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Swimming Microorganisms (Microswimmers)

Key distinction from swimming macroorganisms:

I low Reynolds number: motion stops when force stops
(Archimedean dynamics)

I stochastic components apparent
I Brownian motion, run-and-tumble dynamics, molecular motor

noise

Typical coarse-grained description of microswimmers is through
their time-averaged force dipole δ

I signed measure of force exerted multiplied by displacement of
forces

Review

I E. Lauga and R. E. Goldstein, “Dance of the
microswimmers,” Physics Today 65 (9), 30–35 (2012).



Pushers and Pullers

Pushers (δ < 0)

I Most bacteria

Pullers (δ > 0)

I Algal cell (Chlamy.)

Images from Lauga and Powers, Rep. Prog. Phys. 2009



Observations in Experiments and Simulations

Suspensions of pullers tend to appear statistically isotropic, with
short-range orientational correlations.

Suspensions of pushers tend to exhibit patterned motion, with
long-range orientational correlations with slow decay

Fluid velocities for pushers (left) vs. pullers (right)

Image from Saintillan and Shelley Roy Soc Interface 2012



Point-Dipole Models with Hydrodynamic Interaction

Each swimmer (indexed by i) characterized by position X(i) ∈ Ω in
d-dimensional spatial domain Ω, and orientation N(i) ∈ Sd−1.

dX(i)(t) = VN(i)(t) dt+
√

2D dW(i)
x (t)

+ δ
∑
j 6=i

KX(X(i)(t)−X(j)(t)) ·M(N(j)(t)) dt,

dN(i)(t) =
√

2DrP(N(i)(t)) · dW(i)
n (t)

+ δ
∑
j 6=i

P(N(i)(t)) · KN(X(i)(t)−X(j)(t)) ·M(N(j)(t)) dt,

I V is speed of a swimmer,
I D(Dr) is translation (rotational) diffusivity of swimmer
I KX(x) ∼ |x|1−d, KN ∼∇KX(x) ∼ |x|−d for |x| → ∞ are

hydrodynamic interaction tensors (gradients of Oseen)
I M(n) =

(
1
d I− n⊗ n

)
, P(n) = (I− n⊗ n)

I {W(i)
x (t),W

(i)
n (t)} are independent d-dimensional Wiener

processes (〈dW(t)⊗ dW(t′)〉 = δ(t− t′)I dt dt′)



Some Approaches Toward Explaining Suspension Behavior

Complex hydrodynamics (review by Marchetti et al, Rev. Mod.
Phys. 2013)
Mean field kinetic theories based on point-dipole models (Saintillan
and Shelley 2008)

I Nonlinear Fokker-Planck equation for the phase space density
ψ(x,n, t) of microswimmer variables

Abstracted lattice models, for which more detailed computations
possible.

I Thompson, Tailleur, Cates, Blythe 2011



(Deterministic) Mean Field Kinetic Theory

∂ψ(x,n, t)

∂t
= −∇x · (V nψ) +D∇2

xψ +Dr∇2
nψ

−∇x · (U(ψ)ψ)−∇n · (A(ψ)ψ)

with linear operators:

U(ψ) = δ

∫
dx′

∫
dn′KX(x− x′)

(
n′ ⊗ n′ − 1

d
I

)
ψ(x′,n′, t)

A(ψ) = (I− n⊗ n) ·∇U(ψ) · n.

Linear stability analysis about statistically uniform, isotropic state
ψ = constant:

I Always linearly stable for pullers ( δ > 0)

I Linear instability for pushers (δ < 0) with sufficiently small
rotational diffusivity Dr



Limitations of (Deterministic) Mean Field Kinetic Theory

Practical limitations:

I approximates micro swimmers as densely, continuously
distributed fields rather than discrete entities

I When stable, statistically stationary state completely trivial,
with no flow

I More broadly, finite number of microswimmers and their
correlations produce statistical fluctuations that impact upon
fluid properties such as enhanced viscosity and mixing



Stochastic Mean Field Kinetic Theory Derivation

Mesoscopic theory which adds stochastic noise from finite number
effects

I analogous to a central limit theorem description, whereas
deterministic continuum equations arise from law of large
numbers

I formally valid when the number of micro swimmers in any
spatial region of interest can be treated as large but not
infinite

