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MEG forward model

Impressed current and volume current:

~Jtot = ~J + ~JΩ = ~J + σ ~E = ~J − σ∇u,

where

∇ ·
(
σ∇u

)
= ∇ · ~J, σ

∂u

∂n

∣∣∣∣
∂Ω

= 0,

Biot-Savart law:

~B(~p) =
µ0

4π

∫
Ω

~Jtot(~r)×
~p − ~r
|~p − ~r |3

d~r , ~p ∈ R3 \ Ω,



Lead field

Magnetometer data: Position ~pk , orientation ~νk ,

βk = ~νk · ~B(~pk) = −µ0

4π

∫
Ω

~νk × (~pk − ~r)

|~pk − ~r |3
· ~Jtot(~r)d~r

=

∫
Ω

~M0,k(~r) · ~Jtot(~r)d~r .

By linearity of Maxwell’s equations, it is possible to write

βk =

∫
Ω

~Mk(~r) · ~J(~r)d~r ,

where ~Mk depends on the geometry and conductivity of the head.
assuming constant conductivity, ~Mk can be approximated
numerically by Geselowtz’s formula using BEM.



Discretization: Dipole model

Brain model based on segmented MRI image. The grid points vj
represent the gray matter, and are the possible dipole locations.



Geometry
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Current dipole (left), the surface electric potential computed by
BEM (center), and the magnetic field at the magnetometers
(right).



Discretization

(~rj , ~qj), 1 ≤ j ≤ n, the positions and dipole moments of the dipoles.

βk =
n∑

j=1

~Mk(~rj) · ~qj , 1 ≤ k ≤ m.

Furthermore, define
bk = βk + εk

with additive noise εk :

b =
n∑

j=1

Mj~qj + ε,

where Mj ∈ Rm×3 is a matrix with rows equal to ~Mk(~rj)
T,

ε = observation noise vector.



MEG inverse problem

I Given measurements of magnetic field at sensors positions,
recover the location and strength of the activity in brain.

I Magnetometer data: ≈ 150 measurements

I Brain activity is represented by current dipoles at 25K possible
fixed locations: the unknowns are the moments of the dipoles:
75K unknowns

I This is a linear inverse problem with a huge null space: the
prior plays a major role.



What do we know about brain anatomy?



Anatomical prior

At each grid point vj ∈ Ω, 1 ≤ j ≤ n,

I orthonormal triplet {~u1, ~u2, ~u3} ∈ R3 is given,

I ~u3 is in the preferential direction of the dipole (parallel to
neuronal fascicle).

Define a SPD matrix

Cj = δ(~u1~u
T
1 + ~u2~u

T
2 ) + ~u3~u

T
3 ∈ R3×3,

where 0 < δ < 1 is a small parameter.



Anatomical prior
Define a conditionally Gaussian prior,

πjprior(~qj | θj) ∼ N (0, θjCj),

Explicitly:

πjprior(~qj | θj) =
1

π3/2
√
|θjCj |

exp

(
− 1

2θj
~qT
j C−1

j ~qj

)

∝ exp

(
−1

2

‖~qj‖2
Cj

θj
− 3

2
log θj

)
.

where
‖~qj‖2

Cj
= ~qj

TC−1
j ~qj .

Independency:

πprior(~q1, . . . , ~qn | θ1, . . . , θn) =
n∏

j=1

πjprior(~qj | θj).



Hierarchical model

Hypermodel using gamma distribution,

θj ∼ πjhyper(θj | θ
∗
j , βj) ∝ θ

βj−1
j exp

(
−
θj
θ∗j

)
,

where (βj , θ
∗
j ) are hyperparameters.

Independency:

πhyper(θ | θ∗, β) =
n∏

j=1

πjhyper(θj | θ
∗
j , βj).



Prior density

Notation:

Q =

 ~q1
...
~qn

 ∈ R3n, θ =


θ1

θ2
...
θn

 ∈ Rn.

The joint prior model for (Q, θ) is written as

πprior(Q, θ | θ∗, β) = πprior(Q | θ)πhyper(θ | θ∗, β)

∝ exp

(
− 1

2

n∑
j=1

‖~q‖2
Cj

θj
+

n∑
j=1

(
βj −

5

2

)
log θj −

n∑
j=1

θj
θ∗j

)
.



