From IB to IIM, from Solution to Gradient Computations

Zhilin Li

CRSC \& Department of Mathematics
North Carolina State University Supported by NSF-560168

Happy Birthday to Charlie!!!

Outline

\square From IB (Peskin) to IIM (LeVeque/Li)
\square Motivations of this talk: Accurate gradient computation at the interface/boundary for Cartesian grid methods
\square A new augmented IIM
$>$ FD Poisson equations, regular problem \rightarrow piecewise constant coef. \rightarrow Variable coef.
$>$ Optimal complexity $O(N \log (N)), 2^{\text {nd }}$ accurate solution \& gradient and proof (Claim to be the 'best')
\square Numerical results
\square Convergence analysis
\square Conclusions

From IB to IIM

\square Peskin's IB method
$>$ Mathematical modeling
$>$ Numerical method: discrete delta function
$>$ Simple, robust, many applications
$>$ First order, elliptic (Li, elliptic with Dirichlet BC), Stokes with periodic BC (Mori)
\square IIM (LeVeque/Li)
$>$ Second order or higher
> Use jump conditions (from PDE or physics) instead of `delta functions
$>$ Best discrete delta function?
$>$ Finite difference (IIM, AIIM) and element (IFEM)
\square How to compute the solution \& gradient accurately?

Motivations for Accurate

Gradient

\square Many free boundary/moving interface problems depend on the first order derivatives of the solution
DFor finite difference (FD) methods based on Cartesian meshes, there are a number of $2^{\text {nd }}$ or higher order methods, but the derivatives are less accurate especially near the boundary/interface
DFEM: $L^{2}: O\left(h^{2}\right), H^{1}: O(h)$, at interface?

Some Examples

-The 1D Stefan problem modeling the icewater interface, let $\boldsymbol{s}(\boldsymbol{t})$ be the free boundary, $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t})$ be the temperature

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\beta^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<s(t) \\
& -\frac{\partial u}{\partial t}(0, t)=f(t), \text { inlet heat flux at left end } \\
& u(s(t), t)=0, \quad \text { the right end is the freezing temperature } \\
& \frac{d s}{d t}=-\frac{\partial u}{\partial x}(s(t), t), \text { the Stefan condition } \\
& u(x, 0)=0, \quad s(t)=0, \text { Initial conditions }
\end{aligned}
$$

Stefan problem in 2D \& Crystal Growth

DLeft: 2D Stefan problem. Right: Formulations of Snowflakes. Heat equation with non-linear BC

$$
\begin{aligned}
& \text { Solid } T<T_{M} \\
& \rho c \frac{\partial T}{\partial t}=\nabla \cdot(\beta \nabla T), \quad \rho L V=-\left[\beta \frac{\partial T}{\partial n}\right] \\
& T(x, t)=-\varepsilon_{c} \kappa-\varepsilon_{V} V, \quad \frac{d X}{d t} \cdot n=V
\end{aligned}
$$

Stefan Problem and Crystal Growth

$\square 1^{\text {st }}$ derivatives are involved
\square Stability analysis: dynamically unstable for some medium modes ($\exp (-k I t))$
(a)
(c)

(b)

(d)

Simulation: Crystal Growth

A moving interface example

\square NSE equations with unknown surface tension, an inverse problem
\square Both the area/length should be preserved.

$$
\begin{aligned}
& \rho\left(\frac{\partial u}{\partial t}+u \cdot \nabla u\right)+\nabla p=\mu \Delta u+\int_{\Gamma} f(s, t) \delta(x-X(s, t)) d s+g \\
& f(s, t)=\frac{\partial}{\partial s}(\sigma(t, s) \tau)+f_{b} \\
& \quad=\sigma(s, t) \kappa n+\frac{\partial \sigma(s, t)}{\partial s} \tau+f_{b} \\
& \nabla \cdot u=0,\left(\partial_{s} \cdot u\right)_{\Gamma}=\frac{\partial u}{\partial \tau} \cdot \tau=0
\end{aligned}
$$

Model Problems

口1D:

($\left.\beta u^{\prime}\right)^{\prime}-\sigma u=C \delta(x-\alpha) \quad 0<x<1$ $u(0)=0, \quad u(1)=0$

-2D
$\nabla \cdot(\beta \nabla u)-\sigma u=f+\int_{\Gamma} C(s) \delta(x-X(s)) d s$
or $\nabla \cdot(\beta \nabla u)-\sigma u=f,[u]=w,\left[\beta u_{n}\right]=C(s)$

Methods for Gradients Review

IFD with Cartesian mesh and central FD scheme: For regular problem \& regular domain, the derivatives have the same order as the solution.
\square The difficulty is for general boundaries and interfaces.
> In FEM, posterior error analysis to get more accurate derivatives, depends on mesh quality
$>$ In FEM, mixed FEM or least squares FEM. It will lead to saddle problem and computationally expensive
>DG for conservation laws
$>$ FD for elliptic and parabolic problems: ???

