Modeling polymorphic transformation of bacterial flagella

William Ko

Department of Mathematical Sciences University of Cincinnati

SIAM Conference on the Life Sciences July 12, 2016

Acknowledgements

- Sookkyung Lim, University of Cincinnati
- Boyce Griffith, UNC Chapel Hill
- Charles S. Peskin, NYU
- Howard Berg, Harvard U
- Yongsam Kim, Choong-Ang U, Korea
- Wanho Lee, NIMS, Korea

Introduction

Background

E. coli images from Turner et al., J. Bacteriol., 182(10):2793-2280, 2000.

- E. coli and Salmonella have several flagella distributed around the cell body.
- Each flagellum is attached to a motor via by a flexible hook.
- Motors can spin clockwise (CW) or counter-clockwise (CCW).

Introduction

Background

Image from Darnton et al., Bacteriol., 189(5):1756-1764, 2007.

- In "run" phase, all motors turn CCW and flagella bundle together to move forward.
- Each flagellar filament has a left-handed helical shape.
- In "tumble" phase, the cell changes direction.
- One or more flagella spin CW and leave the bundle, temporarily changing shape to a right-handed helix.
- All motors then return to CCW rotation to begin a new run.

Introduction

Background

Video from http://www.rowland.harvard.edu/labs/bacteria/movies/ecoli.php Ref: Turner et al., J. Bacteriol., 182(10):2793-2280, 2000.

W. Ko (U. of Cincinnati)

Polymorphic transformation of bacterial flagella

Mathematical model – Kirchhoff rod theory

- Kirchhoff rod model: Assume a long, thin rod with rest length L.
- Center-line of filament parametrized by X(s, t) where $0 \le s \le L$.
- Filament orientation determined by orthonormal vectors $\{D^1(s,t), D^2(s,t), D^3(s,t)\}$.

Mathematical model – Energy functionals

• Filament energy functionals

$$E_{\mathsf{shear}} = \frac{1}{2} \int_0^L \left[b_1 \left(\frac{\partial \boldsymbol{X}}{\partial s} \cdot \boldsymbol{D}^1 \right)^2 + b_2 \left(\frac{\partial \boldsymbol{X}}{\partial s} \cdot \boldsymbol{D}^2 \right)^2 \right] \, ds,$$

$$E_{\text{stretch}} = \frac{1}{2} \int_0^L \left[b_3 \left(\frac{\partial \boldsymbol{X}}{\partial s} \cdot \boldsymbol{D}^3 - 1 \right)^2 \right] \, ds,$$

$$E_{\mathsf{bend}} = \frac{1}{2} \int_0^L \left[a_1 \left(\Omega_1 - \kappa_1 \right)^2 + a_2 \left(\Omega_2 - \kappa_2 \right)^2 \right] \, ds,$$

where $\Omega_1 = \frac{\partial D^2}{\partial s} \cdot D^3$ and $\Omega_2 = \frac{\partial D^3}{\partial s} \cdot D^1$, and $E_{\text{twist}} = \frac{1}{2} \int_0^L \left[\frac{1}{2} a_3 (\Omega_3 - \tau)^2 (\Omega_3 + \tau)^2 + \gamma \left(\frac{\partial \Omega_3}{\partial s} \right)^2 \right] ds,$

where $\Omega_3 = \frac{\partial D^1}{\partial s} \cdot D^2$. $\Omega_3 > 0 \implies$ right-handed, $\Omega_3 < 0 \implies$ left-handed.

- Bistable twist energy from [Goldstein et al., 2000].
- $\kappa = \sqrt{\kappa_1^2 + \kappa_2^2}$ is the intrinsic curvature
- τ is the intrinsic twist.

W. Ko (U. of Cincinnati)

Mathematical model - Constitutive relations

• Internal force F(s, t) and moment N(s, t)

$$\boldsymbol{F}(s,t) = \sum_{i=1}^{3} F_i \boldsymbol{D}^i \qquad \boldsymbol{N}(s,t) = \sum_{i=1}^{3} N_i \boldsymbol{D}^i$$

Kirchhoff rod model constitutive relations

$$F_{1} = b_{1} \frac{\partial \mathbf{X}}{\partial s} \cdot \mathbf{D}^{1} \qquad F_{2} = b_{2} \frac{\partial \mathbf{X}}{\partial s} \cdot \mathbf{D}^{2} \qquad F_{3} = b_{3} \left(\frac{\partial \mathbf{X}}{\partial s} \cdot \mathbf{D}^{3} - 1 \right)$$
$$N_{1} = a_{1} \left(\Omega_{1} - \kappa_{1} \right) \qquad N_{2} = a_{2} \left(\Omega_{2} - \kappa_{2} \right) \qquad N_{3} = a_{3} \Omega_{3} \left(\Omega_{3}^{2} - \tau^{2} \right) - \gamma \frac{\partial^{2} \Omega_{3}}{\partial s^{2}}$$

where $\Omega_1 = \frac{\partial D^2}{\partial s} \cdot D^3$, $\Omega_2 = \frac{\partial D^3}{\partial s} \cdot D^1$, and $\Omega_3 = \frac{\partial D^1}{\partial s} \cdot D^2$.

