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Outline 
q From IB (Peskin) to IIM (LeVeque/Li) 
q Motivations of this talk: Accurate gradient 

computation at the interface/boundary for 
Cartesian grid methods 

q A new augmented IIM  
Ø FD Poisson equations, regular problem àpiecewise 

constant coef. àVariable coef. 
Ø Optimal complexity O(N log(N)), 2nd accurate solution 

& gradient  and proof (Claim to be the ‘best’) 
q Numerical results 
q Convergence analysis 
q Conclusions 
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From IB to IIM 
q Peskin’s IB method 

Ø Mathematical modeling 
Ø Numerical method: discrete delta function 
Ø Simple, robust, many applications 
Ø  First order, elliptic (Li, elliptic with Dirichlet BC), Stokes with 

periodic BC (Mori)  
q  IIM (LeVeque/Li) 

Ø Second order or higher 
Ø Use jump conditions (from PDE or physics) instead of `delta 

functions 
Ø Best discrete delta function? 
Ø  Finite difference (IIM, AIIM) and element (IFEM) 

q How to compute the solution & gradient accurately? 
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Gradient 

q Many free boundary/moving interface 
problems depend on the first order 
derivatives of the solution 

q For finite difference (FD) methods based 
on Cartesian meshes, there are a 
number of 2nd or higher order methods, 
but the derivatives are less accurate 
especially near the boundary/interface 

q FEM: L2: O(h2),   H1: O(h), at interface? 
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Some Examples 
q The 1D Stefan problem modeling the ice-

water interface, let s(t) be the free boundary, 
u(x,t) be the temperature 

7/17/16 AN_LS_2016 

∂u
∂t

= β 2 ∂2u
∂x2 ,    0 < x < s(t)

− ∂u
∂t

(0,t) = f (t),   inlet heat flux at left end

u(s(t),t) = 0,    the right end is the freezing temperature
ds
dt

= − ∂u
∂x

(s(t),t),   the Stefan condition

u(x,0) = 0,    s(t) = 0,   Initial conditions
6 
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Stefan problem in 2D & Crystal 
Growth 

q Left: 2D Stefan problem. Right: Formulations 
of Snowflakes. Heat equation with non-linear 
BC 

 

ρc ∂T
∂t

= ∇ i (β∇T ),   ρLV = − β ∂T
∂n

⎡
⎣⎢

⎤
⎦⎥

T (x,t) = −εcκ − εVV ,    dX
dt

i n =V

7/17/16 



NC STATE UNIVERSITY

Zhilin LI

AN_LS_20168

Stefan Problem and Crystal Growth 

q 1st derivatives are 
involved 

q Stability analysis: 
dynamically unstable 
for some medium 
modes ( exp(-k I t)) 

 

7/17/16 
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Simulation: Crystal Growth 
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A moving interface example 

q NSE equations with unknown surface tension, an 
inverse problem 

q Both the area/length should be preserved.  

   

ρ ∂u
∂t

+ u i∇u
⎛
⎝⎜

⎞
⎠⎟

+ ∇p = µΔu + f (s,t)δ (x − X (s,t))ds
Γ∫ + g 

f (s,t) = ∂
∂s

σ (t,s)τ( ) + fb

           = σ (s,t)κ n + ∂σ (s,t)
∂s

τ + fb

∇ i u = 0,       ∂s i u( )Γ = ∂u
∂τ

iτ = 0
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Model Problems 
q 1D: 

q 2D 
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(βu ') '−σu = C δ (x −α )    0 < x < 1
u(0) = 0,     u(1) = 0

   

∇ i β∇u( )−σu = f + C(s)δ (x − X (s))ds
Γ∫

or     ∇ i β∇u( )−σu = f ,    [u] = w,    [βun] = C(s)
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Methods for Gradients Review 
q FD with Cartesian mesh and central FD scheme: 

For regular problem & regular domain, the 
derivatives have the same order as the solution.  

q The difficulty is for general boundaries and 
interfaces. 
Ø  In FEM, posterior error analysis to get more 

accurate derivatives, depends on mesh quality 
Ø In FEM, mixed FEM or least squares FEM. It will lead 

to saddle problem and computationally expensive 
Ø DG for conservation laws 
Ø FD for elliptic and parabolic problems: ??? 

7/17/16 AN_LS_2016 12 
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Results (old & new) in 1D 
Accuracy of ux at the boundary/interface 
q At the boundary, 3-point one-sided, provide 

2nd ux 
q At the interface (singular source or 

discontinuous coef   
Ø 3-point one-sided FD scheme is 1st order  
Ø IIM (compact FD, two-sided) is 2nd order in 

Cartesian, polar, and spherical. NCSU-2015 
REU project. 

