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Motivation
• Using the immersed boundary (IB) method,

• Investigate the interaction between a thin elastic material and fluid,

• Immersed boundaries are massive or porous.

• Examples: Flapping Filament, Mapleseed, Parachute, Foam
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Immersed Boundary Method
• Two types of systems of equations:

• Incompressible viscous flow (Eulerian).
• Thin elastic material (Lagrangian).

• Interaction equations
• Using the Dirac delta function.
• Elastic force in Lagrangian → Body force in Eulerian.
• Elastic boundary moves at a local fluid velocity (no slip condition).
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Equations of Motion

F = −
∂E

∂X
+ FM ,

FM = −M
∂2X

∂t2
− Mge3,
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Equations of Motion

F = −
∂E

∂X
+ FM ,

FM = −M
∂2X

∂t2
− Mge3,

f(x, t) =

Z

F(r, s, t)δ(x − X(r, s, t))drds,
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Equations of Motion

F = −
∂E

∂X
+ FM ,

FM = −M
∂2X

∂t2
− Mge3,

f(x, t) =

Z

F(r, s, t)δ(x − X(r, s, t))drds,

ρ(
∂u

∂t
+ u · ∇u) = −∇p + µ∇2u + f ,

∇ · u = 0,
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Equations of Motion

F = −
∂E

∂X
+ FM ,

FM = −M
∂2X

∂t2
− Mge3,

f(x, t) =

Z

F(r, s, t)δ(x − X(r, s, t))drds,

ρ(
∂u

∂t
+ u · ∇u) = −∇p + µ∇2u + f ,

∇ · u = 0,

∂X

∂t
(r, s, t) = u(X(r, s, t), t)

=

Z

u(x, t)δ(x − X(r, s, t))dx.
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Mass of Immersed boundary
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Mass of Immersed boundary

ρ(x, t) =

Z

M(r, s)δ(x − X(r, s, t))drds,

ρ(x, t)(
∂u

∂t
+ u · ∇u) = −∇p + µ∇2u + f ,
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Penalty IB method I
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Penalty IB method I

• Split the elastic boundary into two Lagrangian components: massive component
Y(r, s, t) and massless component X(r, s, t).

• Y(r, s, t) does not interact with the fluid and moves by Newton’s law.

• X(r, s, t) has no mass and plays the same role as in the IB method.
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Penalty IB method I

• Split the elastic boundary into two Lagrangian components: massive component
Y(r, s, t) and massless component X(r, s, t).

• Y(r, s, t) does not interact with the fluid and moves by Newton’s law.

• X(r, s, t) has no mass and plays the same role as in the IB method.

• The two components are connected by very stiff springs.

• The spring force acts on both components to keep them close.
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Penalty IB method II

F = −
∂E

∂X
+ FM . (1)

FM = −M
∂2X

∂t2
− Mge3. (2)

are replaced by
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Penalty IB method II

F = −
∂E

∂X
+ FM . (3)

FM = −M
∂2X

∂t2
− Mge3. (4)

are replaced by

F = −dE/dX + FK , (5)

FK(r, s, t) = K(Y(r, s, t) − X(r, s, t)) (6)

M(r, s)
∂2Y(r, s, t)

∂t2
= −FK(r, s, t) − M(r, s)ge3. (7)
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Flapping Filament in a flowing soap film
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Flapping Filament in a flowing soap film
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Interaction with a rigid body

F(q, r, s, t) = K(Y(q, r, s, t) − X(q, r, s, t)) (8)

f(x, t) =

Z

F(q, r, s, t)δ(x − X(q, r, s, t))dqdrds (9)
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Interaction with a rigid body

Y(q, r, s, t) = Ycm(t) + R(t)C(q, r, s) (10)

M
dVcm

dt
= −

Z

F(q, r, s, t)dqdrds − Mg (11)

dYcm

dt
= Vcm(t) (12)

dL

dt
=

Z

(Y(q, r, s, t) − Ycm(t)) × (−F(q, r, s, t))dqdrds (13)

L(t) =

Z

m(q, r, s)((R(t)C)T (R(t)C)I3 − (R(t)C)(R(t)C)T )Ω(t) dqdrds

= R(t)

Z

m(q, r, s)(CT CI3 − CCT ) dqdrdsR(t)T Ω(t) (14)

dR

dt
= Ω(t) ×R(t) (15)
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Two dropping discs
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Maple seed
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Motion of Maple seed

maple seed

Two extensions of the Immersed BoundaryMethod and their applications – p.14/30



Rotational speed of Maple seed
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Parachute with Porous Canopy (2nd extension)
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IB method with Porous Boundary

gas

gas

side 2

side 1

foam boundary
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IB method with Porous Boundary

gas

gas

side 2

side 1

foam boundary

• Let U(s, t) be fluid velocity at X(s, t) and ∂X

∂t
(s, t) be the boundary velocity.