Results (old \& new) in 1D

Accuracy of u_{x} at the boundary/interface
\square At the boundary, 3-point one-sided, provide $2^{\text {nd }} u_{x}$
\square At the interface (singular source or discontinuous coef
>3-point one-sided FD scheme is $1^{\text {st }}$ order
$>$ IIM (compact FD, two-sided) is $2^{\text {nd }}$ order in Cartesian, polar, and spherical. NCSU-2015 REU project.
>1 D

My NCSU 2015 REU Group

IIM in 1D, simple case

DFD scheme for ($\left.\beta u^{\prime}\right)^{\prime}-\sigma u=C \delta(x-\alpha)$

$$
\gamma_{j-1} U_{j-1}+\gamma_{j} U_{j}+\gamma_{j+1} U_{j+1}=f_{j}+C_{j}
$$

DDetermine the coefficients and the correction term

$$
\gamma_{j-1}, \gamma_{j}, \gamma_{j+1}, C_{j}
$$

DInterface relations:

$$
\begin{gathered}
u^{+}=u^{-}, u_{x}^{+}=\frac{\beta^{-}}{\beta^{+}} u_{x}^{-}+C, \quad u_{x x}^{+}=\frac{\beta^{-}}{\beta^{+}} u_{x x}^{-} \\
x_{0}=0^{\beta^{-}} \\
x_{1}^{\prime}, \beta^{+}, x_{N}=1 \\
x_{j}^{+\ominus} x_{j+1}^{\alpha}
\end{gathered}
$$

IIM in 1D: Set-up equation

\square The linear system for the coefficients

$$
\begin{aligned}
& \gamma_{j-1}+\gamma_{j-1}+\gamma_{j+1}=0 \\
& \gamma_{j-1}\left(x_{j-1}-\alpha\right)+\gamma_{j}\left(x_{j}-\alpha\right)+\gamma_{j+1} \frac{\beta^{-}}{\beta^{+}}\left(x_{j+1}-\alpha\right)=0 \\
& \gamma_{j-1} \frac{\left(x_{j-1}-\alpha\right)^{2}}{2}+\gamma_{j} \frac{\left(x_{j}-\alpha\right)^{2}}{2}+\gamma_{j+1} \frac{\beta^{-}}{\beta^{+}} \frac{\left(x_{j+1}-\alpha\right)^{2}}{2}=\beta^{-}
\end{aligned}
$$

\square The correction term is

$$
C_{j}=C \gamma_{j+1} \frac{\beta^{-}}{\beta^{+}}\left(x_{j+1}-\alpha\right)
$$

Interpolation scheme for $\boldsymbol{u}_{\boldsymbol{x}}$

\square Three points from both sides plus correction term

$$
\begin{aligned}
& u_{x}(\alpha-)=\tilde{\gamma}_{j-1} U_{j-1}+\tilde{\gamma}_{j} U_{j}+\tilde{\gamma}_{j+1} U_{j+1}+\tilde{C}_{j} \\
& \tilde{\gamma}_{j-1}+\tilde{\gamma}_{j-1}+\tilde{\gamma}_{j+1}=0 \\
& \tilde{\gamma}_{j-1}\left(x_{j-1}-\alpha\right)+\tilde{\gamma}_{j}\left(x_{j}-\alpha\right)+\tilde{\gamma}_{j+1} \frac{\beta^{-}}{\beta^{+}}\left(x_{j+1}-\alpha\right)=1 \\
& \tilde{\gamma}_{j-1} \frac{\left(x_{j-1}-\alpha\right)^{2}}{2}+\tilde{\gamma}_{j} \frac{\left(x_{j}-\alpha\right)^{2}}{2}+\tilde{\gamma}_{j+1} \frac{\beta^{-}}{\beta^{+}} \frac{\left(x_{j+1}-\alpha\right)^{2}}{2}=0
\end{aligned}
$$

2D Results for Gradients (old \& new)

Accuracy of $u_{x} \& u_{y}$ at the interface
\square Singular source only (i.e. $\beta=1,[u] \neq 0,\left[u_{n}\right] \neq 0$)
$>$ One-sided FD scheme is $1^{\text {st }}$ order.
$>$ IIM (compact FD, two-sided) is $2^{\text {nd }}$ order (Beale \& Layton). One of the basis of the new method.
\square Direct: Maximum principle preserving (Li/lto): soln $2^{\text {nd }}$, gradient, not sure yet
\square Piecewise constant β, FIIM (Li, SINUM, 1997), $2^{\text {nd }}$ solution (proved), $2^{\text {nd }}$ gradient (observed before, now proved)
\square Variable $\beta,[\beta] \neq 0,2^{\text {nd }}$ solution and gradient (h²log h) with proof, 2015.

2D Problem \& Analysis

\square Elliptic interface problems with variable \& discontinuous coefficient

$$
\begin{aligned}
& \nabla \cdot(\beta \nabla u)+\sigma u=f+\int_{\Gamma} C(s) \delta(x-X(s)) d s \\
& \text { or } \nabla \cdot(\beta \nabla u)+\sigma u=f, \quad[u]=w,\left[\beta u_{n}\right]=C(s) \\
& \beta(x, y)= \begin{cases}\beta^{-}(x, y) \text { if } & (x, y) \in \Omega^{-} \\
\beta^{+}(x, y) \text { if } & (x, y) \in \Omega^{+}\end{cases} \\
& {[\beta(x, y)]_{\Gamma} \neq 0}
\end{aligned}
$$

Why elliptic interface problems?

