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Motivation: 3D Gravity Inversion
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Aim: Given surface observations g;; find volume density o, ;.




Discrete Inversion

Gravity Measurements g;; b on surface at m cells.
Density 0;;, x on volume of n cells.

Projection matrix A € R™*"

Linear System Ax =~ b:

Severely Underdetermimed: m < n

Noise contamination b = byye + 7

lll-posed: cond(A) large

Relatively Large: e.g. m = 4588, n = 100936

Tikhonov Regularization:

v Vvyy

v

x(A) = arglﬂgin{l\AX = by, + [ L(x —x0)[3}
xeR™

Mapping L defines basis for x with prior xg
Weighting Wy, = C,.%, [lyllw,, = y* Wyy. Whitens noise in b.

Requires automatic estimation of \°Pt




Large Scale Problems use lterative Solve (Notation)

LSQR Let 8; = ||b]|, and e{"™ first column of 7,
Generate, lower bidiagonal B, € R(‘t1)*t column
orthonormal H,,; € R™*(+1) G, € R

AGt = Ht+1Bt, ,81Ht+1e§t+1) = b
Projected Problem on projected space:

wi(r) = argmin{||Biw — Bret V3 + ¢ 2 wl3}-
weR?

Projected Solution depends on ¢;°P*

Xt(CtOpt) = GtWt(CtOpt)

\ Generally: (,°P" # \°Pt




Regularization of the LSQR solution: Questions

(i) Determine optimal ¢ The choice of the subspace impacts the
regularizing properties of the iteration: For large ¢
noise due to numerical precision and data error
enters the projected space.

(i) Determine optimal (; How do regularization parameter
techniques translate to the projected problem?

(iii) Relation optimal ¢; and optimal A\ Given ¢ how well does

optimal (; for projected space yield optimal A for
full space, or when is this the case?



Calculating Unbiased Predictive Risk using w;(\)[RVA15]

Residual: Rftll(x;) = Ax; — b.
Influence Matrix A(\) = A(ATA + \21)~tAT
UPRE : Full problem

A7 = argmin R (e ()] +2Tr(A(N) = m} = argmin{U(1)}.

Using the projected solution for parameter A and
Tr ((AGH)(N)) = Tr (Bi(N))

UM = [ ((AG)(A) = L) b1 +2Tx ((AG)(A)) —m
= [1B1(B:(N) = Te)el ™ |15 + 2 Te(Bi(N) — m

A°Pt for UT1()\) can be estimated for projected problem




Deriving UPRE for the projected problem

Is \°Pt relevant to (;°P* for the projected problem?\

Noise in the right hand side For b = b€ + 5, n ~ N(0, I,,)

Noise in projected right hand side ﬁleﬁ“, satisfies
Him ~N(0, Iiy1)
Immediately

UPi(Cy) = [|B1(Bi(Co) — Tryn)el ™ VI3 + 2 Tr(Bu(Cr)) — (£ +1)
_ Uf“H(Ct) +m— (t + 1),

Minimizer of UP™i((;) is minimizer of U™ ((;)




(+°P* calculated for projected problem may not yield \°P* on full problem

(:°P* depends on ¢, \°’* depends on m* =: min(m,n)

Trace Relations By linearity and cycling.

Tr(A()\)) = Tr(AATA + )21,) 71 AT) = m* — \? mZ(af + 23t
=1

Tr(Bi(G)) =t — G2 Y (7 + 67!

i=1

Approximate Singular Values IF o; =~ v;, 1 <i < t* <,
0% /(0% +22) >> 02 /(02 + \2) = 0,0 > t*,

m*

Te(AN) = Te(B(\) + Y 07 (0] +3*) 7" = Tr(By- (V).
1=t*+1

If t* approx numerical rank A, ;°P' ~ \°P! for ICs« (AT A, ATb)




Other Estimation Techniques for the Projected Problem

GCV: [CNOO08] weighted GCV is introduced for w > 0.

[RPI (i (Ch)) I3
(Tr(wBi(¢r) — Ir1))*

Optimal Analysing as for UPRE: w = £tL < 1.

GP™I ({4, w) = G(\) = GP™I(\, 1).

Discrepancy Principle Seek A such that
IR (x()\))||3 = 6 ~ m. To avoid over smoothing:
d=vm,v>1

Discrepancy for the Projected Problem Seek (; such that

IRPTI (wi (o) 13 ~ 70 = w(t +1).

We do not obtain in these cases (;°P* ~ \°P!




Identifying optimal subspace size ¢

Noise revealing function: [HPS09] suppose 6; and ; on
diagonal and sub diagonal of B;

t
H 9 /5]—1—1

Optimal ¢ is given by (for user determined ¢™)

t°P*"P — min{argmax(p(t))} + step
t>tmin

step= 2 is to assure that noise has entered the entries in
p(t) and hence the basis.

™" js chosen based on examination of p(t).

Only useful if discrete Picard condition holds [HPSOQ].\




Identifying optimal subspace size ¢:

Minimization of the GCV for the truncated SVD of B~ [CKO15]
Projected subspace size is defined to be ¢*

G(t,t*) = G z:\uTloy2
t+1

Optimal ¢ is given by

P9 — argmin G(t, t*)
t

Does not require Picard condition, but t°?*~Y depends on t*




Application for Two Dimensional Examples




Two dimensional image deblurring [NPP04] Problem size 256 x 256

(a) pata (b) Data

Figure: Data for grain and satellite images with blur and noise level
10%.



