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Motivation: detect weak signals in cluttered backgrounds
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Motivation, Part II

To solve Remote Sensing problems
• To detect targets, first estimate the target-free background

Can we use Image Processing tools?
• To reduce noise, need to estimate noise-free pixel values
• In-painting, need to estimate missing pixel values

→ ←
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Inspired by recent developments in image processing

Patched-based methods: filtering, regression, etc.

eg, noise reduction using “non-local means”
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Target and anomaly detection

Detect weak signals in cluttered backgrounds

Characterize cluttered backgrounds

Step 1: estimate the target-free background
• eg, global Gaussian model: mean and

covariance from data
• or: mixtures, subspaces, endmembers,

manifolds,. . .
• or: local mean, local or global covariance
• or: local regression

Step 2: compare estimated to observed
• disagreement implies anomalousness
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RX = Mahalanobis distance

pixel under test

guard window

annulus

Step 1: estimate the target-free background
• average pixels in surrounding annulus
• Estimate: ŷ = (x1 + x2 + · · ·+ xM)/M

Step 2: compare estimated to observed
• using Mahalanobis distance
• Difference: e = y − ŷ
• Covariance: R = 〈 eeT 〉
• Anomalousness: A = eTR−1e
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Regression

Estimate target-free pixel value
based on the pixels in the surrounding annulus

eg, local mean:

ŷ =
1

M
(x1 + · · ·+ xM)

Seek function f , learned from the entire image, such that

ŷ = f (x) = f (x1, . . . , xM)

provides a good estimate of y

= f ( )

Aside: Linear f (x) corresponds to convolutional filter
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Regression: multiple (multi-/hyper-spectral) bands

When we say:

• ŷ = f (x)

= f ( )

What we mean is:

• ŷ = f (x)

)= f (
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Regression for target and anomaly detection

= f ( )

This study:
• local estimate of central pixel: ŷ = f (x) = f (x1, . . . , xM)
• global estimate of covariance: R = 〈 (y − ŷ)(y − ŷ)T 〉

Additive target detection (y vs. y + εt):
• local matched filter: T (x, y) = tTR−1(y − f (x))

Anomaly detection
• RX-like: A(x, y) = (y − f (x))TR−1(y − f (x))
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Regression algorithms

Aim is to find f such that y ≈ ŷ = f (x)

kNN – (weighted) k-nearest neighbors (in x-space)
• Given annulus x around the pixel under test:

Find locations i1, i2, . . . , ik such that annuli xi1 , xi2 , . . . , xik
are close to x. That is: ‖x− xi‖ is small.

• Assign weights w1, . . . ,wk so closer points have more weight:
eg, wi ∼ exp(‖x− xi‖2/σ2)

• Average the associated y values: ŷ = f (x) =
∑k

j=1 wjyij
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∑k

j=1 wjyij



24

� RX Regression Imagery Implanting Symmetry �

Regression algorithms

Aim is to find f such that y ≈ ŷ = f (x)

kNN – (weighted) k-nearest neighbors (in x-space)
• Given annulus x around the pixel under test:

Find locations i1, i2, . . . , ik such that annuli xi1 , xi2 , . . . , xik
are close to x. That is: ‖x− xi‖ is small.

• Assign weights w1, . . . ,wk so closer points have more weight:
eg, wi ∼ exp(‖x− xi‖2/σ2)

• Average the associated y values: ŷ = f (x) =
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Regression algorithms

Aim is to find f such that y ≈ ŷ = f (x)

kNN – (weighted) k-nearest neighbors (in x-space)
• Given annulus x around the pixel under test:

Find locations i1, i2, . . . , ik such that annuli xi1 , xi2 , . . . , xik
are close to x. That is: ‖x− xi‖ is small.

• Assign weights w1, . . . ,wk so closer points have more weight:
eg, wi ∼ exp(‖x− xi‖2/σ2)

• Average the associated y values: ŷ = f (x) =
∑k

j=1 wjyij

Global least-squares linear fit
• Let f (x) = f (x1, . . . , xM) = α1x1 + . . . αMxM
• Fit α’s globally over the whole image:

minimize
∑

i [yi − f (xi )]2
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Images

Parrotsy Boaty HyMap

WorldView-2y

2 Photographs

2 Remote sensing

Bands: 3,3,8,126
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Where are the errors? (HyMap: one band)

Avg kNN kNN-x

3x3
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Where are the errors? (HyMap: one band)

Avg kNN kNN-x

5x5
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Where are the errors? (HyMap: one band)

Avg kNN kNN-x

11x11
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Multispectral (3 bands)

Two strategies
• Band-by-band: for each band b, estimate bth component of

y as function of bth components of annulus pixels x1, . . . , xM .
• Bands-together: treat y and x1, . . . , xM as vectors;

this mostly affects choice of nearest neighbors

For local mean, two strategies are equivalent

Results: kNN outperforms local mean

SNR(dB) Local kNN kNN
Mean band-by-band bands together

Parrots 20.13 26.48 25.60
Boat 12.05 18.10 17.62

WV-2 (bands 1,2,3) 12.94 17.24 16.06
HyMap (bands 1,2,3) 16.04 19.66 19.49
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Higher SNR =⇒ Improved target detection performance?