Systematic derivation of noise terms
I Physical principles (not quite fluctuation-dissipation relation)

I Dean 1996 for diffusion equation
I Tailleur and Cates 2008, Solon, Cates, Tailleur 2015 adapt for

other microswimming models (without hydrodynamic
interaction but other physics)

I direct formal mathematical derivation via Itô’s lemma in weak
form to empirical measure

Lau and Lubensky 2007, 2009 study stochastic version of related
fluctuating hydrodynamic equations



Stochastic Mean Field Kinetic Theory

dψ(x,n, t) = −∇x · (V nψ) dt+D∇2
xψ dt+Dr∇2

nψ dt

−∇x · (U(ψ)ψ) dt−∇n · (A(ψ)ψ) dt

+ ∇x ·
(√

2Dψ dB(x,n, t)
)

+ ∇n ·
(√

2Drψ (I− n⊗ n) dB̃(x,n, t)
)

where B(x,n, t) and B̃(x,n, t) are cylindrical Brownian motions:

I Gaussian random processes

I mean zero

I correlation function:

〈dB(x,n, t)dB(x′,n′, t′)〉 = δ(t− t′)δ(x− x′)δ(n− n′) dt dt′

Note dB and dB̃ are not quite space-time white noise.



Numerical Discretization of Noise Term

Naive discretization of cylindrical Brownian motion: ∆B(x,n, t)

I independent, identically distributed over each space-time
volume

I mean zero Gaussian random variables

I variance

〈(∆B(x,n, t))2〉 =
∆t

(∆x)d(∆n)d−1

where d is the number of spatial dimensions.

Noise is very rough in the spatial variables!

I Discretization won’t converge in any typical sense

I Mathematical theory for continuum limit may not be
well-posed



Physical Meaning of Noise Term

Nonetheless, this rough noise is physically correct.

I particle densities measured over finite (phase space) volume V
will have random fluctuations ∼ V −1/2

I physical continuum theories aren’t intended to apply literally
as ∆x ↓ 0, ∆n ↓ 0

I rather for `� ∆x� L where ` is atomic length scale, L is
macroscopic length scale

I Noise is not converging on the physical spatial mesh under
refinement, but does converge when projected onto any fixed
spatial (i.e. spectral) mode

This is common situation for mesoscopic SPDEs, and the source of
the difficulty in giving mathematical meaning to physically correct
equations (and one reason to have given M. Hairer a Fields medal).



Physical Discretization of Noise

One lesson from previous work with stochastic immersed boundary
(SIB) method (with Paul Atzberger and Charles Peskin):

I Numerical approximations can be made physically meaningful

I This approach will cause the noise and dissipation to be
consistently discretized

I Important for good properties of stationary state

Following this SIB work, we formulate approximating semi discrete
models for the stochastic mean field theory for micro swimmers on
a regular spatial lattice with spacing ∆x and ∆n.

I Represent velocity and diffusion by continuous-time random
walk hopping rates

I Time remains continuous in model formulation; discretized
only in numerical implementation



Stochastic Advection-Diffusion on Lattice

Ideas are the same as for a simple stochastic advection-diffusion
equation in one spatial dimension:

dρ(x, t) =
[
−∂x (v(x)ρ(x, t)) +D∂2

xρ(x, t)
]

dt

+ ∂x

(√
2Dρ(x, t) dB(x, t)

)
Discretize space into intervals

{[(
j − 1

2

)
∆x,

(
j + 1

2

)
∆x
)}

j

I Nj represents the number of particles in[(
j − 1

2

)
∆x,

(
j + 1

2

)
∆x
)
.

I Think of the particles as living on the lattice of the center
points {xj = j∆x}j .

