SIAM Imaging Science 2016 — Recent Developments and Challenges of Imaging Techniques in Geoscience

Spatio-Spectral Background Estimation in
Remote Sensing Imagery

James Theiler and Brendt Wohlberg

Los Alamos National Laboratory

26 May 2016

Acknowledge: Stanley Rotman, Amanda Ziemann

Research supported by the United States Department of Energy
Hyperspectral Advanced Research and Development
for Solid materials project (HARD Solids).

+ Los Alamos

NATIONAL LABORATORY



< RX Regression Imagery Implanting Symmetry >

Motivation: detect weak signals in cluttered backgrounds

HOW LONG does it take to find a needle in a hay-
stack? Jim Moran, Washington, D. C., publicity man,
recently dropped a needle into a convenient pile of
hay, hopped in after it, and began an intensive search
for (a) some publicity and (b) the needle. Having
found the former, Moran abandoned the needle hunt.




< RX Regression Imagery Implanting Symmetry

Motivation, Part Il

m To solve Remote Sensing problems
o To detect targets, first estimate the target-free background

m Can we use Image Processing tools?

e To reduce noise, need to estimate noise-free pixel values
e In-painting, need to estimate missing pixel values

>
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Inspired by recent developments in image processing

m Patched-based methods: filtering, regression, etc.

m eg, noise reduction using “non-local means”

peyman Mianfar New insights and methods,
both practical and theoretical

P. Milanfar, IEEE Signal Processing Magazine (Jan 2013), 106-128
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Target and anomaly detection

m Detect weak signals in cluttered backgrounds

m Characterize cluttered backgrounds
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Target and anomaly detection

m Detect weak signals in cluttered backgrounds

m Characterize cluttered backgrounds

m Step 1: estimate the target-free background
o eg, global Gaussian model: mean and
covariance from data
e or: mixtures, subspaces, endmembers,
manifolds,. ..
e or: local mean, local or global covariance
e or: local regression

m Step 2: compare estimated to observed
o disagreement implies anomalousness
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RX = Mahalanobis distance

pixel under test

- guard window
-

t— annulus

m Step 1: estimate the target-free background

e average pixels in surrounding annulus
e Estimate: § = (x1 +x + -+ xu)/M
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RX = Mahalanobis distance

pixel under test

- guard window
-

t— annulus

m Step 1: estimate the target-free background

e average pixels in surrounding annulus
e Estimate: § = (x1 +x + -+ xu)/M

m Step 2: compare estimated to observed
using Mahalanobis distance
Difference: e=y — y

Covariance: R = (ee")
Anomalousness: A= e"R~le
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Regression

m Estimate target-free pixel value
based on the pixels in the surrounding annulus

m eg, local mean:

“*i(er + xm)
Y=y M

m Seek function f, learned from the entire image, such that
)7 = f(X) = f(Xl,...,XM)

provides a good estimate of y

AN

o =1 )
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Regression

m Estimate target-free pixel value
based on the pixels in the surrounding annulus

m eg, local mean:

“*i(er + xm)
Y=y M

m Seek function f, learned from the entire image, such that
)7 = f(X) = f(Xl,...,XM)

provides a good estimate of y

AN

o =1 )

Aside: Linear f(x) corresponds to convolutional filter
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Regression: multiple (multi-/hyper-spectral) bands

When we say:
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Regressmn for target and anomaly detection

AN

=1 )

m This study:
e local estimate of central plxel y=Ff(x)="1(a,...,xm)
e global estimate of covariance: R = ((y — ¥)(y )“/) )

m Additive target detection (y vs. y + €t):
e local matched filter: T(x,y) = t"R™(y — f(x))

m Anomaly detection
o RX-like: A(x,y) = (y — f(x))"R™*(y — f(x))
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Regression algorithms

m Aim is to find f such that y = § = f(x)

m kNN — (weighted) k-nearest neighbors (in x-space)
e Given annulus x around the pixel under test:

