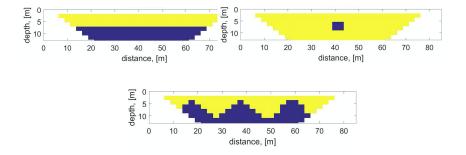
Discontinuous Boundaries Regularization Operators for Tikhonov Regularization

> Jodi Mead Department of Mathematics

Thanks to: Hank Hetrick NSF DMS-1418714

Imaging subsurface structure



Inverse Problem

 $\mathbf{d} = \mathbf{G}\mathbf{m} + \boldsymbol{\epsilon}$

 ${\bf d}$ - measurements

- ${\bf G}$ forward model, Jacobian for nonlinear model
- ${f m}$ unknown parameters
- ϵ random noise

$$\min_{\mathbf{m}} \|\mathbf{d} - \mathbf{Gm}\|_2^2$$

underdetermined, severely ill-conditioned

Tikhonov Regularization

 $\mathbf{m}_{\mathbf{L}_p} = argmin_{\mathbf{m}} \|\mathbf{W}_d(\mathbf{d} - \mathbf{G}\mathbf{m})\|_2^2 + \alpha^2 \|\mathbf{L}_p(\mathbf{m} - \mathbf{m}_{ref})\|_2^2$

- \mathbf{W}_d data weight, typically data error covariance
- α regularization parameter

- α large \rightarrow constraint: $\|\mathbf{L}_p(\mathbf{m} - \mathbf{m}_{ref})\|_2^2 \approx 0$

- α small \rightarrow problem may stay ill-conditioned
- L_p pth derivative operator
- \mathbf{m}_{ref} initial parameter estimate

Outline

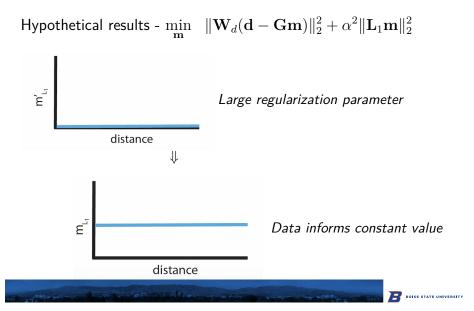
- Choice of \mathbf{L}_p
 - Adding information to the inverse problem
- Incorporating information about discontinuities
 - Regularization operators
- Electrical Resistance Tomography (ERT)
 - Two-layered, Anomaly and Sinusoidal models

Choice of L_p

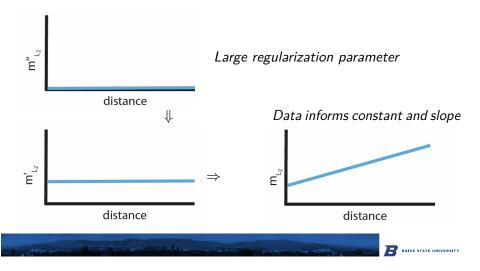
 $\mathbf{L}_0(\mathbf{m} - \mathbf{m}_{ref})$ - requires good initial estimate \mathbf{m}_{ref} , otherwise may not regularize the problem.

 $\mathbf{L}_1(\mathbf{m} - \mathbf{m}_{ref})$ - typically $\mathbf{L}_1\mathbf{m}_{ref} = \mathbf{0}$, i.e. zero first derivative estimate, requires less prior information than \mathbf{L}_0 .

 $\mathbf{L}_2(\mathbf{m} - \mathbf{m}_{ref})$ - typically $\mathbf{L}_2\mathbf{m}_{ref} = \mathbf{0}$, leaves more degrees of freedom than first derivative, so that data has more opportunity to inform parameter estimates.



Hypothetical results -
$$\min_{\mathbf{m}} \|\mathbf{W}_d(\mathbf{d} - \mathbf{Gm})\|_2^2 + \alpha^2 \|\mathbf{L}_2\mathbf{m}\|_2^2$$

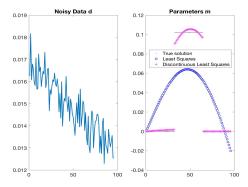


Incorporating discontinuities in Least Squares¹

$$\min_{\mathbf{m}} \|\mathbf{W}_d(\mathbf{d} - \mathbf{G}\mathbf{m})\|_2^2 + (\mathbf{m} - \mathbf{m}_{ref})^T \begin{bmatrix} \alpha_1 \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \alpha_2 \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \alpha_3 \mathbf{I} \end{bmatrix} (\mathbf{m} - \mathbf{m}_{ref})$$