\square It is most expensive part for many simulations processes, e.g. projection method

$$
\begin{aligned}
& \rho\left(u_{t}+u \cdot \nabla u\right)+\nabla p=\mu \Delta u+g \\
& \nabla \bullet u=0 \\
& \frac{u^{*}-u^{k}}{\Delta t}+(u \cdot \nabla u)^{k+1 / 2}+(\nabla p)^{k-1 / 2}=\frac{\mu}{2}\left(\Delta u^{k}+\Delta u^{*}\right)+F^{k+1 / 2} \\
& \Delta \phi=\frac{\nabla \cdot u^{*}}{\Delta t}, \frac{\partial \phi}{\partial \mathrm{n}}=0 \\
& u^{k+1}=u^{*}-\Delta t \nabla \phi \\
& \nabla p^{k+1 / 2}=\nabla p^{k-1 / 2}+\nabla \phi
\end{aligned}
$$

Cartesian Grid Methods

\square Peskin's IB method, $1^{\text {st }}$ order, inconsistent (Li, MathCom, 2014)
\square Fast IIM (Li, SINUM), for piecewise constant $\boldsymbol{\beta}$
\square Maximum principle preserving IIM (Li/Ito)
\square Ghost fluid method (Fedkiw/Liu) $1^{\text {st }}-2^{\text {nd }}$ order?
Boundary integral method (X-F. Li, M. Siegel, Mayo, Greengard, ...)
\square MIB (Wei/Zhao)
\square Virtual node method (Teran)
\square IFEM (Li/Lin², He, ...), Petrov-Galerkin (Hou, Ji/Chen/Li ...), IFEV ...
\square XFEM (X-D. Wang, W-K. Liu, J. Doby, ...)
\square Augmented IIM (Li et al), Kernel free method (W. Ying et. al) Which one gives $2^{\text {nd }}$ derivatives? FAST IIM

Key Ideas

$$
\begin{aligned}
& \nabla \cdot(\beta \nabla u)+\sigma u=f, \quad[u]=w,\left[\beta u_{n}\right]=v \\
& \rightarrow \Delta u+\frac{1}{\beta} \nabla u \cdot \nabla \beta+\frac{\sigma}{\beta} u=\frac{f}{\beta} \\
& {[u]=w,\left[u_{n}\right]=q,\left[\beta u_{n}\right]=v}
\end{aligned}
$$

\square Reformulate the problem near the interface by introduce augmented variable [$\boldsymbol{u}_{\boldsymbol{n}}$]
\square Derive different new interface relations using the new formulation
\square Apply the upwind scheme near Γ for the advection term(s) to get an M-matrix
\square Apply the GMRES for the Schur complement ([u_{n}])

Poisson Eqn. with singular sources

$$
\Delta u=f(x)+\int_{\Gamma} c(s) \delta(x-X(s)) d s+g
$$

BC (e.g., Dirichlet, Neuman, Mixed)
\square Equivalent Problem

$$
\Delta u=f(x), \quad x \in \Omega \backslash \Gamma, \quad[u]_{\Gamma}=0, \quad\left[\frac{\partial u}{\partial n}\right]_{\Gamma}=C(s)
$$

BC (e.g., Dirichlet, Neuman, Mixed)
DFD scheme ($x_{i} y_{j}$), regular/irregular

$$
\frac{u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i, j}}{h^{2}}=L_{h} u_{i, j}=f_{i j}
$$

$$
\frac{u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i, j}}{h^{2}}=L_{h} u_{i, j}=f_{i j}+C_{i j}
$$

${ }^{2 \pi m a n}$ Poisson Eqn. with singular

sources

DIB, IIM both work, what's the best discrete delta function? \rightarrow Source removal technique (Li/Lai/Wang)
$\square A U=F+B C ; \quad A$: Discrete Laplacian. Can be solved by a fast Poisson solver
\square IIM is second order both in solution and gradient (T. Beale/Layton), now to NS equations with fixed/exact interface

Augmented approach/Fast IIM

- If β is two constants, flux jump condition [βu_{n}] $=C(s)$ along $[u]=w(s)$.
\square Idea:

$$
\begin{aligned}
& \nabla \cdot(\beta \nabla u)=f+\int_{\Gamma} C(s) \delta(x-X(s)) d s \\
& \text { or } \nabla \cdot(\beta \nabla u)=f,[u]=0,\left[\beta u_{n}\right]=C(s) \\
& \text { or } \Delta u=\frac{f}{\beta}+\int_{\Gamma} \frac{C(s)}{?} \delta(x-X(s)) d s
\end{aligned}
$$

\square Idea of the method: divide $\boldsymbol{\beta}$ from the equation to get Poisson eqn., but can not from the flux jump.