Ø 1D  

7/17/16 AN_LS_2016 13 



NC STATE UNIVERSITY

Zhilin LI

My NCSU 2015 REU Group 
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IIM in 1D, simple case 
q FD scheme for  

q Determine the coefficients and the 
correction term  

q Interface relations: 

7/17/16 AN_LS_2016 15 

1 1 1 1j j j j j j j jU U U f Cγ γ γ− − + ++ + = +

1 1, , ,j j j jCγ γ γ− +

, ,x x xx xxu u u u C u uβ β
β β

− −
+ − + − + −

+ +
=    = +    =

  (βu ') '−σu = C δ (x −α ) 
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IIM in 1D: Set-up equation  

q The linear system for the coefficients 

q The correction term is 

7/17/16 AN_LS_2016 16 

1 1 1

1 1 1 1

2 2 2
1 1

1 1

0

( ) ( ) ( ) 0

( ) ( ) ( )
2 2 2

j j j

j j j j j j

j j j
j j j

x x x

x x x

γ γ γ

β
γ α γ α γ α

β

α α αβ
γ γ γ β

β

− − +

−

− − + ++

−
− + −

− + +

+ + =

− + − + − =

− − −
+ + =

1 1( )j j jC C xβ
γ α

β

−

+ ++
= −
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Interpolation scheme for ux 

q Three points from both sides plus 
correction term 

7/17/16 AN_LS_2016 17 

   
ux (α−) = !γ j−1U j−1 + !γ jU j + !γ j+1U j+1 + !C j

   

!γ j−1 + !γ j−1 + !γ j+1 = 0

!γ j−1(x j−1 −α )+ !γ j (x j −α )+ !γ j+1

β−

β + (x j+1 −α ) = 1

!γ j−1

(x j−1 −α )2

2
+ !γ j

(x j −α )2

2
+ !γ j+1

β−

β +

(x j+1 −α )2

2
= 0



NC STATE UNIVERSITY

Zhilin LI

2D Results for Gradients (old & new) 
Accuracy of ux & uy at the interface 
q Singular source only (i.e. β=1,  [u]≠0, [un] ≠0) 

Ø One-sided FD scheme is 1st order. 
Ø IIM (compact FD, two-sided) is 2nd order (Beale & 

Layton). One of the basis of the new method. 
q Direct: Maximum principle preserving (Li/Ito): 

soln 2nd, gradient, not sure yet 
q Piecewise constant β, FIIM (Li, SINUM, 1997), 2nd 

solution (proved), 2nd gradient (observed before, 
now proved) 

q Variable β, [β] ≠0, 2nd solution and gradient 
(h2log h) with proof, 2015.  

7/17/16 AN_LS_2016 18 
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2D Problem & Analysis 
q Elliptic interface problems with variable & 

discontinuous coefficient 

7/17/16 AN_LS_2016 19 

   

∇ i β∇u( ) +σu = f + C(s)δ (x − X (s))ds
Γ∫

or     ∇ i β∇u( ) +σu = f ,    [u] = w,    [βun] = C(s)

Ω+
Γ

Ω−
β−

β+

n

β(x, y) =
β− (x, y)  if   (x, y)∈Ω−

β + (x, y)  if   (x, y)∈Ω+

⎧
⎨
⎪

⎩⎪
[β(x, y)]Γ ≠ 0
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Why elliptic interface problems? 
q It is most expensive part for many simulations 

processes, e.g. projection method 

AN_LS_2016 20 

   

ρ(ut + u ⋅∇u) + ∇p = µΔu + g
∇• u = 0   

  u
* − uk

Δt
+ (u i∇u)k+1/2 + (∇p)k−1/2 = µ

2
(Δuk + Δu*) + F k+1/2   

Δφ = ∇ i u*

Δt
,   ∂φ

∂n
= 0

uk+1 = u* − Δt∇φ
∇pk+1/2 = ∇pk−1/2 + ∇φ

7/17/16 
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Cartesian Grid Methods 
q Peskin’s IB method, 1st order, inconsistent (Li, MathCom, 

2014) 
q  Fast IIM (Li, SINUM), for piecewise constant β 
q Maximum principle preserving IIM (Li/Ito) 
q Ghost fluid method (Fedkiw/Liu) 1st -2nd order? 
q Boundary integral method (X-F. Li, M. Siegel, Mayo, 

Greengard, …) 
q MIB (Wei/Zhao) 
q Virtual node method (Teran) 
q  IFEM (Li/Lin2, He,…), Petrov-Galerkin (Hou, Ji/Chen/Li …), 

