Modeling Type 2 Diabetes Pathogenesis

Arthur Sherman Joon Ha Laboratory of Biological Modeling NIH

Joon Ha

The Main Question

- Why do people get type 2 diabetes (T2D)?
- Most people with T2D are obese.
- But most obese people do not have T2D.
- What distinguishes the two?

The Standard Model for Pathogenesis of T2D

Case Study: ZDF Rats

LF-fZDF (○) HF-fZDF (●)

"Starling's Law of the Pancreas"

Starling's Law in Humans

Humans

DeFronzo, Diabetes 37:667 1988 (Lilly Lecture)

The Standard Model for Pathogenesis of T2D

An Alternate Model for Pathogenesis of T2D

Two Hypotheses for Pathogenesis of T2D

- The "Standard Model":
 - Insulin resistance appears
 - Insulin secretion increases to compensate
 - If secretion is adequate, hyperinsulinemia persists but diabetes is avoided
 - If secretion is inadequate, diabetes develops
- The "Alternate Model":
 - Hypersecretion is the primary defect
 - Insulin resistance develops to compensate
 - If beta cells fail, diabetes develops

Basic Glucose-Insulin Homeostasis

$$\frac{dG}{dt} = HGP + Meals - Uptake$$
$$\frac{dI}{dt} = Secretion - Clearance$$

To maintain normal glucose:

- If *Uptake* decreases or *HGP* increases, *Secretion* must increase or *Clearance* must decrease
- If *Secretion* increases, *HGP* must increase or *Uptake* must decrease

More Specifically

Equations adapted from the Bergman-Cobelli Minimal Model

$$\frac{dG}{dt} = HGP + Meal - (E_{G0} + S_II)G$$
$$\frac{dI}{dt} = \frac{\beta\sigma}{BV} R_{IS}(G) - kI$$

- If S_I decreases but *I* increases proportionally *G* remains the same.
- As $S_I I$ goes down, G rises, leading to T2D (Disposition Index).
- *I* can be increased by increasing mass (β) or function (σ) or reducing clearance (*k*).

The βIG-Topp Model

Topp ... de Vries ... Miura ... Finegood, J. Theor. Biol. 206:605 2000

Case Study: ZDF Rats

Topp BG et al. Am J Physiol Endocrinol Metab 2007;293:E1730-E1735

Hierarchy of β -cell Responses

Our Equations

Intermediate

Our Equations

Confirmation: Overnight High G Shifts Dose Response Left

Glynn et al, Endocrinology, 157:611 2016

What About Us Humans?

Humans are large, long-lived rodents: Joon Ha MS 25

Standard Model vs. the Alternate Model

- The Standard Model:
 - Insulin resistance leads to beta-cell failure
- The Alternate Model:
 - Hypersecretion leads to insulin resistance and beta-cell failure
 - Pranay Goel MS 25 (JTB 384:131 2015)

Argument 1 for the Alternate Model:

"Hyperinsulinemia appears long before glucose rises."

Argument 2 for the Alternate Model:

"Insulin-resistance does not change much immediately preceding diabetes."

Both Explained by Threshold and Bistability [300] Disease 100 80 Mean Plasma 60 Insulin Insulin Resistance Response [150] During 40 OGTT 20 $(\mu U/mI)$ 0 80 120 160 200 Fasting Plasma Glucose Conc. (mg/dl) mg/dl [125] [100]

G

 β -cell Mass Defect

Health

Argument 3 for the Alternate Model:

"Induced hyperinsulinemia causes insulin resistance."

Reducing Insulin Improves Insulin Sensitivity and Promotes Weight Loss

Dz

Beneficial effect of diazoxide in obese hyperinsulinemic adults.

Alemzadeh R, Langley G, Upchurch L, Smith P, Slonim AE. J Clin Endocrinol Metab. 1998 Jun;83(6):1911-5. PMID: 9626118

Insulin Does Cause Weight Gain

Courtesy of Eli Lilly and Company Archives

Need One More Assumption: S₁ Decreases with Insulin

Analogy to friction: The higher / is, the more resistance is generated If / is reduced, resistance goes away, as observed experimentally

Effect of Dz on Glucose Tolerance Depends on S₁

Dz Effect on Glucose Tolerance – model simulations

- Dz is only beneficial for severely obese, normoglycemic subjects (upper left corner in I-S₁ plane).
- Upper left: A large change in I causes a small change in G
- Lower right: A small change in I causes a large change in G

As S₁ Decreases, Increment in G Decreases

Response to drop in *I* 80 70 60 Curves of constant G 50 Insulin 4 30 20 10 0.2 0.4 0.6 0.8 1.0

... and same improvement in S₁ lowers G more

Si

Conclusion: They picked their subjects carefully (or were lucky)

- Highly insulin-resistant individuals are at least risk for hyperglycemia from reducing insulin
- They experience the greatest gain in insulin sensitivity
- Others would suffer

via Frictional Effect

Possibility of either self-limiting process or runaway positive feedback So far, we see only self-limiting, marginal effect

Summary

- We have shown that much of the data used to support the Alternate Model is consistent with the Standard Model
 - Insulin rises before glucose
 - Insulin resistance saturates before T2D appears
- If add frictional insulin resistance
 - Improvement in insulin sensitivity when reduce insulin secretion
 - But this is a marginal effect in typical T2D cases
 - Argues for avoiding excessive use of insulin
- Hypersecretion can also cause beta-cell failure
 - Can explain progression from hypoglycemia to hyperglycemia in cases of extreme, congenital hyperinsulinism
 - Again marginal in typical T2D cases

Argument 4 for the Alternate Model:

"Hyperinsulinemia appears years before insulin resistance is detected."

This is not possible, unless subjects are hypoglycemic

Hyperinsulinemia and insulin resistance have to appear in tandem

Argument for the frictional model vs. hypersecretion as the driver of insulin resistance:

Insulin sensitizer given to an insulinresistant, normoglycemic person would leave / high but lower G. The opposite happens.