Set $\left[u_{n}\right]=g \quad$ as unknown, the augmented variable, the augmented equation is the flux jump condition

Fast IIM

\square ldea, given $\quad\left[u_{n}\right]=g \quad$ solve the problem with one FFT

$$
A U+B G=F+C=F_{1}
$$

Discretize the flux condition

$$
\left[\beta u_{n}\right]=v
$$

$S U+E G=F_{2}$

\square Schur complement:

$$
\begin{aligned}
& \left(E-S A^{-1} B\right) G=F_{2}-S A^{-1} F_{1}=\bar{F} \\
& R(G)-R(0)=\left(E-S A^{-1} B\right) G=\left[\beta u_{n}(G)\right]-C-\left(\left[\beta u_{n}(0)\right]-C\right)
\end{aligned}
$$

Properties of FIIM

\square Second solution, proved
$\square O(N \log (N))$ optimal computation cost. The Number of GMRES iterations
$>$ Independent of jump in the coefficient
$>$ Independent of the mesh size
$>$ Dependent on the geometry
\square Second order accurate $1^{\text {st }}$ order derivatives, observed before, now we have proof.

Challenges with Variable Coef

\square Maximum preserving FD scheme (direct) for

$$
\begin{aligned}
& \nabla \cdot(\beta \nabla u)+\sigma u=f \\
& {[u]=w, \quad\left[\beta u_{n}\right]=v}
\end{aligned}
$$

$\square 5$-point at regular, 9-point stencil at irregular grids
\square Using a quadratic optimization to force the maximum principle (Li/lto)
\square Using a structured multigrid method to solve the linear system whose condition is proportional to $O\left(\max \left(\beta^{+} / \beta^{-}, \beta^{-} / \beta^{+}\right) / h^{2}\right)$.
\square The derivative is often $1^{\text {st }}$ order accurate near the interface

New Method

\square Reformulate the problem:

$$
\begin{aligned}
& \nabla \cdot(\beta \nabla u)+\sigma u=f,[u]=w,\left[\beta u_{n}\right]=v \\
& \rightarrow \Delta u+\frac{1}{\beta} \nabla u \cdot \nabla \beta+\frac{\sigma}{\beta} u=\frac{f}{\beta} \\
& {[u]=w,\left[u_{n}\right]=q,\left[\beta u_{n}\right]=v}
\end{aligned}
$$

\square Conservative FD scheme at regular grid
$\frac{\beta_{i-1 / 2, j} u_{i-1, j}+\beta_{i+1 / 2, j} u_{i+1, j}+\beta_{i, j-1 / 2} u_{i, j-1}+\beta_{i, j+1 / 2} u_{i, j+1}-\bar{\beta} u_{i, j}}{\bar{\beta} h^{2}}+\frac{\sigma_{i j}}{\bar{\beta}} U_{i j}=\frac{f_{i j}}{\bar{\beta}}$
$\bar{\beta}=\beta_{i-1 / 2, j}+\beta_{i+1 / 2, j}+\beta_{i, j-1 / 2}+\beta_{i, j+1 / 2}$

FD scheme at irregular grid

-Regular method + corrections
$\frac{u_{i-1, j}-2 u_{i, j}+u_{i+1, j}}{h^{2}}=u_{x x}\left(x_{i}, y_{j}\right)+\frac{[u]}{h^{2}}+\frac{\left[u_{x}\right]}{h^{2}}\left(x_{i+1}-x_{i}^{*}\right)+\frac{\left[u_{x x}\right]}{2 h^{2}}\left(x_{i+1}-x_{i}^{*}\right)^{2}+O(h)$
\square We know [u], if we know [u_{n}], then we know [u_{χ}] and $\left[u_{y}\right]$; how about $\left[u_{x x}\right]$?

$$
\begin{aligned}
u_{\xi \xi}^{+}= & \left(\frac{\beta_{\xi}^{-}}{\beta^{+}}-\chi^{\prime \prime}\right) u_{\xi}^{-}+\left(\chi^{\prime \prime}-\frac{\beta_{\xi}^{+}}{\beta^{+}}\right) u_{\xi}^{+}+\frac{\beta_{\eta}^{-}}{\beta^{+}} u_{\eta}^{-}-\frac{\beta_{\eta}^{+}}{\beta^{+}} u_{\eta}^{+} \\
& +(\rho-1) u_{\eta \eta}^{-}+\rho u_{\xi \xi}^{-}-w^{\prime \prime}+\frac{[f]}{\beta^{+}}+\frac{[\sigma] u^{-}+\sigma^{+}[u]}{\beta^{+}}, \\
u_{\eta \eta}^{+}= & u_{\eta \eta}^{-}+\left(u_{\xi}^{-}-u_{\xi}^{+}\right) \chi^{\prime \prime}+w^{\prime \prime}, \\
u_{\xi \eta}^{+}= & \frac{\beta_{\eta}^{-}}{\beta^{+}} u_{\xi}^{-}-\frac{\beta_{\eta}^{+}}{\beta^{+}} u_{\xi}^{+}+\left(u_{\eta}^{+}-\rho u_{\eta}^{-}\right) \chi^{\prime \prime}+\rho u_{\xi \eta}^{-}+\frac{v^{\prime}}{\beta^{+}}
\end{aligned}
$$

How to get second order jumps?