Two extensions of the Immersed BoundaryMethod and their applications – p.17/30



IB method with Porous Boundary

gas

gas

side 2

side 1

foam boundary

• Let U(s, t) be fluid velocity at X(s, t) and ∂X

∂t
(s, t) be the boundary velocity.

• Flux through a patch with the length | ∂X

∂s
|ds:

(U(s, t) − ∂X

∂t
(s, t))| ∂X

∂s
|ds = M(p1 − p2)|

∂X

∂s
|ds, where M is the permeability.
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IB method with Porous Boundary

gas

gas

side 2

side 1

foam boundary

• Let U(s, t) be fluid velocity at X(s, t) and ∂X

∂t
(s, t) be the boundary velocity.

• Flux through a patch with the length | ∂X

∂s
|ds:

(U(s, t) − ∂X

∂t
(s, t))| ∂X

∂s
|ds = M(p1 − p2)|

∂X

∂s
|ds, where M is the permeability.

• Normal equilibrium of the boundary: (p1 − p2)
˛

˛

∂X

∂s
(s, t)

˛

˛ + F(s, t) · n = 0.
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IB method with Porous Boundary

gas

gas

side 2

side 1

foam boundary

• Let U(s, t) be fluid velocity at X(s, t) and ∂X

∂t
(s, t) be the boundary velocity.

• Flux through a patch with the length | ∂X

∂s
|ds:

(U(s, t) − ∂X

∂t
(s, t))| ∂X

∂s
|ds = M(p1 − p2)|

∂X

∂s
|ds, where M is the permeability.

• Normal equilibrium of the boundary: (p1 − p2)
˛

˛

∂X

∂s
(s, t)

˛

˛ + F(s, t) · n = 0.

• ∂X

∂t
(s, t) − U(s, t) = MF(s, t) · n/| ∂X

∂s
|.
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IB method with Porous Boundary

gas

gas

side 2

side 1

foam boundary

• Let U(s, t) be fluid velocity at X(s, t) and ∂X

∂t
(s, t) be the boundary velocity.

• Flux through a patch with the length | ∂X

∂s
|ds:

(U(s, t) − ∂X

∂t
(s, t))| ∂X

∂s
|ds = M(p1 − p2)|

∂X

∂s
|ds, where M is the permeability.

• Normal equilibrium of the boundary: (p1 − p2)
˛

˛

∂X

∂s
(s, t)

˛

˛ + F(s, t) · n = 0.

• ∂X

∂t
(s, t) − U(s, t) = MF(s, t) · n/| ∂X

∂s
|.

• Since F(s, t) is normal to the boundary,

∂X

∂t
(s, t) = u(X(s, t), t) + M F(s, t)/|

∂X

∂s
| (16)

=

Z

u(x, t)δ(x − X(r, s, t))dx + M F(s, t)/|
∂X

∂s
|
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2-D Parachute with Porous Canopy
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Motion of 2-D Parachute
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2D Foam Dynamics: von Neumann relation
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2D Foam Dynamics: von Neumann relation
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• M :permeability; γ:surface tension; κ:mean curvature.

• Assume that the gas diffuses through the wall at a rate −M γ κ per unit length.

• dA
dt

= −M γ
R

Γ
κ ds.
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2D Foam Dynamics: von Neumann relation
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• M :permeability; γ:surface tension; κ:mean curvature.

• Assume that the gas diffuses through the wall at a rate −M γ κ per unit length.

• dA
dt

= −M γ
R

Γ
κ ds.

• dA
dt

= −Mγ
`

2π −
Pn

i=1 αi

´

= −2πMγ
`

1 − n/6
´

,
where αi: exterior angle; n: number of walls.
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2D Foam Dynamics: von Neumann relation
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• M :permeability; γ:surface tension; κ:mean curvature.

• Assume that the gas diffuses through the wall at a rate −M γ κ per unit length.

• dA
dt

= −M γ
R

Γ
κ ds.

• dA
dt

= −Mγ
`

2π −
Pn

i=1 αi

´

= −2πMγ
`

1 − n/6
´

,
where αi: exterior angle; n: number of walls.

• The rate of change of the area of a given cell is independent of cell size and solely
dependent on the number of walls (or edges) of the cell.