Find locations i1, i, ..., ik such that annuli x;,, xj,, ..., X;,
are close to x. That is: ||x — x;|| is small.
o Assign weights wy, ..., wk so closer points have more weight:

eg, w; ~ exp(|[x — x;[|*/o?)
o Average the associated y values: § = f(x) = E};l w;yi
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Regression algorithms

m Aim is to find f such that y = § = f(x)

m kNN — (weighted) k-nearest neighbors (in x-space)
e Given annulus x around the pixel under test:

Find locations i1, i, ..., ik such that annuli x;,, xj,, ..., X;,
are close to x. That is: ||x — x;|| is small.
e Assign weights wy, ..., wk so closer points have more weight:

eg, w; ~ exp(|[x — x;[|*/o?)
o Average the associated y values: § = f(x) = Z};l w;yi

m Global least-squares linear fit
o Let f(x)=Ff(x1,...,xm) = a1x1+...apmXM
e Fit a's globally over the whole image:
minimize >, [y; — f(x)]?
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RX

Regression

Parrots

Imagery Implanting

Boat

m 2 Photographs
m 2 Remote sensing
m Bands: 3,3,8,126

Symmetry

>
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Where are the errors? (HyMap: one band)

Avg kNN kNN-x

3x3
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Where are the errors? (HyMap: one band)

Avg kNN kNN-x

5x5
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Where are the errors? (HyMap: one band)

Avg kNN kNN-x

11x11
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Multlspectral (3 bands)

m Two strategies

e Band-by-band: for each band b, estimate bth component of
y as function of bth components of annulus pixels x, ..., xu.
e Bands-together: treat y and x, ..., xy as vectors;
this mostly affects choice of nearest neighbors

m For local mean, two strategies are equivalent

m Results: kNN outperforms local mean

SNR(dB) || Local kNN | kNN
Mean | band-by-band | bands together
Parrots || 20.13 26.48 | 25.60
Boat || 12.05 18.10 | 17.62
WV-2 (bands 1,2,3) || 12.94 17.24 | 16.06
HyMap (bands 1,2,3) || 16.04 19.66 | 19.49




< RX Regression Imagery Implanting Symmetry

Higher SNR = Improved target detection performance7
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Higher SNR = Improved target detection performance7

N. Hasson, S. Asulin, S. R. Rotman, and D. Blumberg, “Evaluating
backgrounds for subpixel target detection: when closer isn’t better.”
Proc. SPIE 9472, p. 94720R, 2015.



< RX Regression Imagery Implanting Symmetry >

Implanting targets: misplaced pixel anomalies
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Implanting targets: misplaced pixel anomalies

m Select some pixel locations at random (red squares)
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Implanting targets: misplaced pixel anomalies

m Select some pixel locations at random (red squares)

m Select some more locations at random (yellow squares)
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Implanting targets: misplaced pixel anomalies

m Select some pixel locations at random (red squares)

m Select some more locations at random (yellow squares)

m Copy pixel values at red locations to yellow locations
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Anomaly detection with implanted targets

m Choose a small number of locations at random
m Replace pixels with anomalous targets

e eg, y<+ (L—e)y+et
e withtelf

Use regression to learn f

Apply f to compute background estimates: y; = f(x;)
Make residual map: e=y —§y

Compute covariance of residuals: ® = <eeT>

Use RX-like anomaly detection: A(e) = e’ ®~le
Implanted targets should have high values of A
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Implanted targets (HyMap — Cooke City)
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Implanted targets (HyMap — Cooke City)
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Implanted targets (HyMap — Cooke City)

D4¥-PCA Regression

Anomalousness 167 false alarms
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Implanted targets (HyMap — Cooke City)
Direct band-by-band
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Implanted targets (HyMap — Cooke City)

PCA band-by-band

Regression

Detection Rate

Imagery Implanting

Symmetry
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Aside: symmetrized regression

my=f(x)
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Aside: symmetrized regression

my=f(x)