■Key: Use the transformed eqn

$$
\begin{aligned}
& \Delta u+\frac{1}{\beta} \nabla u \cdot \nabla \beta+\frac{\sigma}{\beta} u=\frac{f}{\beta} \\
& {[u]=w,\left[u_{n}\right]=q,\left[\beta u_{n}\right]=v}
\end{aligned}
$$

\square Use the local coordinates and lower order jumps and quantities

$$
\begin{aligned}
& u_{\xi \xi}^{+}=u_{\xi \xi}^{-}++\frac{\beta_{\xi}^{-}}{\beta^{+}} u_{\xi}^{-}-\frac{\beta_{\xi}^{+}}{\beta^{+}} u_{\xi}^{+}-\left[u_{n}\right] \kappa+\ldots \\
& u_{\eta \eta}^{+}=u_{\eta \eta}^{-}-\left[u_{n}\right] \kappa+[w]^{\prime \prime} \\
& u_{\xi \eta}^{+}=u_{\xi \eta}^{-}+\frac{\beta_{\eta}^{-}}{\beta^{+}} u_{\xi}^{-}-\frac{\beta_{\eta}^{+}}{\beta^{+}} u_{\xi}^{+}-\left[u_{\eta}\right] \kappa+\frac{\left[u_{n}\right]^{\prime}}{\beta^{+}}
\end{aligned}
$$

How to get jumps in $x-y$ direction?

$$
\begin{aligned}
& {\left[u_{x}\right]=\left[u_{\xi}\right] \cos \theta-\left[u_{\eta}\right] \sin \theta,} \\
& {\left[u_{y}\right]=\left[u_{\xi}\right] \sin \theta+\left[u_{\eta}\right] \cos \theta}
\end{aligned}
$$

$$
\left[u_{x x}\right]=\left[u_{\xi \xi}\right] \cos ^{2} \theta-2\left[u_{\xi \eta}\right] \cos \theta \sin \theta+\left[u_{\eta \eta}\right] \sin ^{2} \theta,
$$

$$
\left[u_{y y}\right]=\left[u_{\xi \xi}\right] \sin ^{2} \theta+2\left[u_{\xi \eta}\right] \cos \theta \sin \theta+\left[u_{\eta \eta}\right] \cos ^{2} \theta
$$

How to approximate lower order terms?

\square To deal with $u_{x} \beta_{x}, u_{y} \beta_{y}, u_{\xi}^{-}, u_{\eta}^{-}$, we use upwinding discretization so that we get an M-matrix, more diagonally dominant

$$
\begin{aligned}
& x_{j} \leq \alpha<x_{j+1} \\
& {\left[u_{x x}\right]=\left[\frac{f}{\beta}\right]-\frac{\beta_{x}^{+}}{\beta^{+}}\left[u_{x}\right]-\left[\frac{\beta_{x}}{\beta}\right] u_{x}^{-}}
\end{aligned}
$$

FD scheme

$$
\left[u_{x x}\right] \approx \begin{cases}{\left[\frac{f}{\beta}\right]-\frac{\beta_{x}^{+}}{\beta^{+}} G-\left[\frac{\beta_{x}}{\beta}\right] \frac{U_{j}-U_{j-1}}{h}} & \text { if }\left[\frac{\beta_{x}}{\beta}\right] \leq 0 \\ {\left[\frac{f}{\beta}\right]-\frac{\beta_{x}^{+}}{\beta^{+}}\left[u_{x}\right]-\left[\frac{\beta_{x}}{\beta}\right]\left(\frac{U_{j+1}-U_{j}}{h}+C_{j}\right)} & \text { otherwise }\end{cases}
$$

Use GMRES to solve the Schur complement

Matrix-vector form: $A U+B G=F_{1}$
\square Use a second order least square interpolation to discretize $\quad\left[\beta u_{n}\right]=v$

$$
S U+E G=F_{2}
$$

\square Put together

$$
\left[\begin{array}{ll}
A & B \\
S & E
\end{array}\right]\left[\begin{array}{l}
\mathrm{U} \\
G
\end{array}\right]=\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right]
$$

\square Schur complement

$$
\left(E-S A^{-1} B\right) G=F_{2}-S A^{-1} F_{1}=\bar{F}
$$

A new preconditioner

DEfficient one for FIIM, it does not work well for variable coef.

$$
\text { If } \beta^{+}<\beta^{-}\left\{\begin{array}{l}
U_{n}^{+} \text {is computed from interpolation } \\
U_{n}^{-}=\frac{v-\beta^{-} G}{[\beta]} \text { from the flux condition }
\end{array}\right.
$$