Posterior density

Likelihood model:

b =
n∑

j=1

Mj~qj + ε, ε ∼ N (0,Σ),

where Σ ∈ Rm×m is a SPD noise covariance matrix.
By Bayes’ theorem,

π(Q, θ | b, θ∗, β) ∝ π(b | Q)π(Q, θ | θ∗, β) ∝

exp

(
−1

2
‖b−

n∑
j=1

Mj~qj‖2
Σ−

1

2

n∑
j=1

‖~q‖2
Cj

θj
+

n∑
j=1

(
βj −

5

2

)
log θj−

n∑
j=1

θj
θ∗j

)
.



Gibbs energy

The negative of the log-posterior is

E (Q, θ) =
1

2
‖b −

n∑
j=1

Mj~qj‖2
Σ +

1

2

n∑
j=1

‖~qj‖2
Cj

θj
−

n∑
j=1

ηj log θj +
n∑

j=1

θj
θ∗j

=
1

2
‖b −MQ‖2

Σ +
1

2
‖Q‖2

Dθ
−

n∑
j=1

ηj log θj +
n∑

j=1

θj
θ∗j
,

where

ηj = βj −
5

2
.

Maximum A Posteriori (MAP) estimate is the minimizer of
E (Q, θ).



MAP estimate and IAS algorithm

Iterative Alternating Scheme (IAS):

1. Initialize θ = θ0, and set k = 0.

2. Update Q by defining

Qk+1 = argmin
{
E (Q, θk)

}
; (1)

3. Update θ by defininig

θk+1 = argmin
{
E (Qk+1, θ)

}
; (2)

4. If a convergence criterion is met, stop, else increase k by one
and continue from Step 2.



MAP estimate and IAS algorithm
Minimization by iterating the two steps:

1. Update Q:

Qk+1 = argmin
{
E (Q | θk)

}
= argmin

{1

2
‖b−MQ‖2

Σ+
1

2
‖Q‖2

Γ
θk

}
.

Approximate the solution using Krylov iterative method on

SMC−1
θk

W = Cb, Σ−1 = CTC, Γ−1
θk

= CT
θk Cθk

stopping when the discrepancy falls below
√
m.

2. Update θ: Minimize component-wise

E (θj , ~q
k+1
j ) =

1

2

‖~q k+1
j ‖2

Cj

θj
− ηj log θj +

θj
θ∗j
.

by finding the unique positive critical point,

θk+1
j = Fj(~q

k+1
j ) = θ∗j

ηj
2

+

√√√√η2
j

4
+
‖~q k+1

j ‖2
Cj

2θ∗j

 , ηj = βj−5/2.

Repeat the two steps when the stopping criterion is met.



MAP estimate and IAS algorithm

Theorem
The IAS algorithm converges to the unique minimizer (Q̂, θ̂) of the
Gibbs energy E (Q, θ). Moreover, the minimizer (Q̂, θ̂) satisfies the
fixed point conditions,

Q̂ = argmin
{
E (Q,F (Q))

}
, θ̂ = F (Q̂),

where F : R3n → Rn is the mapping with components Fj : R3 → R
defined by

Fj(~qj) = θ∗j

ηj
2

+

√√√√η2
j

4
+
‖~qj‖2

Cj

2θ∗j

 .



Hyperparameters and depth weighting

Convergence result implies that the global minimizer satisfies

θ̂j = θ∗j

ηj
2

+

√√√√η2
j

4
+
‖~̂qj‖2

Cj

2θ∗j

 , ηj = βj − 5/2.

where Q̂ is the minimizer of the expression

E (Q,F (Q)) =
1

2
‖b −

n∑
j=1

Mj~qj‖2
Σ +

n∑
j=1

1

2

‖~qj‖2
Cj

θ∗j

ηj
2

+

√√√√η2
j

4
+
‖~̂qj‖2

Cj

2θ∗j


−1

+

ηj
2

+

√√√√η2
j

4
+
‖~̂qj‖2

Cj

2θ∗j

− ηj log θ∗j
ηj

2
+

√√√√η2
j

4
+
‖~̂qj‖2

Cj

2θ∗j


 .