¹Mead, 20013

Wing - 1D problem with discontinuous solution²



²P.C. Hansen, 2007

Regularization operator ${\bf R}$ for discontinuities

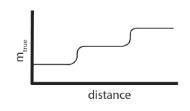
$$\min_{\mathbf{m}} \|\mathbf{W}_d(\mathbf{d} - \mathbf{G}\mathbf{m})\|_2^2 + \alpha^2 \|\mathbf{R}\mathbf{L}_p\mathbf{m}\|_2^2$$

•
$$R = diag(r_1, \ldots, r_n)$$
, $r_i = 0$ or 1

- $r_i = 0 \rightarrow$ no regularization at discontinuity specified at $i \rightarrow$ no smoothness at i
- Only data informs parameter at discontinuity

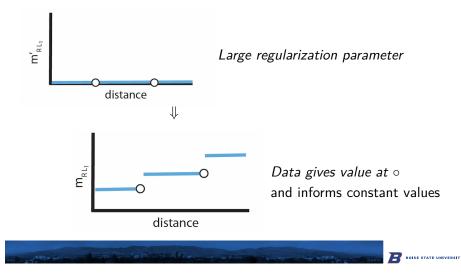
Toy Example - 3 layers, 2 discontinuities

$$\mathbf{R} = diag(1, 0, 1, 0, 1, 1)$$
$$\mathbf{RL}_{1}\mathbf{m} = \frac{1}{\Delta x} \begin{pmatrix} m_{2} - m_{1} \\ 0 \\ m_{4} - m_{3} \\ 0 \\ m_{6} - m_{5} \\ 0 \end{pmatrix}$$

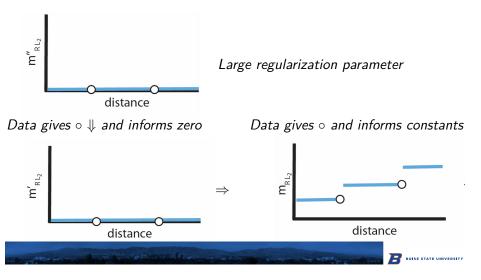


🛃 BOISE STATE UNIVERSITY

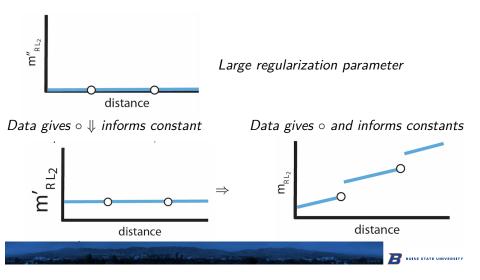
Toy Example - inferred results using $\alpha^2 \|\mathbf{RL}_1\mathbf{m}\|_2^2$



Toy Example - inferred results using $\alpha^2 \|\mathbf{RL}_2\mathbf{m}\|_2^2$

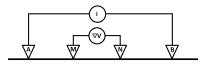


Toy Example - inferred results using $\alpha^2 \|\mathbf{RL}_2\mathbf{m}\|_2^2$



Electrical Resistance Tomography (ERT)

$$\nabla \cdot [\sigma(\mathbf{r})\nabla V(\mathbf{r})] = i[\delta(\mathbf{r} - \mathbf{r}_A) - \delta(\mathbf{r} - \mathbf{r}_B)]$$



Resistivity survey

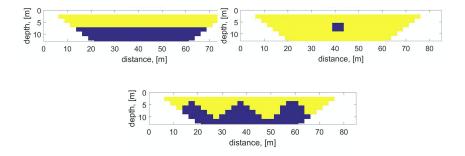
Numerical experiments

- 2.5D forward model Fourier transform in y direction ³
- 0.1% Gaussian noise

$$\|\mathbf{W}_d(\mathbf{d} - \mathbf{F}(\mathbf{m}))\|_2^2 + \alpha^2 \left\{ ||\mathbf{R}_x \mathbf{L}_{px} \mathbf{m}||_2^2 + ||\mathbf{R}_z \mathbf{L}_{pz} \mathbf{m}||_2^2 \right\}$$

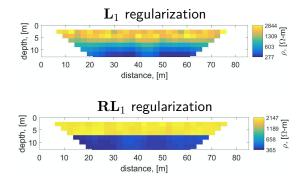
³Pidlisecky and Knight, 2008

Test Problems

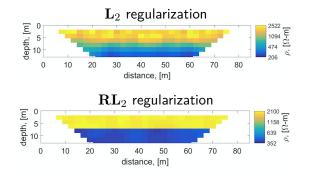


BOISE STATE UNIVERSITY

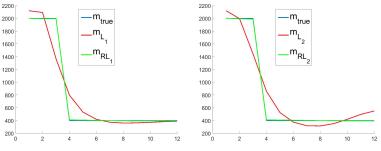
Inverted layered model with constant variability in subregions