N. Hasson, S. Asulin, S. R. Rotman, and D. Blumberg, “Evaluating
backgrounds for subpixel target detection: when closer isn’t better.”
Proc. SPIE 9472, p. 94720R, 2015.
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Implanting targets: misplaced pixel anomalies

Select some pixel locations at random (red squares)

Select some more locations at random (yellow squares)

Copy pixel values at red locations to yellow locations
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Anomaly detection with implanted targets

Choose a small number of locations at random

Replace pixels with anomalous targets
• eg, y← (1− ε)y + εt
• with t ∈ U

Use regression to learn f

Apply f to compute background estimates: ŷi = f (xi )

Make residual map: e = y − ŷ

Compute covariance of residuals: Φ =
〈
eeT

〉
Use RX-like anomaly detection: A(e) = eTΦ−1e

Implanted targets should have high values of A
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Implanted targets (HyMap – Cooke City)
Mean

Anomalousness 744 false alarms
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Implanted targets (HyMap – Cooke City)
D4Σ Regression

Anomalousness 233 false alarms
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Implanted targets (HyMap – Cooke City)
D4Σ-PCA Regression

Anomalousness 167 false alarms
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Implanted targets (HyMap – Cooke City)
Direct band-by-band
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Implanted targets (HyMap – Cooke City)
PCA band-by-band
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Aside: symmetrized regression

ŷ = f (x)

= f ( ) = f ( )

Introduce symmetry-preserving features:

Φp(x1, x2, . . . , xk)

Make regression a function of features:

ŷ = f (Φ1, . . . ,ΦP)

Features preserve symmetry, so choice of function is arbitrary:
• (weighted) k-nearest neighbors
• Linear regression
• Support vector regression, deep neural network, etc, etc.
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Dihedral group (D4) symmetry

D4 = {1, r , r2, r3, s, sr , sr2, sr3}

g

a

ef

b

c

d

h
Group has two generators: s, r

s: reflection
sa = b, sb = a, sc = h, sd = g , etc.

r : rotation
ra = c , rb = d , rc = e, rd = f , etc.

Composition rules: s2 = 1, r4 = 1, rs = sr3

e.g., r2 × sr2 = r(rs)r2 = r(sr3)r2 = (rs)r5 = (rs)r = (sr3)r = sr4 = s.
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Sigma (D4Σ) features

g

a

ef

b

c

d

h

ΦΣΣΣ = a + b + e + f + c + d + g + h

ΦΣΣ∆ =
∣∣∣(a + b + e + f )− (c + d + g + h)

∣∣∣
ΦΣ∆Σ =

∣∣(a + b)− (e + f )
∣∣ +

∣∣(c + d)− (g + h)
∣∣

ΦΣ∆∆ =
∣∣∣|(a + b)− (e + f )| − |(c + d)− (g + h)|

∣∣∣
Φ∆ΣΣ = |a− b|+ |e − f |+ |c − d |+ |g − h|

Φ∆Σ∆ =
∣∣∣(|a− b|+ |e − f |)− (|c − d |+ |g − h|)

∣∣∣
Φ∆∆Σ =

∣∣|a− b| − |e − f |
∣∣ +

∣∣|c − d | − |g − h|
∣∣

Φ∆∆∆ =
∣∣∣∣∣|a− b| − |e − f |

∣∣− ∣∣|c − d | − |g − h|
∣∣∣∣∣

Features invariant to group operations: gΦ = Φ for g ∈D4

e.g., rΦΣΣ∆ =
∣∣∣(ra + rb + re + rf )− (rc + rd + rg + rh)

∣∣∣
=
∣∣∣(c + d + g + h)− (a + b + e + f )

∣∣∣ = ΦΣΣ∆
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Sigma-Delta (D4Σ∆) features
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ΦΣΣΣ = a + b + e + f + c + d + g + h

ΦΣΣ∆ =
∣∣∣(a + b + e + f )− (c + d + g + h)

∣∣∣
ΦΣ∆Σ =

∣∣(a + b)− (e + f )
∣∣ +

∣∣(c + d)− (g + h)
∣∣

ΦΣ∆∆ =
∣∣∣|(a + b)− (e + f )| − |(c + d)− (g + h)|

∣∣∣
Φ∆ΣΣ = |a− b|+ |e − f |+ |c − d |+ |g − h|

Φ∆Σ∆ =
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∣∣∣
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∣∣ +

∣∣|c − d | − |g − h|
∣∣

Φ∆∆∆ =
∣∣∣∣∣|a− b| − |e − f |

∣∣− ∣∣|c − d | − |g − h|
∣∣∣∣∣

Features invariant to group operations: gΦ = Φ for g ∈D4

e.g., rΦΣΣ∆ =
∣∣∣(ra + rb + re + rf )− (rc + rd + rg + rh)

∣∣∣
=
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Various symmetries

No symmetry Klein K4 Dihedral D4

Diamond Rings Square Rings Mean
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Using various symmetries

Symmetry provides comparable performance
with fewer features

Card Median Mean SqRing DiRing D4Sig D4SigDel K4Sig No-sym
Symmetry
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Using various symmetries

Symmetry provides comparable performance
with fewer features
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Conclusions

Background non-stationarity is a great problem

• Better background estimation → better target detection

Local mean is not the only way to estimate central pixel:
we can do better!

= f ( )

Although motivated by modern image processing,
we saw improvement just using ordinary regression
• kNN, simple linear fit: both are better than local mean
• and better still for larger annulus size

What we did was simple – you can do better!
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You can do better!
ie, Future Work

Apply “real” machine learning tools

Look at band-by-band variants
• Consider transformations besides PCA

Segment image; learn separate f (x) for each segment
• Use k-means-like approach to learn f (x) and segments together
• Use a separate covariance matrix R for each segment
• Identify appropriate regularization of R

Extend to known (and variable) target detection scenarios

Optimize direct measures of performance (vs least squares)
• Remember: closer isn’t always better
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