IFEV … 
q XFEM (X-D. Wang, W-K. Liu, J. Doby, …) 
q Augmented IIM (Li et al), Kernel free method (W. Ying et. al) 
Which one gives 2nd derivatives? FAST IIM 

7/17/16 AN_LS_2016 21 
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Key Ideas 

q Reformulate the problem near the interface by 
introduce augmented variable [ un ] 

q Derive different new interface relations using the 
new formulation 

q Apply the upwind scheme near Γ for the 
advection term(s) to get an M-matrix 

q Apply the GMRES for the Schur complement 
([ un ] ) 

7/17/16 AN_LS_2016 22 

   

∇ i β∇u( ) +σu = f ,   [u] = w,  [βun] = v

  →Δu + 1
β
∇u i∇β + σ

β
u = f

β
[u] = w,  [un] = q,  [βun] = v
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Poisson Eqn. with singular sources 

q Equivalent Problem 

 
q FD scheme (xi,yj), regular/irregular 

( ) ( ( ))

BC (e.g., Dirichlet, Neuman, Mix

( )

ed)

u f x x X s ds gc s δ
Γ

Δ =   + − +∫

1, 1, , 1 , 1 ,
,2

4i j i j i j i j i j
h i j i jj i

u u u u
C

u
L u f

h
− + − ++ + + −

= = +

  

Δu = f (x) ,    x ∈Ω \ Γ,   u⎡⎣ ⎤⎦Γ = 0,   
∂u
∂n

⎡

⎣⎢
⎤

⎦⎥Γ
= C(s)

BC (e.g., Dirichlet, Neuman, Mixed)

1, 1, , 1 , 1 ,
,2

4i j i j i j i j i j
h i j ij

u u u u u
L u f

h
− + − ++ + + −

= =

7/17/16 AN_LS_2016 
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sources 

q IB, IIM both work, what’s the best 
discrete delta function? à Source 
removal technique (Li/Lai/Wang) 

q AU=F+BC;   A: Discrete Laplacian. 
Can be solved by a fast Poisson solver 

q IIM is second order both in solution 
and gradient (T. Beale/Layton), now 
to NS equations with fixed/exact 
interface 
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Augmented approach/Fast IIM 
q  If β is two constants, flux jump condition [ βun ]=C(s) 

along [u]=w(s). 

q Idea:  

 
 

q  Idea of the method:  divide β from the equation to get 
Poisson eqn., but can not from the flux jump.  

 
q  Set                        as unknown, the augmented variable, 

the augmented equation is the flux jump condition  

[ ]nu g=

   

∇ i β∇u( ) = f + C(s)δ (x − X (s))ds
Γ∫

or   ∇ i β∇u( ) = f ,  [u] = 0,  [βun] = C(s)

or   Δu = f
β

+ C(s)
?

δ (x − X (s))ds
Γ∫
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Fast IIM 
q Idea, given                  solve the problem 

with one FFT 

q Discretize the flux condition  
SU+EG=F2 

q Schur complement:  

  [un]= g

  AU + BG = F +C = F1

  [βun ]= v

1

2

U FA B
FS E G
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦1 1

2 1( )E SA B G F SA F F− −− = − =

1( ) (0) ( ) [ ( )] ([ (0)] )n nR G R E SA B G u G C u Cβ β−− = − = − − −
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Properties of FIIM 
q Second solution, proved 
q O(N log(N)) optimal computation cost. 

The Number of GMRES iterations 
Ø Independent of jump in the coefficient 
Ø Independent of the mesh size 
Ø Dependent on the geometry 

q Second order accurate 1st order 
derivatives, observed before, now we have 
proof. 

7/17/16 AN_LS_2016 27 
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Challenges with Variable Coef 
q Maximum preserving FD scheme (direct) for 

q 5-point at regular, 9-point stencil at irregular grids 
q Using a quadratic optimization to force the 

maximum principle (Li/Ito) 
q  Using a structured multigrid method to solve the 

linear system whose condition is proportional to 
O(max(β+/β-, β-/β+) /h2)). 

q The derivative is often 1st order accurate near the 
interface 

7/17/16 AN_LS_2016 28 

   

∇ i β∇u( ) +σu = f  

[u] = w,   [βun] = v
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New Method 
q Reformulate the problem:  

 
q Conservative FD scheme at regular grid  

7/17/16 AN_LS_2016 29 

   

∇ i β∇u( ) +σu = f ,   [u] = w,  [βun] = v

  →Δu + 1
β
∇u i∇β + σ

β
u = f

β
[u] = w,  [un] = q,  [βun] = v

  

βi−1/2, jui−1, j + βi+1/2, jui+1, j + βi, j−1/2ui, j−1 + βi, j+1/2ui, j+1 − βui, j

βh2 +
σ ij

β
Uij =

fij

β
β = βi−1/2, j + βi+1/2, j + βi, j−1/2 + βi, j+1/2
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FD scheme at irregular grid 
q Regular method + corrections 

 

q We know [u], if we know [un], then we know [ux] 
and [uy]; how about [uxx] ? 

