From IB to IIM, from Solution to Gradient Computations

0011 0010 1010 1101 0001 0100 1011

Zhilin Li

CRSC & Department of Mathematics North Carolina State University Supported by NSF-560168

Happy Birthday to Charlie!!!

Outline

From IB (Peskin) to IIM (LeVeque/Li)

Motivations of this talk: Accurate gradient computation at the interface/boundary for Cartesian grid methods

□ A new augmented IIM

- FD Poisson equations, regular problem →piecewise constant coef. →Variable coef.
- Optimal complexity O(N log(N)), 2nd accurate solution & gradient and proof (Claim to be the 'best')
- Numerical results
- Convergence analysis
- Conclusions

From IB to IIM

Peskin's IB method

- Mathematical modeling
- Numerical method: discrete delta function
- Simple, robust, many applications
- First order, elliptic (Li, elliptic with Dirichlet BC), Stokes with periodic BC (Mori)

IIM (LeVeque/Li)

- Second order or higher
- Use jump conditions (from PDE or physics) instead of `delta functions
- Best discrete delta function?
- Finite difference (IIM, AIIM) and element (IFEM)

□ How to compute the solution & gradient accurately?

Motivations for Accurate Gradient

- Many free boundary/moving interface problems depend on the first order *derivatives* of the solution
- For finite difference (*FD*) methods based on *Cartesian meshes*, there are a number of 2nd or higher order methods, but the derivatives are less accurate especially near the boundary/interface
 FEM: L²: O(h²), H¹: O(h), at interface?

Some Examples

The 1D Stefan problem modeling the icewater interface, let *s(t)* be the free boundary, *u(x,t)* be the temperature

$$\frac{\partial u}{\partial t} = \beta^2 \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < s(t)$$

$$-\frac{\partial u}{\partial t}(0,t) = f(t), \text{ inlet heat flux at left end}$$

$$u(s(t),t) = 0, \quad \text{the right end is the freezing temperature}$$

$$\frac{ds}{dt} = -\frac{\partial u}{\partial x}(s(t),t), \quad \text{the Stefan condition}$$

$$u(x,0) = 0, \quad s(t) = 0, \quad \text{Initial conditions}$$
NC STATE UNIVERSITY 7/17/16 AN LS 2016

Stefan problem in 2D & Crystal Growth

Left: 2D Stefan problem. Right: Formulations of Snowflakes. Heat equation with *non-linear*

 Solid $T < T_M$

 Liquid

 T > T_M

 Solid $T < T_M$

$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot (\beta \nabla T), \ \rho L V = -\left[\beta \frac{\partial T}{\partial n}\right]$$

$$T(x,t) = -\varepsilon_c \kappa - \varepsilon_V V, \quad \frac{dX}{dt} \bullet n = V$$

NC STATE UNIVERSITY

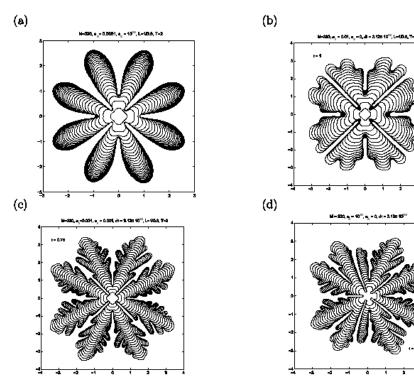
BC

Stefan Problem and Crystal Growth

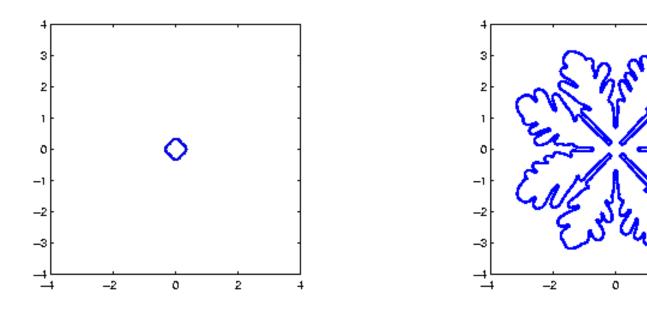
1st derivatives are involved

Stability analysis:

dynamically unstable for some medium modes (*exp(-k I t)*)



Simulation: Crystal Growth



AN_LS_2016

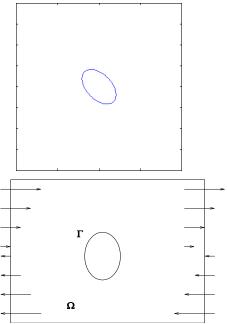
9

2

A moving interface example

- ■NSE equations with unknown surface tension, an inverse problem
- Both the area/length should be preserved.