=1 )

m Introduce symmetry-preserving features:

q)p(Xl,Xz, e 7Xk)

>
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Aside: symmetrized regression

o= f =t
m Introduce symmetry-preserving features:
q)p(Xl,XQ, e 7Xk)

m Make regression a function of features:
y=1f(®1,...,0p)
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Aside: symmetrized regression

m §=f(x)
f=f( )=f<i>

m Introduce symmetry-preserving features:

q)p(Xl,XQ, e ,Xk)

m Make regression a function of features:
y=1f(®1,...,0p)

m Features preserve symmetry, so choice of function is arbitrary:

o (weighted) k-nearest neighbors
e Linear regression
e Support vector regression, deep neural network, etc, etc.
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Dihedral group (D,) symmetry

Dy = {1,r,r% 13 s,sr,sr? sr3}

m Group has two generators: s, r
m s: reflection
sa=b, sb=a, sc=h, sd = g, etc.
m r: rotation
ra=c, rb=d, rc=e, rd =f, etc.
m Composition rules: s2 =1, r* =1, rs = sr3

e.g., r’ x sr?> = r(rs)r? = r(sr3)r? = (rs)r® = (rs)r = (sr¥)r = sr* = s.

>
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Sigma (D,X) features

$ssy = a+b+e+f+c+d+g+h

m Features invariant to group operations: g® = ® for g€ Dy

>
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Sigma-Delta (D,XA) features

Ossy = a+b+te+f+ct+d+g+h

Pyrya = ‘(a+b+e—|—f)—(c—|—d—|—g+h)’
Psar = [(a+b)—(e+F)|+ |(c+d)—(g+h)]
Oran = [|(a+b) = (e+ )~ |(c+d) ~ (g + )
Sasys = |a—b|+|e—f|+|c—d|+|g—h|
Oaza = |(la—bl+ e fl) = (lc = d| + g — h])
bans = |\a—b|—|e—f|’—|—||c—d|—|g—h||
dana = “|a—b|—|e—f\|—||c—d|—\g—h|]‘

m Features invariant to group operations: g® = ® for g€ Dy

(ra+rb+re+rf)—(rc+rd+rg+rh)‘

e.g., rCDXZA =

:‘(c+d—|—g+h)—(a+b+e+f)‘:dD)IA



< RX Regression Imagery Implanting Symmetry >

Various symmetries

No symmetry Klein Ky Dihedral Dy
Diamond Rings Square Rings Mean
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Using various symmetries

m Symmetry provides comparable performance
with fewer features

30 SNB(dB) T

0
Card Median Mean SqRing DiRing DA4Sig D4SigDel K4Sig No-sym
Symmetry
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Using various symmetries

m Symmetry provides comparable performance
with fewer features
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Using various symmetries

m Symmetry provides comparable performance
with fewer features
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Conclusions

m Background non-stationarity is a great problem

Symmetry
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m Background non-stationarity is a great preblem opportunity
o Better background estimation — better target detection

m Local mean is not the only way to estimate central pixel:
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AN
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m Although motivated by modern image processing,
we saw improvement just using ordinary regression
o kNN, simple linear fit: both are better than local mean
e and better still for larger annulus size
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Conclusions

m Background non-stationarity is a great preblem opportunity
o Better background estimation — better target detection

m Local mean is not the only way to estimate central pixel:
we can do better!

AN

o =1 )

m Although motivated by modern image processing,
we saw improvement just using ordinary regression

o kNN, simple linear fit: both are better than local mean
e and better still for larger annulus size

m What we did was simple — you can do better!

>
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You can do better!
ie, Future Work

Apply “real” machine learning tools

Look at band-by-band variants
e Consider transformations besides PCA

Segment image; learn separate f(x) for each segment

o Use k-means-like approach to learn f(x) and segments together
o Use a separate covariance matrix R for each segment
o |dentify appropriate regularization of R

m Extend to known (and variable) target detection scenarios

Optimize direct measures of performance (vs least squares)
o Remember: closer isn't always better

>
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