AN_LS_2016 30 

  

ui−1, j − 2ui, j + ui+1, j

h2 = uxx (xi , y j )+
[u]
h2 +

[ux ]
h2 xi+1 − xi

*( ) + [uxx ]
2h2 xi+1 − xi

*( )2
+O(h)

7/17/16 
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How to get second order jumps? 
q Key: Use the transformed eqn 

q Use the local coordinates and lower order jumps 
and quantities 
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Δu + 1
β
∇u i∇β + σ

β
u = f

β
[u] = w,  [un] = q,  [βun] = v

  

uξξ
+ = uξξ

− + +
βξ

−

β + uξ
− −

βξ
+

β + uξ
+ − [un]κ + ...

uηη
+ = uηη

− − [un]κ + [w]''

uξη
+ = uξη

− +
βη

−

β + uξ
− −

βη
+

β + uξ
+ − [uη ]κ +

[un]'
β +
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How to get jumps in x-y 
direction? 
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order terms? 

q To deal with uxβx, uyβy, uξ-, uη-
, we use upwinding 

discretization so that we get an M-matrix, more 
diagonally dominant 

7/17/16 AN_LS_2016 33 
  

x j ≤α < x j+1

[uxx ]= f
β

⎡

⎣⎢
⎤

⎦⎥
−
βx

+

β + [ux ]−
βx

β
⎡

⎣
⎢

⎤

⎦
⎥ux

−

FD scheme

[uxx ] ≈

f
β

⎡

⎣⎢
⎤

⎦⎥
−
βx

+

β + G −
βx

β
⎡

⎣
⎢

⎤

⎦
⎥
U j −U j−1

h
              if  

βx

β
⎡

⎣
⎢

⎤

⎦
⎥ ≤ 0

f
β

⎡

⎣⎢
⎤

⎦⎥
−
βx

+

β + [ux ]−
βx

β
⎡

⎣
⎢

⎤

⎦
⎥

U j+1 −U j

h
+C j

⎛

⎝⎜
⎞

⎠⎟
  otherwise

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪
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Schur complement 

q Matrix-vector form:   
q Use a second order least square interpolation 

to discretize  
SU+EG=F2 

q Put together 

q Schur complement 

7/17/16 AN_LS_2016 34 

  [βun ]= v

1

2

U FA B
FS E G
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 1
2 1( )E SA B G F SA F F− −− = − =

  AU + BG = F1
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A new preconditioner 
q Efficient one for FIIM, it does not work well 

for variable coef. 

 

New one: Simple scaling 
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β +Un
+ − β−Un

−

β
− v
β
= 0,  β = β + + β−

2

  

If  β + < β−   
Un

+  is computed from interpolation       

Un
− = v − β−G

[β]
  from the flux condition

⎧

⎨
⎪⎪

⎩
⎪
⎪
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Numerical examples 

u(x, y) =
sin(x + y)                   if     x2 + y2 ≤1
log(x2 + y2 )               if     x2 + y2 >1

⎧
⎨
⎪

⎩⎪

β(x, y) =
e10x                    if     x2 + y2 ≤1
sin(x + y)+ 2    if     x2 + y2 >1

⎧
⎨
⎪

⎩⎪
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Numerical Example I 
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A benchmark example 

7/17/16 AN_LS_2016 38 

u(x, y) =
x2 + y2                                              if     x2 + y2 ≤1
1
4

1− 9
8b

⎛
⎝⎜

⎞
⎠⎟ +

r4 / 2 + r2

b
 +C log(r)

b
   if     x2 + y2 >1

⎧

⎨
⎪

⎩
⎪

β(x, y) =
b                  if     x2 + y2 ≤1
x2 + y2 +1    if     x2 + y2 >1

⎧
⎨
⎪

⎩⎪

σ (x, y) = 0,    f (x) = 8(x2 + y2 )+ 4
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example 
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A more general example 
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u(x, y) =
x2 − y2         if     x2 + y2 ≤1
sin xcos y    if     x2 + y2 >1