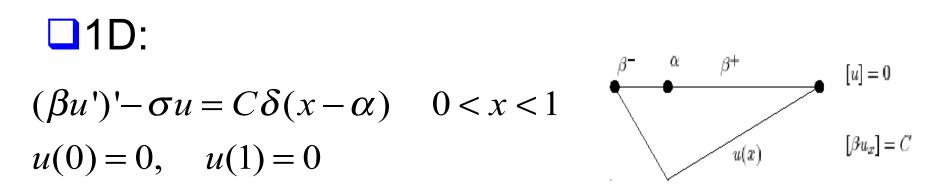
$$\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) + \nabla p = \mu \Delta u + \int_{\Gamma} f(s,t) \delta(x - X(s,t)) \, ds + f(s,t) = \frac{\partial}{\partial s} \left(\sigma(t,s)\tau\right) + f_b$$
$$= \sigma(s,t)\kappa n + \frac{\partial \sigma(s,t)}{\partial s}\tau + f_b$$
$$\nabla \cdot u = 0, \ \left(\partial_s \cdot u\right)_{\Gamma} = \frac{\partial u}{\partial \tau} \cdot \tau = 0$$



AN_LS_2016

g

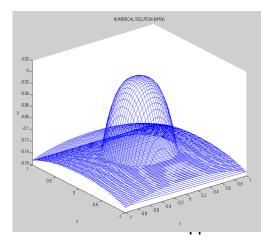
Model Problems



2D

$$\nabla \cdot (\beta \nabla u) - \sigma u = f + \int_{\Gamma} C(s) \delta(x - X(s)) ds$$

or $\nabla \cdot (\beta \nabla u) - \sigma u = f$, $[u] = w$, $[\beta u_n] = C(s)$



7/17/16

Methods for Gradients Review

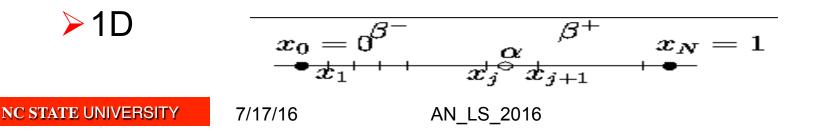
- □ FD with Cartesian mesh and central FD scheme: For regular problem & regular domain, the derivatives have the same order as the solution.
- The difficulty is for general boundaries and interfaces.
 - In FEM, posterior error analysis to get more accurate derivatives, depends on mesh quality
 - In FEM, *mixed* FEM or least squares FEM. It will lead to saddle problem and computationally expensive
 - DG for conservation laws
 - FD for elliptic and parabolic problems: ???

Results (old & new) in 1D

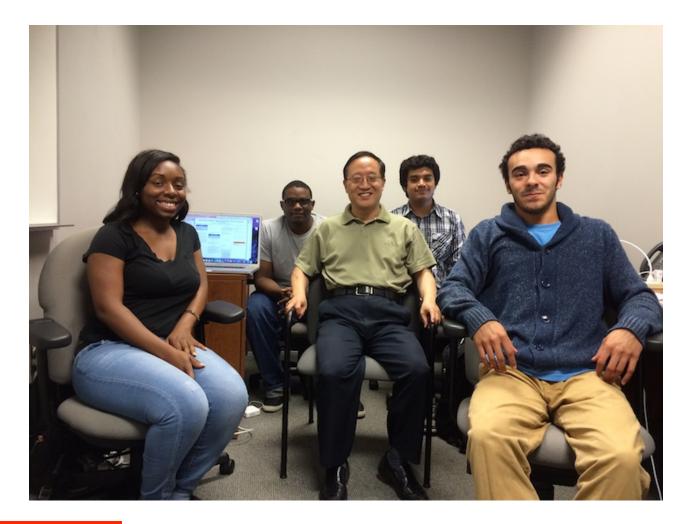
Accuracy of u_x at the boundary/interface

- At the boundary, 3-point *one-sided*, provide 2nd *u*_x
- At the interface (singular source or discontinuous coef
 - 3-point one-sided FD scheme is 1st order

IIM (compact FD, two-sided) is 2nd order in Cartesian, polar, and spherical. NCSU-2015 REU project.