• The area is constant for 6-sided bubbles, bubbles with fewer than 6 sides tend to
shrink, and bubbles with more than 6 sides tend to grow.
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2D Foam Dynamics: Force and Normal slip
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2D Foam Dynamics: Force and Normal slip
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• F(s, t) = ∂
∂s

(γ τ) = γ ∂τ
∂s

.

• τ(s, t) = ∂X

∂s
/

˛

˛

˛

∂X

∂s

˛

˛

˛

.
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2D Foam Dynamics: Force and Normal slip
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• ∂X
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(s, t) =

R

u(x, t)δ(x − X(s, t))dx + M F/
˛

˛

˛
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.
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Foam with 3 inner cells
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Foam with 500 cells
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3D Foam Dynamics
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• R.D.MacPherson and D.J.Srolovitz, “The von Neumann relation generalized to
coarsening of three-dimensional micro-structures”, Nature, 2007.

• dV
dt

= −2πMγ
`

L(D) − 1
6

P6
i=1 ei(D)

´

, where L(D) is a natural measure of the
linear size of domain D and ei is the length of triple line (edge) i.

• Descretzied version of the 3D von Neumann relation:

dV

dt
= −Mγ

X

e∈E

Le θe,

where Le is the length of edge e of the triangular facet, and θe is the angle
between the two facets with the same edge e.
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3D foam: Continuous force and normal slip
• Let X(r, s, t) be a foam boundary,

F(r, s, t) = −
∂E

∂X
,

• E[X(·, ·, t)] = γ
R

˛

˛

˛

∂X

∂r
× ∂X

∂s

˛

˛

˛

drds, where γ is the surface tension.
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3D foam: Continuous force and normal slip
• Let X(r, s, t) be a foam boundary,

F(r, s, t) = −
∂E

∂X
,

• E[X(·, ·, t)] = γ
R

˛

˛

˛

∂X

∂r
× ∂X

∂s

˛

˛

˛

drds, where γ is the surface tension.

• Normal slip is

∂X

∂t
(r, s, t) = u(X(r, s, t), t) + M F/

˛

˛

˛

˛

∂X

∂r
×

∂X

∂s

˛

˛

˛

˛

,

=

Z

u(x, t)δ(x − X(r, s, t))dx + M F/

˛

˛

˛

˛

∂X

∂r
×

∂X

∂s

˛

˛

˛

˛

.
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3D foam: Discrete force and slip using Triangulation
• After triangulation of the foam boundary,

E[Xn] = γ
X

k

|Tk| = γ
X

k

1

2
|(Xk

2 − Xk
1) × (Xk

3 − Xk
1)|,

where Tk is a triangle with vertices {Xk
1 ,Xk

2 ,Xk
3} and |Tk| is the area of the

triangle Tk .
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3D foam: Discrete force and slip using Triangulation
• After triangulation of the foam boundary,

E[Xn] = γ
X

k

|Tk| = γ
X

k

1

2
|(Xk

2 − Xk
1) × (Xk

3 − Xk
1)|,

where Tk is a triangle with vertices {Xk
1 ,Xk

2 ,Xk
3} and |Tk| is the area of the

triangle Tk .

• Using the formula Fk
1 ∆r ∆s = −∇

X
k
1
E, where Fk

1 is the force density acting on

Xk
1 .

• Fk
1 = − γ

∆r ∆s

P

k=1
1
2

∂
∂X

k
1

|(Xk
2 − Xk

1) × (Xk
3 − Xk

1)|,
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3D foam: Discrete force and slip using Triangulation
• After triangulation of the foam boundary,
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where Tk is a triangle with vertices {Xk
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2 ,Xk
3} and |Tk| is the area of the

triangle Tk .

• Using the formula Fk
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3D Foam Dynamics with a single inner cell
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3D Foam Dynamics: 3D von Neumann relation
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3D General Foam with 40 Cells

permeability=0.01
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Conclusions and Future Work:
• The pIB method is useful for the interaction between massive boundary and fluid.

• The pIB method can be applied to problems by decoupling the structural dynamics
from the fluid dynamics.
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Conclusions and Future Work:
• The pIB method is useful for the interaction between massive boundary and fluid.

• The pIB method can be applied to problems by decoupling the structural dynamics
from the fluid dynamics.

• The results verify 2D and 3D von Neumann relations.

• The IB method can handle the interaction between porous elastic material and the
surrounding fluid.

• Improve the stability condition generated from elastic force.

• Increases in the Reynolds number are needed in various ways: improved fluid
solvers, global mesh refinement, adaptive mesh refinement, and direct numerical
simulation of turbulence models.
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