Inverted layered model with constant variability in subregions

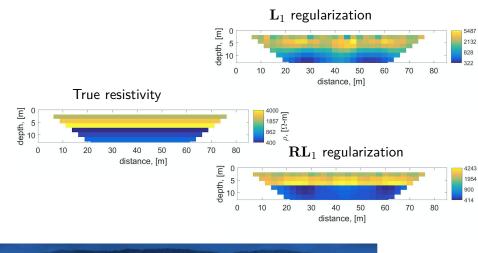


Averaged vertical slices of resistivity



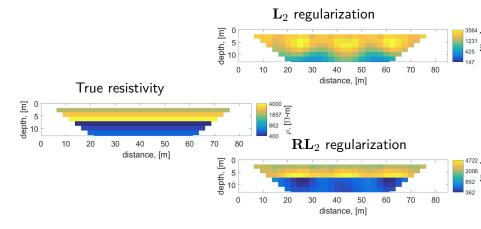
Layered model with constant variability

Inverted layered model with moderate linear variability in subregions

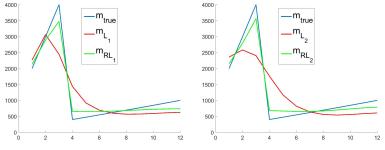


📑 BOISE STATE UNIVERSITY

Inverted layered model with moderate linear variability in subregions

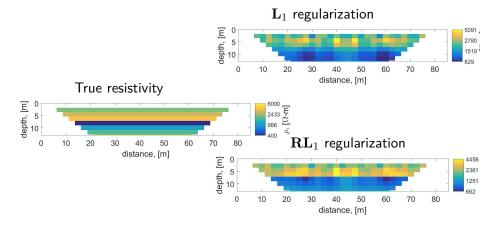


Averaged vertical slices of resistivity



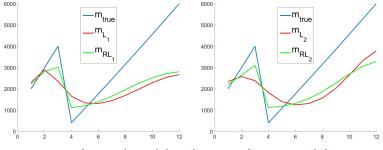
Layered model with moderate linear variability

Inverted layered model with strong linear variability in subregions



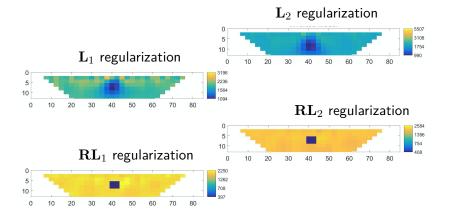
🚽 BOISE STATE UNIVERSITY

Averaged vertical slices of resistivity

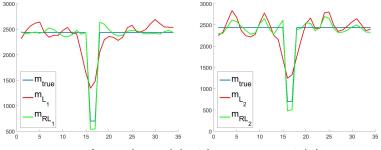


Layered model with strong linear variability

Inverted anomaly model with constant variability

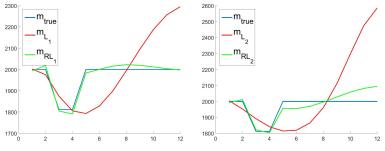


Averaged horizontal slices of resistivity



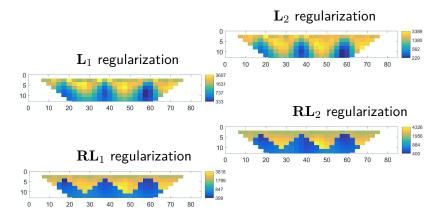
Anomaly model with constant variability

Averaged vertical slices of resistivity



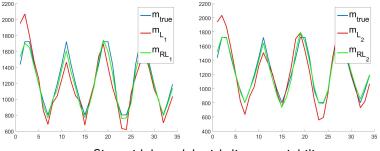
Anomaly model with constant variability

Inverted sinusoidal model with linear variability



BOISE STATE UNIVERSITY

Averaged horizontal slices of resistivity



Sinusoidal model with linear variability

Summary

- Sharp discontinuities can be recovered with Tikhonov regularization through regularization operators ${\bf R}$
 - requires knowledge of the boundaries.
- Smoothing constraints can be viewed as prior information
 - derivatives don't require good initial estimates.
 - second derivative offers more degrees of freedom.
- Concepts applied to ERT synthetic inversion
 - analysis verified on distant disconitnuities, small anomaly, and complex boundary geometry.

Questions?