New one: Simple scaling

$$
\frac{\beta^{+} U_{n}^{+}-\beta^{-} U_{n}^{-}}{\bar{\beta}}-\frac{v}{\bar{\beta}}=0, \bar{\beta}=\frac{\beta^{+}+\beta^{-}}{2}
$$

Numerical examples

$$
\begin{aligned}
& u(x, y)=\left\{\begin{array}{l}
\sin (x+y) \\
\log \left(x^{2}+y^{2}\right)
\end{array}\right. \\
& \beta(x, y)=\left\{\begin{array}{lll}
e^{10 x} & \text { if } & x^{2}+y^{2} \leq 1 \\
\sin (x+y)+2 & \text { if } & x^{2}+y^{2}>1
\end{array}\right.
\end{aligned}
$$

Numerical Example I

$N_{\text {finest }}$	N_{b}	$E(U)$	order	$E\left(U_{\mathbf{n}}^{+}\right)$	order	$E\left(U_{\mathbf{n}}^{-}\right)$	order	Iter	CPU(s)
66	96	$0.28805 \mathrm{E}-01$		$0.88682 \mathrm{E}-01$		$0.12769 \mathrm{E}-01$		8	0.160
130	184	$0.98473 \mathrm{E}-02$	1.58	$0.32375 \mathrm{E}-01$	1.49	$0.46012 \mathrm{E}-02$	1.51	8	0.533
258	368	$0.25642 \mathrm{E}-02$	1.96	$0.88674 \mathrm{E}-02$	1.89	$0.13434 \mathrm{E}-02$	1.80	8	2.272
514	728	$0.66291 \mathrm{E}-03$	1.96	$0.23339 \mathrm{E}-02$	1.94	$0.35159 \mathrm{E}-03$	1.94	8	11.284
1026	1452	$0.16604 \mathrm{E}-03$	2.00	$0.58702 \mathrm{E}-03$	2.00	$0.88848 \mathrm{E}-04$	1.99	8	38.851
2050	2900	$0.42837 \mathrm{E}-04$	1.96	$0.15218 \mathrm{E}-03$	1.95	$0.22854 \mathrm{E}-04$	1.96	8	174.056

A benchmark example

$$
\begin{aligned}
& u(x, y)=\left\{\begin{array}{lll}
x^{2}+y^{2} & \text { if } & x^{2}+y^{2} \leq 1 \\
\frac{1}{4}\left(1-\frac{9}{8 b}\right)+\frac{r^{4} / 2+r^{2}}{b}+\frac{C \log (r)}{b} & \text { if } & x^{2}+y^{2}>1
\end{array}\right. \\
& \beta(x, y)=\left\{\begin{array}{lll}
b & \text { if } & x^{2}+y^{2} \leq 1 \\
x^{2}+y^{2}+1 & \text { if } & x^{2}+y^{2}>1
\end{array}\right. \\
& \sigma(x, y)=0, f(x)=8\left(x^{2}+y^{2}\right)+4
\end{aligned}
$$

Results of benchmark example

$N_{\text {finest }}$	N_{b}	$E(U)$	order	$E\left(U_{\mathbf{n}}^{+}\right)$	order	$E\left(U_{\mathbf{n}}^{-}\right)$	order	Iter	CPU(s)
66	96	$0.11806 \mathrm{E}-02$		$0.10858 \mathrm{E}-01$		$0.93667 \mathrm{E}-02$		6	0.103
130	188	$0.29244 \mathrm{E}-03$	2.06	$0.29057 \mathrm{E}-02$	1.94	$0.25065 \mathrm{E}-02$	1.94	6	0.342
258	368	$0.71380 \mathrm{E}-04$	2.06	$0.70487 \mathrm{E}-03$	2.07	$0.60806 \mathrm{E}-03$	2.07	5	1.258
514	732	$0.16640 \mathrm{E}-04$	2.11	$0.17465 \mathrm{E}-03$	2.02	$0.15052 \mathrm{E}-03$	2.03	5	5.540
1026	1456	$0.41334 \mathrm{E}-05$	2.01	$0.44847 \mathrm{E}-04$	1.97	$0.38020 \mathrm{E}-04$	1.99	4	20.863
2050	2908	$0.10796 \mathrm{E}-05$	1.94	$0.11771 \mathrm{E}-04$	1.93	$0.98363 \mathrm{E}-05$	1.95	4	201.511

A more general example

$$
\begin{aligned}
& u(x, y)=\left\{\begin{array}{lll}
x^{2}-y^{2} & \text { if } & x^{2}+y^{2} \leq 1 \\
\sin x \cos y & \text { if } & x^{2}+y^{2}>1
\end{array}\right. \\
& \beta(x, y)=\left\{\begin{array}{lll}
e^{x} & \text { if } & x^{2}+y^{2} \leq 1 \\
x^{2}+y^{2}=1 & \text { if } & x^{2}+y^{2}>1
\end{array}\right. \\
& -\sigma(x, y)=\left\{\begin{array}{lll}
\sqrt{x^{2}+4 y^{2}} & \text { if } & x^{2}+y^{2} \leq 1 \\
\log \left(x^{2}+y^{2}+1\right) & \text { if } & x^{2}+y^{2}>1
\end{array}\right.
\end{aligned}
$$