Hyperparameters and depth weighting

In the limit as ηj → 0+,

E (Q,F (Q))→ 1

2
‖b −

n∑
j=1

Mj~qj‖2
Σ +
√

2
n∑

j=1

‖~qj‖Cj√
θ∗j

,

which is a weighted minimum current penalty with weight

1/
√
θ∗j .

Conclusion: The parameter βj controls sparsity promotion of the
prior.

Question: Can θ∗j be related to depth sensitivity?



Hyperparameters and depth weighting

Hypermodel
πjhyper ∼ Gamma(βj , θ

∗
j )

implies that
E
{
θj | βj , θ∗j

}
= βjθ

∗
j .

Assume that the observed magnetic field is generated by a single
dipole:

b = Mj~qj + ε, ~qj ∼ N (0, θjCj).

From the observation that

E{E{~qj~qT
j | θj} | θ∗j } = E{θjCj | θ∗j } = βjθ

∗
j Cj

it follows that the covariance of b conditioned on θ∗j is

Φ = E
{
bbT | θ∗

}
= βjθ

∗
j MjCjM

T
j + Σ.



Hyperparameters and depth weighting
To derive an expression for θ∗j , we take the trace of the first and
last term and obtain

θ∗j =
trace(Φ)− trace(Σ)

βj‖MjC
1/2
j ‖2

F

=
power of a noiseless signal

sensitivity to jth dipole
.

To estimate Φ, use an empirical Bayesian approach: Given an
observation time series,

B =
[
b(1) b(2) · · · b(T )

]
∈ Rm×T ,

approximate

Φ ≈ 1

T

T∑
j=1

b(j)
(
b(j)
)T
,

and further

trace(Φ) ≈ 1

T

T∑
j=1

trace
(
(b(j)(b(j))T

)
=

1

T

T∑
j=1

‖b(j)‖2.



Hyperparameters and depth weighting

Observations:

I If the dipole orientation is known with certainty,

Cj = ~e ~eT,

implying

trace(MjCjM
T
j ) = trace(Mj~e (Mj~e)T) = ‖Mj~e‖2,

which is the signal power of the unit dipole.

I The sensitivity of deep dipoles is smaller than superficial ones,
hence

θ∗deep > θ∗superficial,

therefore deep dipoles are penalized less, as in sensitivity
weighting.



Hyperparameters and depth weighting

The sensitivity weighting gives deep dipoles a chance to explain the
data, however:

I The expected variance of a deep (or radial) dipole with low
sensitivity should not exceed a physiologically reasonable level.

I To avoid unrealistically large deep dipoles, introduce the
truncation:

θ∗j = min

trace(Φ)− trace(Σ)

βj‖MjC
1/2
j ‖2

F

, θ∗max

 ,

where θ∗max is a physiologically meaningful upper bound.



Computed examples: Effect of hyperparameter

Estimated activity with two different hyperparameter values,
η = 0.005 (upper row) and η = 0.05 (lower row)



Computed examples: Effect of anatomical prior

Estimates with the anatomical prior (top) and without (bottom).
Here, η = 0.005 and SNR = 15.



Estimating deep sources: axial view

Original (left) and estimated (right) deep activity patch with Full
Monty.



Estimating deep sources: coronal view

Original (left) and estimated (right) deep activity patch with Full
Monty.



Estimating deep sources: sagittal view

Original (left) and estimated (right) deep activity patch with Full
Monty.



Computed examples: Time dependent sources



Computed examples: Time dependent sources



Conclusions

1. IAS combined with Bayes-Krylov solver leads to a fast and
efficient numerical algorithm.

2. Hyperparameters control focality and depth sensitivity of the
algorithm

3. No need for artificial depth weighting

4. Anatomical prior helps to discern physiologically meaningful
source combinations without forcing the dipole orientations,
accounting for uncertainties in the interpretation of segmented
MRI images.

5. Numerical approximation of a globally convergent
optimization method.
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