

Number of transducers: 512
Radius of transducer array: 110 mm

No noise added



Reconstructed initial pressure distribution
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Inverse problem formulation for sound speed (PACT)

• Formulation of a minimization problem:

where 

• Optimization problem is solved by use of the L-BFGS 
algorithm[Nocedal 1980]
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Data fidelity Penalty

Measurements

 𝒄 = argmin
𝒄
𝐹𝑃𝐴 𝒑𝟎, 𝒄 + 𝜆𝑅𝑐 𝒄

𝐹𝑃𝐴 𝒑𝟎, 𝒄 =
1

2
𝒈𝑃𝐴 −𝑴𝑯𝑃𝐴 𝒄 𝒑𝟎

2

2

𝑅𝑐 𝒄 = 𝜖 + 𝛁𝒄 2
2

Non-convex w.r.t. c, 
Differentiable

Convex, Smooth



Reconstructed sound speed distribution (PACT)
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True initial pressure Shifted initial pressure

The reconstructed sound speed is very sensitive to 
errors in the initial pressure distribution.

 

 

Δx = 1 mm𝜆 = 10−6
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Full-wave equation model for USCT

• Time-domain wave equation (constant density & lossless medium)

• Numerical wave equation solver (solved by k-space pseudo-spectral 
method [Tabei 2002])
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Standard waveform inversion problem formulation

• Formulation of a minimization problem:

• Data fidelity term: 

» V: number of emitters
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Data fidelity Penalty

Measurements

 𝒄 = argmin
𝒄
𝐹𝑈𝑆 𝒄 + 𝜆𝑅𝑐 𝒄

𝐹𝑈𝑆 𝒄 =
1

2
 

𝑣=0

𝑉−1

𝒈𝑣 −𝑴𝑯𝑈𝑆 𝒄 𝒔𝑣
2

2

Non-convex w.r.t. c, 
Differentiable



• Choose some random encoding vector w with which to encode the 
sources and measured data

• New data fidelity term

• When w has a zero mean and an identity covariance matrix,

• Optimization problem solved by used of stochastic gradient descent

Waveform inversion with source encoding (WISE)

20

Expectation w.r.t. w

Encoding vector

E. Haber et. al., SIAM J. Optimiz. 22(3), P739-757 (2012).

K. Wang, et al. IEEE UFFC 
62(3), 475-94 (2015).
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𝐹𝑆𝑈𝑆 𝒄 = 𝑬𝒘
1

2
𝒈𝑤 −𝑴𝑯𝑈𝑆 𝒄 𝒔𝑤

2
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Reconstructed sound speed (Impact of number of views)
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Exploiting acoustic information in PACT data

• Can jointly estimate sound speed and absorbed optical energy 
density from PACT measurements alone [Jiang 2006, Zhang 2008, 
Huang 2016]

• Divide objective function into two subproblems [Huang 2016]

» Estimate p0 given c (convex)

» Estimate c given p0 (non-convex)
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 𝒑𝟎,  𝒄 = argmin
𝒑𝟎, 𝒄

𝐹𝑃𝐴 𝒑𝟎, 𝒄 + 𝜆1𝑅𝑝 𝒑𝟎 + 𝜆2𝑅𝑐 𝒄

 𝒑𝟎 = argmin
𝒑𝟎

𝐹𝑃𝐴 𝒑𝟎, 𝒄 + 𝜆1𝑅𝑝 𝒑𝟎

 𝒄 = argmin
𝒄
𝐹𝑃𝐴 𝒑𝟎, 𝒄 + 𝜆2𝑅𝑐 𝒄



Alternating minimization
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𝐈𝐧𝐩𝐮𝐭: 𝒈𝑃𝐴, 𝒑𝟎
0
, 𝒄 0 , 𝜆1, 𝜆2

𝐎𝐮𝐭𝐩𝐮𝐭:  𝒑𝟎,  𝒄
1: 𝑘 = 0 𝑘 is the iteration number
2:𝒘𝒉𝒊𝒍𝒆 stopping criteria not satisfied 𝒅𝒐