My NCSU 2015 REU Group

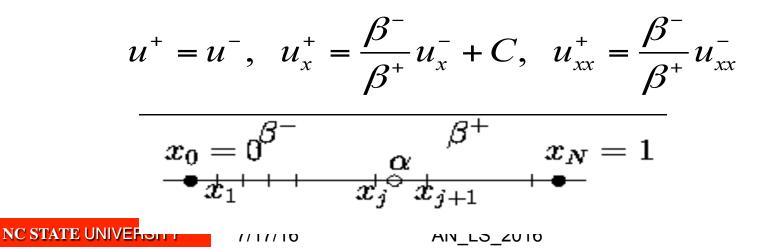


7/17/16

IIM in 1D, simple case

□FD scheme for $(\beta u')' - \sigma u = C\delta(x - \alpha)$

$$\gamma_{j-1}U_{j-1} + \gamma_jU_j + \gamma_{j+1}U_{j+1} = f_j + C_j$$



IIM in 1D: Set-up equation

The linear system for the coefficients

$$\begin{split} \gamma_{j-1} + \gamma_{j-1} + \gamma_{j+1} &= 0 \\ \gamma_{j-1}(x_{j-1} - \alpha) + \gamma_j(x_j - \alpha) + \gamma_{j+1}\frac{\beta^-}{\beta^+}(x_{j+1} - \alpha) &= 0 \\ \gamma_{j-1}\frac{(x_{j-1} - \alpha)^2}{2} + \gamma_j\frac{(x_j - \alpha)^2}{2} + \gamma_{j+1}\frac{\beta^-}{\beta^+}\frac{(x_{j+1} - \alpha)^2}{2} &= \beta^- \end{split}$$

The correction term is

$$C_{j} = C\gamma_{j+1} \frac{\beta^{-}}{\beta^{+}} (x_{j+1} - \alpha)$$

Interpolation scheme for *u_x*

Three points from both sides plus correction term

$$u_{x}(\alpha -) = \tilde{\gamma}_{j-1}U_{j-1} + \tilde{\gamma}_{j}U_{j} + \tilde{\gamma}_{j+1}U_{j+1} + \tilde{C}_{j}$$

$$\begin{split} \tilde{\gamma}_{j-1} + \tilde{\gamma}_{j-1} + \tilde{\gamma}_{j+1} &= 0 \\ \tilde{\gamma}_{j-1}(x_{j-1} - \alpha) + \tilde{\gamma}_{j}(x_{j} - \alpha) + \tilde{\gamma}_{j+1} \frac{\beta^{-}}{\beta^{+}}(x_{j+1} - \alpha) &= 1 \\ \tilde{\gamma}_{j-1} \frac{(x_{j-1} - \alpha)^{2}}{2} + \tilde{\gamma}_{j} \frac{(x_{j} - \alpha)^{2}}{2} + \tilde{\gamma}_{j+1} \frac{\beta^{-}}{\beta^{+}} \frac{(x_{j+1} - \alpha)^{2}}{2} &= 0 \end{split}$$

7/17/16

2D Results for Gradients (old & new)

Accuracy of $u_x \& u_y$ at the interface

- □ Singular source only (i.e. $\beta = 1$, $[u] \neq 0$, $[u_n] \neq 0$)
 - One-sided FD scheme is 1st order.
 - IIM (compact FD, two-sided) is 2nd order (Beale & Layton). One of the basis of the new method.
- Direct: Maximum principle preserving (Li/Ito): soln 2nd, gradient, not sure yet
- Piecewise constant β, FIIM (Li, SINUM, 1997), 2nd solution (proved), 2nd gradient (observed before, now proved)

□ Variable β, [β] \neq 0, 2nd solution and gradient (h²log h) with proof, 2015.

2D Problem & Analysis

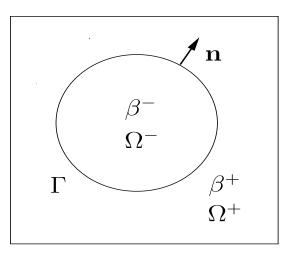
Elliptic interface problems with variable & discontinuous coefficient

$$\nabla \cdot (\beta \nabla u) + \sigma u = f + \int_{\Gamma} C(s) \delta(x - X(s)) ds$$

or $\nabla \cdot (\beta \nabla u) + \sigma u = f$, $[u] = w$, $[\beta u_n] = C(s)$

$$\beta(x,y) = \begin{cases} \beta^{-}(x,y) & \text{if } (x,y) \in \Omega^{-} \\ \beta^{+}(x,y) & \text{if } (x,y) \in \Omega^{+} \\ [\beta(x,y)]_{\Gamma} \neq 0 \end{cases}$$

7/17/16



Why elliptic interface problems?