$N_{\text {finest }}$	N_{b}	$E(U)$	order	$E\left(U_{\mathbf{n}}^{+}\right)$	order	$E\left(U_{\mathbf{n}}^{-}\right)$	order	Iter	CPU(s)
66	96	$0.85969 \mathrm{D}-03$		$0.95542 \mathrm{D}-02$		$0.59623 \mathrm{D}-02$		4	0.077
130	184	$0.18786 \mathrm{E}-03$	2.24	$0.25599 \mathrm{E}-02$	1.94	$0.15968 \mathrm{E}-02$	1.94	4	0.318
258	368	$0.55591 \mathrm{E}-04$	1.78	$0.74684 \mathrm{E}-03$	1.80	$0.49691 \mathrm{E}-03$	1.70	4	1.272
514	728	$0.12783 \mathrm{E}-04$	2.13	$0.18721 \mathrm{E}-03$	2.01	$0.12500 \mathrm{E}-03$	2.00	4	6.473
1026	1452	$0.26051 \mathrm{E}-05$	2.30	$0.46393 \mathrm{E}-04$	2.02	$0.31318 \mathrm{E}-04$	2.00	4	23.586
2050	2900	$0.74611 \mathrm{E}-06$	1.81	$0.11647 \mathrm{E}-04$	2.00	$0.81641 \mathrm{E}-05$	1.94	4	107.544

A complicated interface

$$
\left.\begin{array}{l}
u(x, y)= \begin{cases}x^{2}+y^{2} & \text { if } \\
\frac{r^{4}}{b}+\frac{C \log (r)}{b} & \text { if } \quad x^{2} \leq y^{2}>1\end{cases} \\
\beta(x, y)= \begin{cases}b & \text { if } \\
b x^{2}+y^{2} \leq 1 \\
x^{2}+y^{2}+1 & \text { if } \\
x^{2}+y^{2}>1\end{cases} \\
X=\left(r_{0}+\varepsilon \sin (k \theta)\right) \cos (\theta), \quad k=5
\end{array}\right\} \begin{aligned}
& Y=\left(r_{0}+\varepsilon \sin (k \theta)\right) \sin (\theta), \quad r_{0}=0.5, \quad \varepsilon=0.2
\end{aligned}
$$

Results for Complicated 「

$N_{\text {finest }}$	N_{b}	$E(U)$	order	$E\left(U_{\mathbf{n}}^{+}\right)$	order	$E\left(U_{\mathbf{n}}^{-}\right)$	order	Iter	CPU(s)
130	312	$0.36754 \mathrm{E}-02$		$0.23305 \mathrm{E}+00$		$0.26544 \mathrm{E}+00$		7	0.576
258	618	$0.10946 \mathrm{E}-02$	1.77	$0.55982 \mathrm{E}-01$	2.08	$0.63760 \mathrm{E}-01$	2.08	7	2.175
514	1230	$0.17091 \mathrm{E}-03$	2.69	$0.15400 \mathrm{E}-01$	1.87	$0.17541 \mathrm{E}-01$	1.87	7	13.775
1026	2452	$0.30145 \mathrm{E}-04$	2.51	$0.42371 \mathrm{E}-02$	1.87	$0.48265 \mathrm{E}-02$	1.87	7	41.462
2050	4898	$0.92522 \mathrm{E}-05$	1.71	$0.10589 \mathrm{E}-02$	2.00	$0.12065 \mathrm{E}-02$	2.00	7	276.882

Number of GMRES Iteration

Convergence Analysis

DDiscrete Green function for 1D problem, the Schur complement is non-singular if $[\beta] \neq 0$.
\square Thm: If \boldsymbol{G} is a second order accurate $\boldsymbol{O}\left(\boldsymbol{h}^{2}\right)$, then \boldsymbol{u}_{h} and $\boldsymbol{u}_{\boldsymbol{h}}{ }^{\prime}$ is also second order in Linfinity norm (from comparison theorem and Beale's proof)
DThm: If the interpolation scheme is second order for $\left[\beta \boldsymbol{u}_{\boldsymbol{x}}\right]=\boldsymbol{v}$, then computed $\left[\boldsymbol{u}_{x}\right]$ is also second order. Thus $\boldsymbol{u}_{\boldsymbol{h}}$ is also second order.