⎧
⎨
⎪

⎩⎪

β(x, y) =
ex                  if     x2 + y2 ≤1
x2 + y2 = 1    if     x2 + y2 >1

⎧
⎨
⎪

⎩⎪

−σ (x, y) =
x2 + 4y2            if     x2 + y2 ≤1

log(x2 + y2 +1)    if     x2 + y2 >1

⎧
⎨
⎪

⎩⎪
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Grid refinement analysis 
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A complicated interface 
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u(x, y) =
x2 + y2                     if     x2 + y2 ≤1
r4

b
 +C log(r)

b
         if     x2 + y2 >1

⎧

⎨
⎪

⎩
⎪

β(x, y) =
b                  if     x2 + y2 ≤1
x2 + y2 +1    if     x2 + y2 >1

⎧
⎨
⎪

⎩⎪

X = r0 + ε sin(kθ )( )cos(θ ),   k = 5

Y = r0 + ε sin(kθ )( )sin(θ ),   r0 = 0.5,   ε=0.2



NC STATE UNIVERSITY

Zhilin LI

Results for Complicated Γ 
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Number of GMRES Iteration 
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Convergence Analysis 
q Discrete Green function for 1D problem, the 

Schur complement is non-singular if [β]≠0. 
q Thm:  If G  is a second order accurate O(h2), 

then uh and uh’  is also second order in L-
infinity norm (from comparison theorem and 
Beale’s proof) 

q Thm: If the interpolation scheme is second 
order for [βux]=v, then computed [ux] is also 
second order. Thus uh is also second order. 
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Zhilin LIDiscrete Green functions for 
piecewise constant coef 
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G(x, y) =
x(1− y)  if  x ≤α
y(1− x)  if  x ≤α

⎧
⎨
⎪

⎩⎪
Aij

−1 = hG(xi , x j )

Ei
u = h f j

u

j=1

N

∑ G(xi , x j )
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Property of Schur complement  

7/17/16 AN_LS_2016 47 

(D −CA−1B) = [βux ][ux ]=1 − [βux ][ux ]=0

(D −CA−1B)Eq = −τ q −CA−1τ u

τ u = τ reg
u +τ ireg

u =O(h2 )+O(h)

A−1τ u =O(h2 ),   CA−1τ u =O(h2 )
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Conclusions 
q A new method for general elliptic interface problem 

with both 2nd order solution and the first order 
derivatives 
Ø  Introduce an augmented variable 
Ø A second order discretization leading to an M-matrix plus a 

second interpolation scheme for the flux 
Ø No optimization is needed 
Ø The number of GMRES iteration is independent of the 

mesh size and jump in the coefficient 
Ø Convergence proof 

q Best method in FD using Cartesian meshes? (accept 
challenges!) 

q Second order derivatives (curvature etc) 
q Q: Why does the preconditioning work so well? 
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Thank you! 
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Solving Poisson Eqn. (regular) 
q Regular domain (rectangular, circles,..), no interface/

singularity 

q The FD scheme at (xi,yj) 

q AU=F;   A: Discrete Laplacian. Can be solved by a fast 
Poisson solver (e.g. FFT, O(N2)log(N)), e.g., Fish-pack, or 
structured multigrid 

  

Δu = f (x)   
BC (e.g. Dirichlet, Neuman, Mixed)

1, 1, , 1 , 1 ,
,2

4i j i j i j i j i j
h i j ij

u u u u u
L u f

h
− + − ++ + + −

= =
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Flow chart to the new method 

Regular Problem/Regular Method ßà  
Interface Problem with Singular Source  
（Regular Method + Correction Terms） 
ßà [β]≠0, Augmented variable [un] 
(bigger equations) and interpolation of 
the flux condition (smaller equation) ßà 
Schur complement (GMRES iteration + 
preconditioning) 
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Some Examples of Irregular Domain 

q Estimate the permeability of 
concrete (IMSM problem): 5 
minutes to solve the Laplace 
eqn. external to the particles! 
Compared with Monte Carlo 
estimates (168 hrs.) 

 
 

0,
0, , 0  etc.

R n n

u
u u C u
Δ =

=    =    =
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An example of Fast IIM 
q Interface:  

q Exact soln: 

0( ) 0.2sin( ), 0 2r r kθ θ θ π= +     ≤ ≤
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An example of Fast IIM 
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Special Cases & Idea 
q If β=1, then IIM has both second order 

solution and derivatives (Beale/Layton) 
q If β is a piecewise constant (e.g. 1000:1 or 

1:1000), then the augmented IIM has both 
second order solution & derivatives 
(observed before and has been proved now) 
Ø I think it is the best Cartesian method with 

optimal cost? 
q What’s new: second order solution & 

derivative for variable coefficients with proof 
based on the augmented IIM 
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