Happy Birthday,
Charlie
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The Dynamics of Calcium
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Note the Ca%* on the sand
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Michael J. Sanderson, one of my closest
friends and colleagues, died suddenly
and unexpectedly on the 24th of April, 2016.

A lot of what I’ll be talking about today (and
for the past 20 years) has been strongly
influenced by Mike.



Typical oscillations
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In response to stimulation by
hormones or
neurotransmitters, many cell
types exhibit oscillations in the
concentration of free
intracellular calcium ions.



Why?

Why do cells expend all this energy to generate
calcium oscillations (and waves)?

Dogma: calcium is a second messenger which carries a
signal in the frequency of the oscillations.

This allows cells to use calcium (which is toxic) as a
second messenger.



Contraction of smooth muscle
around an arteriole

Smooth muscle cell

From Mike Sanderson's lab.



How?

There are a number of possible

mechanisms but they all rely on CaZ+ (m M)
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Release from internal stores...

Ca?* (mM)

PM pumps

ER
(High

calcium)
serca

PR
%
Ca?*-B
(buffering)




Followed by reuptake.
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Calcium excitability

* |PR release calcium in an excitable manner. They respond to a calcium
challenge by the release of even more calcium.

e Ca?* oscillations (mostly) result from the cycling of Ca%* into and out of the
internal store, the ER.

* An IPR behaves very like a Na* channel (in some ways). In response to an

increase in [CaZ*] it first activates quickly, and then inactivates slowly, resulting
in the short-term release of a large amount of calcium.

e Thus, the math of calcium dynamics is very similar to generic excitable system
theory.




But...how similar is similar?

In honour of Charlie, the rest of this talk is unpublished
and speculative.

He does this all the time, quite brilliantly. | don’t.

But this time, for Charlie, I'll try.



F340/F380 ratio

Is there a unifying structure
underlying all calcium oscillations?

* No. Of course not. What a silly question.
* There is too much variability between cell types, and a variety of quite

different mechanisms.
* But for one class of calcium oscillations (Class |, closed cell), it might be

possible...
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The generic model

flux through
flux throui IPR (J;,) SERCA pump (J..,..)
dc Vsc®
dt kipr@c(c)dp(p)h(ce —¢) — W
dh h
T =1 — IPR inactivation
dt hoo(c>
dp production and
E = plc(c) o Vdegp degradation of |P3

cytoplasm

be (C) = Kg’ pe fast positive feedback
hoo(c) = K}?; slower negative feedback
OO K} +¢3
op(p) = P’ not important for now
P K3 + 9

Vple = not so important



Pulses of IP;: model predictions
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Bifurcations
in 2-d and 3-d
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. 1€StiNg the model predictions
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Is this just FitzHugh-Nagumo?

No. Not really. But it’s close.
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N-shaped nullcline and a “straight”
one.

Time-scale separation, but ONLY
for low c.

When c is large, the distinction
between fast and slow variables is
lost.

This is mandated by the
physiological properties of the IPR.

Basically, it’s FHN with a very
shallow nullcline and an ¢ that
depends on c.



Conclusions?

Not entirely sure yet.

But the evidence suggests that there is a unifying
dynamical structure underlying a large range of calcium
oscillations.

This dynamical structure seems to be independent of
the time scale.

Thus, cells generate the underlying structure, and then
move around on it as fast as they have to.