${ }^{\text {zum }}$ 'Discrete Green functions for piecewise constant coef

$$
\begin{aligned}
& G(x, y)=\left\{\begin{aligned}
x(1-y) & \text { if } x \leq \alpha \\
y(1-x) & \text { if } x \leq \alpha
\end{aligned}\right. \\
& A_{i j}^{-1}=h G\left(x_{i}, x_{j}\right) \\
& E_{i}^{u}=h \sum_{j=1}^{N} f_{j}^{u} G\left(x_{i}, x_{j}\right)
\end{aligned}
$$

Property of Schur complement

$$
\begin{aligned}
& \left(D-C A^{-1} B\right)=\left[\beta u_{x}\right]_{\left[u_{x}\right]=1}-\left[\beta u_{x}\right]_{\left[u_{x}\right]=0} \\
& \left(D-C A^{-1} B\right) E^{q}=-\tau^{q}-C A^{-1} \tau^{u} \\
& \tau^{u}=\tau_{\text {reg }}^{u}+\tau_{\text {ireg }}^{u}=O\left(h^{2}\right)+O(h) \\
& A^{-1} \tau^{u}=O\left(h^{2}\right), C A^{-1} \tau^{u}=O\left(h^{2}\right)
\end{aligned}
$$

Conclusions

\square A new method for general elliptic interface problem with both $2^{\text {nd }}$ order solution and the first order derivatives
$>$ Introduce an augmented variable
\Rightarrow A second order discretization leading to an M-matrix plus a second interpolation scheme for the flux
$>$ No optimization is needed
$>$ The number of GMRES iteration is independent of the mesh size and jump in the coefficient
> Convergence proof
\square Best method in FD using Cartesian meshes? (accept challenges!)
\square Second order derivatives (curvature etc)
\square Q: Why does the preconditioning work so well?

Thank you!

Solving Poisson Eqn. (regular)

\square Regular domain (rectangular, circles,..), no interface/ singularity

$$
\Delta u=f(x)
$$

BC (e.g. Dirichlet, Neuman, Mixed)
\square The FD scheme at $\left(x_{i} y_{j}\right)$
$\frac{u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}-4 u_{i, j}}{h^{2}}=L_{h} u_{i, j}=f_{i j}$
$\square A U=F ; \quad A$: Discrete Laplacian. Can be solved by a fast Poisson solver (e.g. FFT, $O\left(N^{2}\right) \log (N)$), e.g., Fish-pack, or structured multigrid

Flow chart to the new method

Regular Problem/Regular Method $\leftarrow \rightarrow$
Interface Problem with Singular Source (Regular Method + Correction Terms) $\leftrightarrow[\beta] \neq 0$, Augmented variable [$\left.u_{n}\right]$ (bigger equations) and interpolation of the flux condition (smaller equation) $\leftrightarrow \rightarrow$ Schur complement (GMRES iteration + preconditioning)

Some Examples of Irregular Domain

\square Estimate the permeability of concrete (IMSM problem): 5 minutes to solve the Laplace eqn. external to the particles! Compared with Monte Carlo estimates (168 hrs.)

$$
\begin{aligned}
\Delta u & =0, \\
\left.u\right|_{R} & =0, \quad u_{n}=C, \quad u_{n}=0 \quad \text { etc. } .
\end{aligned}
$$

An example of Fast IIM

QInterface: $\quad r(\theta)=r_{0}+0.2 \sin (k \theta), \quad 0 \leq \theta \leq 2 \pi$
(a)
(b)

\square Exact soln:

$$
u(x, y)= \begin{cases}\frac{r^{2}}{\beta^{-}} & \text {if }(x, y) \in \Omega^{-} \\ \frac{r^{4}+C_{0} \log (2 r)}{\beta^{+}}+C_{1}\left(\frac{r_{0}^{2}}{\beta^{-}}-\frac{r_{0}^{4}+C_{0} \log \left(2 r_{0}\right)}{\beta^{+}}\right) & \text {if }(x, y) \in \Omega^{+}\end{cases}
$$

An example of Fast IIM

n	β^{+}	β^{-}	E_{1}	E_{2}	E_{3}	r_{1}	r_{2}	r_{3}	k
40	2	1	2.28510^{-8}	2.2310^{-3}	7.43410^{-9}				7
80	2	1	5.22510^{-4}	5.95610^{-3}	1.98710^{-2}	4.37	3.74	3.74	7
160	2	1	1.26910^{-4}	1.82710^{-4}	6.10110^{-4}	4.12	3.26	3.26	7
320	2	1	2.98810^{-5}	5.03810^{-5}	1.67810^{-4}	4.25	3.63	3.64	7

n	β^{+}	β^{-}	E_{1}	E_{2}	E_{3}	r_{1}	r_{2}	r_{3}	k
40	10000	1	6.55210^{-5}	6.33110^{-4}	2.11010^{-4}				8
80	10000	1	7.84710^{-6}	8.36610^{-5}	2.78510^{-5}	8.35	7.57	7.58	8
160	10000	1	5.98810^{-7}	9.19210^{-7}	3.03310^{-6}	13.1	9.10	9.18	8
320	10000	1	5.85910^{-8}	2.05810^{-7}	6.88710^{-7}	10.2	4.47	4.40	7

Special Cases \& Idea

Dif $\beta=1$, then IIM has both second order solution and derivatives (Beale/Layton)
If β is a piecewise constant (e.g. 1000:1 or 1:1000), then the augmented IIM has both second order solution \& derivatives (observed before and has been proved now)
$>$ I think it is the best Cartesian method with optimal cost?
-What's new: second order solution \& derivative for variable coefficients with proof based on the augmented IIM