Noise Revealing Function p(t): comparing t°Pt=¢, ¢oPt=9  topt—min

60 80 100 120

(a) grain (b) satellite

Figure: p(t) using t™i* = 25. Dashed-dot t°P*~*, magenta t°?*~9 and
black t°Pt—min ‘Jocation of minimum for p(t) plus step.



Evaluating Image Quality : Relative error

Rel ative Error Rel ative Error

10 20 30 40 50 10 20 30 40 50 60 70
t t

(a) grain RE (b) satellite RE

Figure: Relative error (RE) with increasing ¢. Solid line in each case
is solution with projection and without regularization.

UPRE, WGCV and PMDP outperform GCV




Solutions for different t°Pt: (MIN, ¢oPt—min opt=G topt—p) Nojise level 10%

(€) MIN 42

Figure: UPRE to find ¢. Solutions obtained for tort—r, topt—min gng
t°rt=9 and MIN.

Solutions inadequate



Iteratively Reweighted Regularization [LK83]

Minimum Support Stabilizer Regularization operator L(*).

(L) = () =24 5272 >0

7

Parameter /3 ensures L*) invertible
Invertibility use (L(*))~! as right preconditioner for A
LG = (67 =)+ 8712 >0
Initialization L) = T, x(©) = x,. (might be 0)
Reduced System When 5 = 0 and xl(k_l) = xgk_Z) remove
column ¢, Ais AL=! with columns removed.
Update Equation Solve Ay ~ R = b — Ax*~1)_ With correct
indexing set y; = y; if updated, else y; = 0.

k) — (k=1)

x( +y

Cost of L(*) is minimal




Solutions t°Pt after two steps IRR: (MIN, ¢opt—min topt=G topt—p)

Figure: IRR k = 2 Grain k& = 2 MIN solution is at t°P*~™* show k = 3.

Solutions are stabilized less dependent on ¢




Relative error with k: 5% error using UPRE
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Figure: Relative errors decrease initially with £ and then increase.
Dashed-dot t°P*—# magenta ¢°P*~9, black ¢°Pt—min,



Noise revealing function p(t) with k£ 5% error
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Figure: Determining t°P* with k for 5% noise using p(t). Stopping
Critera : Grain k = 4 noise enters, use k = 2. Satellite k = 3 noise
enters, use k£ = 1.



Solving the Gravity Inversion problem




Undersampled Gravity inversion m = 4900, n = 98000
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Figure: (a) The perspective view of the model. Four different bodies
embedded in an homogeneous background. Densities of A and B are
0.8 gcm~2 and C and D are 1 g cm~—2; (b) The noise contaminated
gravity anomaly due to the model.



Undersampled Gravity inversion
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Figure: The reconstructed model with ¢ = 250 and the L, stabilizer
with 32 = 1.e—9. Data misfit x, the regularization term, +,
regularization parameter O with iteration



True Data:
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Figure: Residual Anomaly of Mobrun ore body, Noranda, Quebec,
Canada.



Reconstructed Model
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Figure: The reconstructed model with ¢t = 300 and the L; stabilizer
with 32 = 1.e—9. (a) cross-section at y = 285 m and (b) comparison
From lalango et.al (2014)



3—D perspective
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Figure: 3D view of the recovered model, the density cut off is
4gcm—3.



Conclusions

UPRE/WGCYV regularization parameter estimation explained
for projected problem.

C°PY \°Pt related across levels
Underdetermined problems are also solved.

lteratively Reweighted Regularization stabilizes the projected
solution

Sensitivity to choice of t°P* reduced by IRR

t°Pt can be estimated using p(t), use t°P*—™min gs
independent of other parameters

tort effectively determines a truncation of the SVD for
B,: use B; and G, but truncated solution.



Some key references

[

B
B
[
B
B

Julianne M. Chung, Misha E. Kilmer, and Dianne P. O’Leary.

A framework for regularization via operator approximation.
SIAM Journal on Scientific Computing, 37(2):B332-B359, 2015.

Julianne Chung, James G Nagy, and DIANNE P O’Leary.

A weighted GCV method for Lanczos hybrid regularization.
Electronic Transactions on Numerical Analysis, 28:149—-167, 2008.

Iveta Hnétynkova, Martin Plesinger, and Zdenék Strakos.

The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the
data.
BIT Numerical Mathematics, 49(4):669-696, 2009.

B. J. Last and K. Kubik.

Compact gravity inversion.
GEOPHYSICS, 48(6):713-721, 1983.

James G. Nagy, Katrina Palmer, and Lisa Perrone.

Iterative methods for image deblurring: A Matlab object-oriented approach.
Numerical Algorithms, 36(1):73-93, 2004.

R. A. Renaut, S. Vatankhah, and V. E. Ardestani.

Hybrid and iteratively reweighted regularization by unbiased predictive risk and weighted gcv for projected
systems, 2015.
submitted and at: http://arxiv.org/abs/ 9.00096.



http://arxiv.org/abs/1509.00096

	Motivation: Large Scale Gravity Inversion
	Parameter estimation on the projected problem
	UPRE is a good estimator RVA:15
	Identifying the weight parameter in the GCV ChNaOl:08

	Identifying the optimal Subspace
	Appearance of Noise in the Subspace HPS
	Minimization of the GCV for the truncated SVD ChKiOl:15

	Simulations: Two dimensional Examples
	Iteratively Reweighted Regularization LaKu:83
	Inversion of undersampled gravity data
	Conclusions