- The above relations can be derived by taking a variational derivative of the energy functionals.
- Force f(s, t) and moment n(s, t), per unit length.

$$0 = \boldsymbol{f} + rac{\partial \boldsymbol{F}}{\partial s}, \qquad \qquad 0 = \boldsymbol{n} + rac{\partial \boldsymbol{N}}{\partial s} + \left(rac{\partial \boldsymbol{X}}{\partial s} imes \boldsymbol{F}
ight)$$

Regularized Stokes formulation and Kirchhoff rod theory

- Typical length scale $< 20 \mu m \implies$ low Reynolds number.
- Stokes equations:

$$0 = -\nabla p + \mu \Delta u + g$$
$$0 = \nabla \cdot u$$

where u(x, t) is the fluid velocity, p(x, t) is the pressure, and μ is viscosity.

Body force:

• Filament evolution equations:

$$\frac{\partial \mathbf{X}}{\partial t} = \mathbf{u}(\mathbf{X}, t), \qquad \frac{\partial \mathbf{D}^i}{\partial t} = \mathbf{w}(\mathbf{X}, t) \times \mathbf{D}^i, \qquad i = 1, 2, 3$$

where $\boldsymbol{w}(\boldsymbol{x},t) = \frac{1}{2} \nabla \times \boldsymbol{u}$

W. Ko (U. of Cincinnati)

Polymorphic transformation of bacterial flagella

Simulation of a single helical filament

Motor rotates either CW or CCW with frequency ω .

Physical parameters

		Filament	Hook
1 J	Ţ		
Length	L	$6 \ \mu m$	$0.072 \ \mu m$
Shear modulus	b_1 , b_2	$8.0 imes10^{-1}~{ m g}~\mu{ m m/s^2}$	$8.0 imes 10^{-1}~{ m g}~\mu{ m m/s^2}$
Stretch modulus	b_3	$8.0 imes 10^{-1}~{ m g}~\mu{ m m/s^2}$	$8.0 imes 10^{-1}~{ m g}~\mu{ m m/s^2}$
Bending modulus	a_1 , a_2	$3.5\times 10^{-3}~\mathrm{g}~\mu\mathrm{m}^3/\mathrm{s}^2$	$3.5\times 10^{-5}~\mathrm{g}~\mu\mathrm{m}^3/\mathrm{s}^2$
Twist modulus	a_3	$1.0\times 10^{-4}~\mathrm{g}~\mu\mathrm{m}^{\mathrm{5}}/\mathrm{s}^{\mathrm{2}}$	$1.0\times 10^{-6}~\mathrm{g}~\mu\mathrm{m}^{5}/\mathrm{s}^{2}$
Twist-gradient coefficient	γ	$4.0\times 10^{-6}~\mathrm{g}~\mu\mathrm{m}^3/\mathrm{s}^2$	0
Intrinsic curvature	κ	$1.3055 \ \mu{\rm m}^{-1}$	0
Intrinsic twist	au	$-2.1472 \ \mu { m m}^{-1}$	0

Fluid viscosity	μ	$0.01 imes 10^{-4} \mathrm{~g}/(\mu \mathrm{m} \cdot \mathrm{s})$
Motor rotation frequency	ω	100 Hz
Time step	Δt	$1.0\times 10^{-7}~{\rm s}$
Filament grid size	Δs	$2.4 imes 10^{-2} \ \mu { m m}$
Regularization parameter	c	$5\Delta s$

Numerical Results

Bistable helix

$$E_{\mathsf{twist}} = \frac{1}{2} \int_0^L \left[\frac{1}{2} a_3 \left(\Omega_3 - \tau_R \right)^2 \left(\Omega_3 + \tau_L \right)^2 + \gamma \left(\frac{\partial \Omega_3}{\partial s} \right)^2 \right] \, ds,$$

W. Ko (U. of Cincinnati)

Polymorphic transformation of bacterial flagella

July 12, 2016 12 / 18

Bistable helix - block angle

Ref: Turner et al., J. Bacteriol., 182(10):2793–2280, 2000, and Darnton and Berg, Biophys. J., 92:2230–2236, 2007.

Bistable helix

- For typical motor rotation frequency (100 to 200 Hz), a complete polymorphic transformation occurs in < 0.04 seconds in our simulations.
- Semicoiled and curly states push more fluid than normal state.

Bistable helix in viscous flow

• Hotani observed polymorphic transformation when a flagellar filament is subject to a viscous flow [Hotani, 1982].

Ref: Hotani, J. Mol. Biol., 156:791-806, 1982.

Bistable helix in viscous flow

Bistable helix in viscous flow

- Velocity threshold is inversely proportional to fluid viscosity.
- Experimental flow speeds are $1-8 \ \mu m/s$.

Conclusions and Future Work

Conclusions

- A model of a bacterial flagellum was presented using Kirchhoff rod theory and Stokes' flow.
- Filament is capable of changing handedness with reversal of the motor.
- Performed simulations motivated by experiments by Hotani [Hotani, 1982].

Future Work

- Include more flagella to study bundling behavior.
- Extend the model to include proton-motive force.
- Simulate a free swimming bacterium.