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Imaging subsurface structure



Inverse Problem

d = Gm + ε

d - measurements
G - forward model, Jacobian for nonlinear model
m - unknown parameters
ε - random noise

min
m

‖d−Gm‖22

underdetermined, severely ill-conditioned



Tikhonov Regularization

mLp = argminm ‖Wd(d−Gm)‖22 + α2‖Lp(m−mref )||22

• Wd - data weight, typically data error covariance

• α - regularization parameter

– α large → constraint: ‖Lp(m−mref )||22 ≈ 0

– α small → problem may stay ill-conditioned

• Lp - pth derivative operator

• mref - initial parameter estimate



Outline

• Choice of Lp

– Adding information to the inverse problem

• Incorporating information about discontinuities

– Regularization operators

• Electrical Resistance Tomography (ERT)

– Two-layered, Anomaly and Sinusoidal models



Choice of Lp

L0(m −mref ) - requires good initial estimate mref , otherwise
may not regularize the problem.

L1(m −mref ) - typically L1mref = 0, i.e. zero first derivative
estimate, requires less prior information than L0.

L2(m −mref ) - typically L2mref = 0, leaves more degrees of
freedom than first derivative, so that data has more opportunity
to inform parameter estimates.



Hypothetical results - min
m
‖Wd(d−Gm)‖2

2 + α2‖L1m‖2
2

Large regularization parameter

⇓

Data informs constant value



Hypothetical results - min
m
‖Wd(d−Gm)‖2

2 + α2‖L2m‖2
2

Large regularization parameter

⇓ Data informs constant and slope

⇒



Incorporating discontinuities in Least Squares1

min
m

‖Wd(d−Gm)‖22 + (m−mref )T

 α1I 0 0
0 α2I 0
0 0 α3I

 (m−mref )

1Mead, 20013



Wing - 1D problem with discontinuous solution2

2P.C. Hansen, 2007



Regularization operator R for discontinuities

min
m

‖Wd(d−Gm)‖22 + α2‖RLpm‖22

• R = diag(r1, . . . , rn), ri = 0 or 1

• ri = 0 → no regularization at discontinuity specified at i
→ no smoothness at i

• Only data informs parameter at discontinuity



Toy Example - 3 layers, 2 discontinuities

R = diag(1, 0, 1, 0, 1, 1)

RL1m = 1
∆x



m2 −m1
0

m4 −m3
0

m6 −m5
0





Toy Example - inferred results using α2‖RL1m‖2
2

Large regularization parameter

⇓

Data gives value at ◦
and informs constant values



Toy Example - inferred results using α2‖RL2m‖2
2

Large regularization parameter

Data gives ◦ ⇓ and informs zero Data gives ◦ and informs constants

⇒



Toy Example - inferred results using α2‖RL2m‖2
2

Large regularization parameter

Data gives ◦ ⇓ informs constant Data gives ◦ and informs constants

⇒



Electrical Resistance Tomography (ERT)

∇ · [σ(r)∇V (r)] = i[δ(r− rA)− δ(r− rB)]

Resistivity survey



Numerical experiments

• 2.5D forward model - Fourier transform in y direction 3

• 0.1% Gaussian noise

‖Wd(d− F(m))||22 + α2
{
||RxLpxm||22 + ||RzLpzm‖22

}

3Pidlisecky and Knight, 2008



Test Problems



Inverted layered model with constant variability in subregions

L1 regularization

RL1 regularization



Inverted layered model with constant variability in subregions

L2 regularization

RL2 regularization



Averaged vertical slices of resistivity

Layered model with constant variability



Inverted layered model with moderate linear variability in subregions

True resistivity

L1 regularization

RL1 regularization



Inverted layered model with moderate linear variability in subregions

True resistivity

L2 regularization

RL2 regularization



Averaged vertical slices of resistivity

Layered model with moderate linear variability



Inverted layered model with strong linear variability in subregions

True resistivity

L1 regularization

RL1 regularization



Averaged vertical slices of resistivity

Layered model with strong linear variability



Inverted anomaly model with constant variability

L1 regularization

RL1 regularization

L2 regularization

RL2 regularization



Averaged horizontal slices of resistivity

Anomaly model with constant variability



Averaged vertical slices of resistivity

Anomaly model with constant variability



Inverted sinusoidal model with linear variability

L1 regularization

RL1 regularization

L2 regularization

RL2 regularization



Averaged horizontal slices of resistivity

Sinusoidal model with linear variability



Summary
• Sharp discontinuities can be recovered with Tikhonov regulariza-
tion through regularization operators R

– requires knowledge of the boundaries.

• Smoothing constraints can be viewed as prior information

– derivatives don’t require good initial estimates.
– second derivative offers more degrees of freedom.

• Concepts applied to ERT synthetic inversion

– analysis verified on distant disconitnuities, small anomaly,
and complex boundary geometry.



Questions?


