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PHOTOACOUSTIC TOMOGRAPHY

Figure: The photoacoustic tomography experiment.
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PAT FOR BRAIN IMAGING

Advantages
I High contrast and high

resolution
I Noninvasive, nondestructive,

inexpensive
I Multispectral imaging

capability for better
reconstructions

I Multiscale imaging capability
I Success in small animals Figure: Photoacoustic tomography on

multiple scales. S. Hu and L. Wang, Front.

Neuroenergetics 2010.
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FORWARD PROBLEM

Forward Problem: To compute the ultrasound pressure field at the detector
array assuming that we know all properties of the medium.

1. Use the illumination pattern and optical properties to determine the
absorbed optical energy, converted into pressure by the photoacoustic
effect. (diffusion equation)

2. Use the internal pressure as an initial condition and propagate it with
the given ultrasound speed to the detectors. (wave equation)
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INVERSE PROBLEM

Inverse Problem: To recover the interior optical properties, using the
ultrasound pressure measurements at the detector array as data.

One-step reconstruction via non-linear least squares is most flexible in terms
of data, enforcing/requiring prior knowledge. T. Ding, K. Ren and S. V., Inverse Problems 2015.
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TYPICAL RECONSTRUCTIONS

Naive approach: 40× 40 image, single wavelength, 5 mins. Data contains 1%
random noise. Relative L2 error: 0.19
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MULTISPECTRAL PAT HAS ADDITIONAL UNKNOWNS

Figure: Chromophores for biomedical optical
imaging. T.G. Phan and A. Bullen, Immunol. Cell Biol. 2010.

Wavelength Dependence
I D(x, λ) = α(λ)D(x)

I Υ(x, λ) = γ(λ)Υ(x)

I µ(x, λ) =
K∑

k=1
σk(λ)µk(x)
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FORWARD PROBLEM

Diffusion Equation

−∇ ·D(x, λ)∇φ+ µ(x, λ)φ = 0, in Ω× L
φ = g(x, λ), on ∂Ω× L.

Wave Equation

1
c2(x)

∂2p
∂t2 −∆p = 0, in R+ × Rd × L

p(0, x, λ) = Υ(x, λ)µ(x, λ)φχΩ(x), in Rd × L
∂p
∂t

(0, x, λ) = 0, in Rd × L.

Measurements
mλ := p(t, x, λ) at certain times (0, τ), locations Σ, wavelengths L
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SOLVING THE INVERSE PROBLEM IS COSTLY

Given
Υ(x, λ),D(x, λ), and {σk(λ)}K

k=1

Unknown
µ = {µk(x)}K

k=1

Solution

µ∗ = arg min J(µ) :=
1
2

∑
λ∈L

‖mλ − Λ(µ;λ)‖2 + αR(µ)

Solve via e.g. quasi-Newton method, dimension is a problem:

I Compute Λ(µ;λ) for a given unknown µ at each iteration (solving 2
PDEs)

I diffusion: solve linear system of size N # pixels
I wave: dominant cost ∼ O(N2) in 2d

I Compute the gradient for a given unknown µ at each iteration (solving 2
adjoint PDEs)

At each iteration, must solve at all wavelengths!
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REALISTIC PROBLEM SIZE

I N = 1 million: 3d image of size 1 cm3 (approx. size of mouse brain), 100
µm resolution

I Nλ = 10-200: different wavelengths for optical imaging
I K = 2− 4: chromophores
I Nr = 50-300: # ultrasound receivers
I Nt : # time points measured

Main Issue
Repeated solution of large-scale systems
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TYPICAL RECONSTRUCTIONS

Naive approach: 40× 40 images, 100 wavelengths, 4 hours. Data contains 1%
random noise. Relative L2 error for the pair: 0.03
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WHAT IS REDUCED-ORDER MODELING (ROM)?

Many ROMs use projection over a reduced-space basis: x ≈ Vxr

I x ∈ RN is full-scale output
I xr ∈ RR is reduced-order output
I Columns of V ∈ RN×R are O.N. basis vectors, R� N
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ROM ACROSS WAVELENGTHS

Goal: Avoid solving the PDEs for all wavelengths whenever possible

I Photon density φ(x, λ) is a smooth function of λ
I Diffusion system is parameterized as(

α(λ)K +

K∑
k=1

σk(λ)Mk

)
φ = b(λ)

I Optimal ROM for wavelength-dependence: truncate SVD of φ ∈ RN×Nλ ;
too expensive

I Alternative: greedy basis construction

16 / 20



REDUCTION STRATEGY

Given the diffusion model as linear system Aφ = b, iteratively construct a
projection matrix V ∈ RN×R (R� Nλ):

1. First column of V is normalized solution φ1 to system eqns at an initial
wavelength λ1

2. Galerkin project the linear system with V and solve for reduced soln φr

at all wavelengths

3. Compute the residual norm at all wavelengths

4. Pick the wavelength λj with largest residual; add φj to V after
ortho-normalization

5. Stop when residual at all remaining wavelengths is below tolerance
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TEST - TWO CHROMOPHORES
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Nλ = 200 wavelengths reduced to R = 18. Relative error ‖b(λ)−A(λ)Vφ‖
for all wavelengths decreases as R increases. No loss of accuracy.
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SAVINGS

For the current value of µ,

Operation # Diffusion Solves # Wave Solves
Forward map Nλ → R Nλ → R

Gradient Nλ → R Nλ → R

Forward Map:
I Reduce # of diffusion solves
I Compress the initial condition

of wave
I Reduce # of wave solves

Gradient:
I Compress the residual

mλ − Λ(µ;λ)

I Reduce # of adjoint wave
solves

I Compress the source of adjoint
diffusion

I Reduce # of adjoint diffusion
solves
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SUMMARY

I Photoacoustic tomography is an emerging modality with applications to
brain imaging

I Reduced-order modeling can approximate the PDE solutions in lower
dimensions, cheaply

I We developed a ROM framework for multispectral, multispecies PAT
I Tradeoff: setup cost for the ROMs vs. computational savings in the

inverse problem

Thank you!
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