3: 𝒑𝟎
𝑘+1

= argmin
𝒑𝟎

𝐹𝑃𝐴 𝒑𝟎, 𝒄
𝑘 + 𝜆1𝑅𝑝 𝒑𝟎

4: 𝒄 𝑘+1 = argmin
𝒄
𝐹𝑃𝐴 𝒑𝟎

𝑘+1
, 𝒄 + 𝜆2𝑅𝑐 𝒄

5: 𝑘 = 𝑘 + 1
6: 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

7:  𝒑𝟎 = 𝒑𝟎
𝑘

8:  𝒄 = 𝒄 𝑘 [Huang 2016]



Results for joint reconstruction from PACT data alone

The sound speed and initial pressure distributions cannot be stably 
recovered from PACT measurements alone [Stefanov and Uhlmann 2003a]. 

Sound speed [mm/μs]Initial pressure
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Results for joint reconstruction from PACT data alone

Sound speed [mm/μs]Initial pressure

With a good initial guess and strong regularization, the reconstructed 
sound speed is more accurate.
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Bent-ray (USCT-based) sound speed initialization
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Image reconstruction for hybrid PACT/USCT systems

• Two-step conventional approach [Jin and Wang 2006, Manohar 
2007, Jose 2012, Xia 2013]

» Estimate sound speed from USCT measurements

» Estimate initial pressure distribution using this sound speed map

• This approach is not optimal.

» Independent estimation of sound speed and initial pressure 
distributions fails to exploit acoustic information in PACT 
measurements.
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New approach to joint reconstruction

Solution: Joint reconstruction of initial pressure and sound speed 
distributions from combined PACT/USCT measurements

• Automatically accounts for sound speed variations

• Exploits acoustic information presentation in the PACT 
measurements

• May minimize systematic artifacts by balancing errors in the imaging 
models

• Greater numerical stability than reconstructing from PACT data alone

• Allows reconstruction of sound speed from sparse USCT data, which 
could reduce acquisition times and simplify hardware designs
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• Overall optimization problem for synergistic reconstruction

Optimization problem for combined measurements
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• New subproblem for estimating c

 𝒑𝟎,  𝒄 = argmin
𝒑𝟎, 𝒄

𝐹𝑃𝐴 𝒑𝟎, 𝒄 + 𝛽𝐹𝑆𝑈𝑆 𝒄 +

𝜆1𝑅𝑝 𝒑𝟎 + 𝜆2𝑅𝑐 𝒄

 𝒄 = argmin
𝒄
𝐹𝑃𝐴 𝒑𝟎, 𝒄 + 𝛽𝐹𝑆𝑈𝑆 𝒄 + 𝜆2𝑅𝑐 𝒄

Controls relative 
weight of two data 

fidelity terms



Results for combined joint reconstruction (16 views)
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Comparison of the reconstructed sound speeds (16 views)
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Comparison of reconstructed sound speeds (16 views)

33

X [mm]

-60 -40 -20 0 20 40 60

1.47

1.48

1.49

1.5

1.51

 

 

Phantom

Joint Recon

USCT only

So
u

n
d

 s
p

e
e

d
 [

m
m

/μ
s]



Comparison of the reconstructed sound speeds (8 views)
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USCT only Joint Recon.
 

 



Comparison of reconstructed sound speeds (8 views)
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Summary

• Knowledge of the sound speed is needed for accurate 
reconstruction of the initial pressure distribution

• The sound speed and initial pressure distributions cannot both be 
stably recovered from PACT measurements alone

• Additional USCT measurements can help stabilize this joint 
reconstruction problem

• Acoustic information in the PACT data reduces the number of USCT 
views needed for accurate estimation of the sound speed
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• These studies are still preliminary

• Need to investigate the impact of noise

• Need to investigate the impact of model error (e.g. ignoring 
attenuation, transducer properties)
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Future Work
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Reconstructed sound speed (Impact of initial guess)
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Bent-ray Bent-ray init. guessConst. init. guess

[Hormati 2010]



Gradient of data fidelity term w.r.t. sound speed

To compute the gradient, the adjoint wavefield must be calculated for 
each emitter

where

is simply the time-reversed error between our estimated pressured 
and the measured pressure.
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T: number of time points
Δt: time step

Adjoint wavefield

Gradient at nth pixel
K. Wang, et al. IEEE UFFC 
62(3), 475-94 (2015).