I Discretize velocity vj ≡ v(xj)



Stochastic Dynamics on Lattice

Dynamics governed by continuous-time Markov chain (random
walk):

I Rate r− = − vj
2∆x + D

(∆x)2
to hop left: xj → xj−1

I Rate r+ =
vj

2∆x + D
(∆x)2

to hop right: xj → xj+1

I Probability for process to occur over time interval ∆t:
I rate ×∆t+ o(∆t)

I Rates must be positive, so need cell Péclet number

Pec j =
|vj |∆x
D ≤ 2



Numerical SPDE Representation

With Gaussian approximation for noise terms,

ρj(t+ ∆t)− ρj(t) =
vj−1ρj−1 − vj+1ρj+1

2∆x
∆t

+
D(ρj−1 − 2ρj + ρj+1)

(∆x)2
∆t+

F̃j−1 − F̃j
∆x

∆t

Deterministic terms appear with central difference discretization

I cell Péclet number Pec j =
|vj |∆x
D restricted to Pec j < 2 for

stability
I also for discrete model to be meaningful

I undesirable because micro swimming is believed to be
advection-dominated, so this forces small ∆x



Linearized Fluctuation Analysis

When statistically isotropic state ψ = ψ0 is linearly stable, linearize
based on small parameter proportional to density

dψ(x,n, t) = −∇x · (V nψ) dt+D∇2
xψ dt+Dr∇2

nψ dt

−∇n · (A(ψ))ψ0 dt

+ ∇x ·
(√

2Dψ0 dB(x,n, t)
)

+ ∇n ·
(√

2Drψ0 (I− n⊗ n) dB̃(x,n, t)
)

Analyze by expansion in Fourier modes (in x) and
circular/spherical modes (in n)

I yields formally infinite-dimensional O-U equations

I Statistics by numerical linear algebra on Galerkin projections

I Asymptotic analysis for low wavenumber |k| ≤ Dr/V



Numerical Results for d = 2 Spatial Dimensions

Modal representation is then simple Fourier expansion w.r.t. x and
n = (cos θ, sin θ):

ψ(x,n, t) =
∑
k∈R2

∞∑
m=−∞

e2πik·x/Leimθψ̂k,m(t)

where L is the size of the (periodic) spatial domain.
Results presented in nondimensional form

I equivalent to scaling so mean phase space density, dynamic
viscosity, and swimmer speed = 1

I reported fluctuations to be multiplied by small linearization
parameter ε =

√
1/N̄ , where N̄ is the average number of

swimmers in unit nondimensional reference area

I Nondimensional period domain length in computations = 50



Statistical Descriptors of Physical Fields

We will examine two basic properties of various (vector or scalar)
random physical fields F(x) obtained by operations on ψ(x,n, t):

I Root-mean-square amplitude

A(F) ≡ 〈|F(x)|2〉1/2 =

∑
k∈R2

〈|F̂(k)|2〉

1/2

.

I Correlation length (statistical representation of pattern size)

`c(F) ≡

√∫
R2 |Tr CF(x)|dx

A(F)2

where the correlation function is defined:

CF(x) ≡ 〈F(x′ + x)⊗ F(x′)〉 =
∑
k∈R2

e2πik·x〈F̂(k)⊗ F̂∗(k)〉

〈·〉 denotes statistical average, and t is suppressed since we always
compute in statistically stationary state.



Statistical Properties of Concentration

Concentration field ρ(x, t) ≡
∫
S1 ψ(x,n, t) dn:

I No interesting structure for either pushers or pullers

I O(
(

|k|V
Dr

)4
) perturbation in asymptotic analysis

I Essentially delta-correlated, as for independent swimmers
I Nontrivial effects certainly seen at higher concentration, due

to near-field interactions (Furukawa, Marenduzzo, Cates 2014)

I beyond point dipole approximations



Statistical Properties of Orientation

Orientation field N(x, t) ≡
∫
S1 nψ(x,n, t) dn:

Root-mean-square amplitude w.r.t. rotational diffusivity
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Statistical Properties of Fluid Velocity

Fluid velocity field
u(x, t) ≡ δ

∫
S1

∫
R2 KX(x− x′) ·M(n′)ψ(x′,n′, t) dx′ dn′:

Root-mean-square amplitude w.r.t. rotational diffusivity
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Enhancement of Tracer Diffusivity

At low Kubo number (Ku)

D ≈ 1

4

∫ ∞
0
〈〈u(x, t′) · u(x, t′ + t)〉 dt

Linearized analysis (lines) vs. finite-difference simulations
(symbols) at Ku ∼ 10−5
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Conclusions

I Rational noise model to represent fluctuations about idealized
continuum limit

I Computation of fluid/microswimmer statistics in linearly
stable regime, where deterministic theory is uninformative
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