It is most expensive part for many simulations processes, e.g. projection method

$$\rho(u_t + u \cdot \nabla u) + \nabla p = \mu \Delta u + g$$

$$\nabla \bullet u = 0$$

$$\frac{u^* - u^k}{\Delta t} + (u \cdot \nabla u)^{k+1/2} + (\nabla p)^{k-1/2} = \frac{\mu}{2} (\Delta u^k + \Delta u^*) + F^{k+1/2}$$

$$\Delta \phi = \frac{\nabla \cdot u^*}{\Delta t}, \quad \frac{\partial \phi}{\partial n} = 0$$

$$u^{k+1} = u^* - \Delta t \nabla \phi$$

$$\nabla p^{k+1/2} = \nabla p^{k-1/2} + \nabla \phi$$

Cartesian Grid Methods

- Peskin's IB method, 1st order, inconsistent (Li, MathCom, 2014)
- \Box Fast IIM (Li, SINUM), for piecewise constant β
- □ Maximum principle preserving IIM (Li/Ito)
- Ghost fluid method (Fedkiw/Liu) 1st -2nd order?
- Boundary integral method (X-F. Li, M. Siegel, Mayo, Greengard, …)
- □ MIB (Wei/Zhao)
- □ Virtual node method (Teran)
- IFEM (Li/Lin², He,...), Petrov-Galerkin (Hou, Ji/Chen/Li ...), IFEV ...
- □ XFEM (*X-D. Wang*, W-K. Liu, J. Doby, …)

Augmented IIM (Li et al), Kernel free method (W. Ying et. al)
Which one gives 2nd derivatives? FAST IIM

 $\nabla \cdot (\beta \nabla u) + \sigma u = f, \quad [u] = w, \quad [\beta u_n] = v$ $\rightarrow \Delta u + \frac{1}{\beta} \nabla u \cdot \nabla \beta + \frac{\sigma}{\beta} u = \frac{f}{\beta}$ $[u] = w, \quad [u_n] = q, \quad [\beta u_n] = v$

- Reformulate the problem near the interface by introduce augmented variable [u_n]
- Derive different new interface relations using the new formulation
- ❑ Apply the *upwind* scheme near Γ for the advection term(s) to get an M-matrix
- Apply the GMRES for the Schur complement ([u_n])

NC ST

Poisson Eqn. with singular sources

 $\Delta u = f(x) + \int_{\Gamma} c(s)\delta(x - X(s))ds + g$ BC (e.g., Dirichlet, Neuman, Mixed)

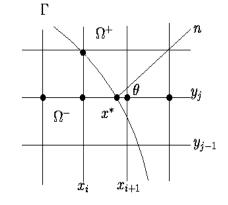
Equivalent Problem

$$\Delta u = f(x), \quad x \in \Omega \setminus \Gamma, \quad \left[u \right]_{\Gamma} = 0, \quad \left[\frac{\partial u}{\partial n} \right]_{\Gamma} = C(s)$$

BC (e.g., Dirichlet, Neuman, Mixed)

D FD scheme (x_i, y_j) , regular/irregular

$$\frac{u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j}}{h^2} = L_h u_{i,j} = f_{ij}$$



$$\frac{u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j}}{h^2} = L_h u_{i,j} = f_{ij} + C_{ij}$$
ATE UNIVERSITY 7/17/16
AN_LS_2016
23

Poisson Eqn. with singular sources

□IB, IIM both work, what's the best discrete delta function? → Source removal technique (Li/Lai/Wang)

 AU=F+BC; A: Discrete Laplacian. Can be solved by a fast Poisson solver
 IIM is second order both in solution and gradient (T. Beale/Layton), now to NS equations with fixed/exact interface

Augmented approach/Fast IIM

□ If β is two constants, flux jump condition [$βu_n$]=C(s) along [u]=w(s).