R. Plessix, Geophysical J. Int.
167(2), 495–503 (2006). 



Choice of encoding vector

• Relate data fidelity term to randomized trace estimation – want to 
estimate tr(A), but only have access to estimates of the form

• Notice that our original cost function can be rewritten as

• Let                                                                  . Then evaluating the cost 
function is equivalent to finding the trace of A. 
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where

(combine all views)

T. Van Leeuwen, et al. Inter. J. of 
Geophysics 2011: 1–18. 



Choice of encoding vector

• Criteria for evaluating a trace estimator Y

» Variance of one sample

» Bounds on number of samples for given error:
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Estimator Variance of one sample Bound on # samples for 
(ϵ, δ)-approx.

Random 
bits per 
sample

Gaussian 2 𝐴
𝐹 𝟐𝟎𝝐−𝟐 𝐥𝐧

𝟐

𝜹

𝑂(𝑛)

Rachemacher 

(Pr 𝑤𝑖 = ±1 =
1

2
) 𝟐 𝑨

𝑭

𝟐
− 

𝒊=𝟏

𝒏

𝑨𝒊𝒊
𝟐 6𝜖−2 ln 2

𝑟𝑎𝑛𝑘 𝐴

𝛿

𝑂(𝑛)

DFT, Hadamard ---
8𝜖−2 ln

4𝑛2

𝛿
ln
4

𝛿

𝑂(log 𝑛)

A is an nxn symmetric positive semi-definite matrix

M. Hutchinson. Comm. in Stat., 
Sim. and Comp., (18):1059–1076, 
1989.

H. Avron and S. Toledo. J. of 
ACM. 58(3): 8:1-8:17 (2011).



Speed-of-sound reconstruction in USCT

• Straight-ray model

» Filtered back-projection (FBP) algorithm 

• Bent-ray model

» Ray-tracing method 

» Rayless method

(e.g., adjoint state method) 

• Linearized wave equation model

» Diffraction tomography

» Distorted Born iterative methods

• Full-wave equation model

» Waveform inversion method 

(Most comprehensive)
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• Calculation of the gradient requires 2V wave equation solver runs -
Computationally burdensome.

Standard waveform inversion method

47

Simulate the pressure

Propagate residuals backward in time



Implementation & Algorithm performance  
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WISE

Standard

Solution

2M num. wave eqn. solver runs

2 num. wave eqn. solver runs

Algorithm performance

Solved by stochastic optimization algorithms (Online learning algorithms)
Calculation of the gradient of ONE realization requires only 2 wave 
equation solver runs (in comparison to 2V). 

where

V

K. Wang, et al. IEEE UFFC 
62(3), 475-94 (2015).



(𝐾𝑠𝑡𝑑 and 𝐾𝑤𝑖𝑠𝑒: # iterations 

required for convergence)

Intuitive interpretation of encoded source

• Replace V single shots with a 
super shot

• Encoded source may introduce a 
cross-talk, which can be 
mitigated through iteration with 
properly designed w. 

• Overall computational saving if                                                          
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Physical data acquisition
M Single Shots

Image recon. 
1 Super Shot

breast breast breast

Emitter 1 Emitter V-1Emitter 0

breast

V

K. Wang, et al. IEEE UFFC 
62(3), 475-94 (2015).



Theoretical convergence rates

50

Algorithm Cost of one 
iteration

Iterations to 
reach accuracy ε

Time to reach 
accuracy ε

Gradient descent 𝑂 𝑉
𝑂 log

1

𝜖
𝑂 𝑉 log

1

𝜖

Stochastic
gradient descent

𝑂 1
𝑂
1

𝜖
𝑂
1

𝜖

• Gradient descent achieves linear convergence

• Stochastic gradient descent achieves sub-linear convergence

• However, when number of emitters is large, the time to reach a 
given accuracy can be much shorter in the stochastic case.

O. Bousquet and L. Bottou. Adv. 
in Neural Info. Processing 
Systems, 161–68, 2008. 


