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Transi@on	from	normal		duct	to	invasive		tumor	
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Progression	of	
Ductal	Carcinoma	
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Many Mathema1cal Models


Con@nuum	models	for	cell	popula@on	
	
Agent	based	models	
	
Cells-based	models:	hybrid	models	with	
discrete	cells	coupled	with	con@nuous	
fluid-mechanical,	chemical	and	ion	fields.	
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Single-cell	model	





Growth	and	Cell	Division	
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         DCIS (ductal carcinoma in situ)
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Histological	pa4erns	of	four	ductal	carcinomas:		
(a)  micropapillary	with	trabecular	bars,	(b)	tufs		
	
both	in	the	prostate	@ssue	
Bostwick,	et	al,	Human	Pathology,	1993	

(c)	cribriform,	(d)	solid		
	
both	in	the	breast	@ssue.			
Winchester	et	al,	Cancer	Journal	for	Clinicians,	2000	

	
	



Tufing,	Micropapillary,	and	Solid	Pa4erns	in	DCIS	

Rejniak	and	Dillon,	2007	



Cells-based	in	vitro	model	

Similar	in	concept	to	Kim	and	Othmer,	2013	
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Cells-based	microfluidic	model	



TGF-Beta and SDF-1 Autocrine Signaling
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Receptor	Trafficking	



TGF	 MMP	

TGF/SMAD	
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Immersed	Interface	Method	
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PE25		mink	lung	epithial	cell	line	



Comparison	with	experimental	data	

Clark	et	al,	Molecular	and	Cellular	Biology,	2009	





Cell	Surface	

Cell	Interior	

Exterior	Domain	



	No	Internal	TGF	Produc@on	



	With	Internal	TGF	Produc@on	



NO	TGF	Produc@om	 With	cellular	TGF	produc@on	



	1-3	Cells	With	Internal	TGF	Produc@on	



Glycolysis	Model	

Under	normal	oxygen	levels		glucose	is	converted	to	
pyruvic	acid	and	through	the	Krebs	cycle	to		ATP	

Under	low	oxygen	levels	the	pyruvic	acid	ferments	
to	lac@c	acid	with	a	reduced	level	of	ATP	produc@on	

In	what	is	known	as	the	Warburg	effect,	tumor	cells	
con@nue	to	convert	glucose	to	ATP	with	enhanced	
lactate	produc@on	even	in	the	presence	of	normal	
oxygen	levels.	This	results	in	an	increased	
produc@on	of	H+	,	a	lowering	of	the	pH	and	
increased	acidity	in	the	tumor	environment.	





Kine@cs	of	the	Casciari	model	

o,	g,	c,	h,	l,	b,	cl,	s:			
oxygen,	glucose,	CO2,	hydrogen	ion,	lactate,	bicarbonate,	chloride,	sodium	

Casciari	et	al,	Cell	Prolifera@on,	1992	
	



	
	Nernst-Planck	Equa@ons	for	ions	and	chemicals	

Electrical	Poten@al	

Electric	Field	

Inside	Cells	



Interface	Condi@ons	

Nonionic	Species	

Goldman-Hodgkin-Katz	
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*	Leveque	and	Li,		SIAM		J.	Num	Anal,	1994	

PDEs	have	the	form:	

Can		be	solved	with	the	immersed	interface	method	*	with	
an	appropriate	choice	of	interface	jump	condi@ons	

Note	that	with	periodic	boundary	condi@ons	the	solu@on	is	not	unique.			
At	each	@me	step	we	add	a	constant	chosen	to	enforce	conserva@on	of	mass		
so	that	the	net	change	in	the	ECM	equals	the	net	secre@on	from	the	cells.	





pH Variation 



Variation φ



Oxygen	Concentra@on		
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In	progress	and	future	work	

Develop	full	mul@cellular	models	for	both	in	vitro	and	
microfluidic	cell	culture	

Develop	a	fluid/mechanical	model	of	the	ECM	based	
on	an	IB	Lagrangian	mesh	model	(Dillon	and	Zhuo,	2011)	

Longer	@mescale	model	for	cell	growth	

Develop	TGF-β	models	with	SDF-1	and	EGF	cross	talk	





dci/dt	=	Pi	+	Fluxi	

Glycolysis	Kine@cs	

Casciari	et	al,	Cell	Prolif,	1992	



Interface	Condi0ons	for	Concentra0on	
Uncharged	Species	
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Interface	Condi0ons	for	Concentra0on	
Charged	Species	
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Interface	Condi0ons	for	Concentra0on	
Charged	Species	
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Interface	Condi0ons	for	Poten0al	
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S.	G.	Shultz,	Basic	Principles	of	Membrane	Transport,	1980	
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Raghu	Kalluri*‡§	and	Michael	Zeisberg*	2006	





TGF-beta	
R2	 R1	

ATF3	

TGF-beta	 Only		Smad	pathway	
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Nernst-Planck	Equa@ons	
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r1	=	0.06,	r2=0.035,n=1	



Model	Equa@ons	



Extracellular	Domain	

MMP	

Ac@vated	TGF-β	

MMP	Secre@on	

TGF-β	Autocrine	Signaling	Without	MMP	



MMP	(matrix	metalloproteinase)	 SMAD	(intracellular	protein)	



Chemical	Reac/ons	involves	in	TGF	pathways	

pS





Cell	Surface	

Cell	Interior	

MMP	Secre@on	



Extracellular	Domain	

MMP	

Ac@vated	TGF-β	

MMP	Secre@on	

TGF-β	Autocrine	Signaling	Without	MMP	



TGF-β	Autocrine	Signaling	(periodic	boundary	condi@ons)	

TGF	 TGF	 Free	Receptors	

TR	complex	 TRS	complex	 Ac@vated	Smad	



TGF-MMP	Autocrine	Signaling	

TGF	 MMP	 Free	Receptors	

TR	complex	 TRS	complex	 Ac@vated	Smad	



TGF-beta	Autocrine	Signaling	

TGF-Line	 MMP-Line	 Smad	

Surface	TGF	 Surface	MMP	





GLUCOSE	CONCENTRATION	