 $\neg \text{ Idea:} \qquad \nabla \cdot (\beta \nabla u) = f + \int_{\Gamma} C(s) \delta(x - X(s)) \, ds$ or $\nabla \cdot (\beta \nabla u) = f, [u] = 0, [\beta u_n] = C(s)$ or $\Delta u = \frac{f}{\beta} + \int_{\Gamma} \frac{C(s)}{2} \delta(x - X(s)) \, ds$

- Idea of the method: divide β from the equation to get Poisson eqn., but can not from the flux jump.
- Set $[u_n] = g$ as unknown, the augmented variable, the augmented equation is the flux jump condition

Fast IIM

 \Box Idea, given $[u_n] = g$ solve the problem with one FFT $AU + BG = F + C = F_1$ $[\beta u_n] = v$ Discretize the flux condition SU+EG=F₂ $\begin{vmatrix} A & B \\ S & E \end{vmatrix} \begin{vmatrix} U \\ G \end{vmatrix} = \begin{vmatrix} F_1 \\ F_2 \end{vmatrix}$ Schur complement: $(E - SA^{-1}B)G = F_2 - SA^{-1}F_1 = \overline{F}$

 $R(G) - R(0) = (E - SA^{-1}B)G = [\beta u_n(G)] - C - ([\beta u_n(0)] - C)$

Properties of FIIM

Second solution, proved

- □ O(N log(N)) optimal computation cost. The Number of GMRES iterations
 - Independent of jump in the coefficient
 - Independent of the mesh size
 - Dependent on the geometry
- Second order accurate 1st order derivatives, observed before, now we have proof.

Challenges with Variable Coef

□ *Maximum* preserving FD scheme (*direct*) for

$$\nabla \cdot (\beta \nabla u) + \sigma u = f$$
$$[u] = w, \ [\beta u_n] = v$$

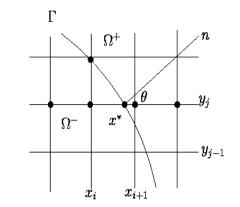
- □ 5-point at regular, 9-point stencil at irregular grids
- Using a *quadratic* optimization to force the maximum principle (Li/Ito)
- □ Using a structured multigrid method to solve the linear system whose condition is proportional to $O(max(\beta^+/\beta^-, \beta^-/\beta^+)/h^{2}))$.
- The derivative is often 1st order accurate near the interface

New Method

Reformulate the problem:

$$\nabla \cdot (\beta \nabla u) + \sigma u = f, \ [u] = w, \ [\beta u_n] = v$$

$$\rightarrow \Delta u + \frac{1}{\beta} \nabla u \cdot \nabla \beta + \frac{\sigma}{\beta} u = \frac{f}{\beta}$$
$$[u] = w, \ [u_n] = q, \ [\beta u_n] = v$$



Conservative FD scheme at regular grid

$$\frac{\beta_{i-1/2,j}u_{i-1,j} + \beta_{i+1/2,j}u_{i+1,j} + \beta_{i,j-1/2}u_{i,j-1} + \beta_{i,j+1/2}u_{i,j+1} - \overline{\beta}u_{i,j}}{\overline{\beta}h^2} + \frac{\sigma_{ij}}{\overline{\beta}}U_{ij} = \frac{f_{ij}}{\overline{\beta}}$$

$$\overline{\beta} = \beta_{i-1/2,j} + \beta_{i+1/2,j} + \beta_{i,j-1/2} + \beta_{i,j+1/2}$$

7/17/16

FD scheme at irregular grid

Regular method + corrections

$$\frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^{2}} = u_{xx}(x_{i}, y_{j}) + \frac{[u]}{h^{2}} + \frac{[u_{x}]}{h^{2}} (x_{i+1} - x_{i}^{*}) + \frac{[u_{xx}]}{2h^{2}} (x_{i+1} - x_{i}^{*})^{2} + O(h)$$

$$\square \text{ We know [u], if we know [u_{n}], then we know [u_{x}] and [u_{y}]; how about [u_{xx}]?$$

$$u_{\xi\xi}^{+} = \left(\frac{\beta_{\xi}^{-}}{\beta^{+}} - \chi''\right) u_{\xi}^{-} + \left(\chi'' - \frac{\beta_{\xi}^{+}}{\beta^{+}}\right) u_{\xi}^{+} + \frac{\beta_{\eta}^{-}}{\beta^{+}} u_{\eta}^{-} - \frac{\beta_{\eta}^{+}}{\beta^{+}} u_{\eta}^{+} + (\rho - 1) u_{\eta\eta}^{-} + \rho u_{\xi\xi}^{-} - w'' + \frac{[f]}{\beta^{+}} + \frac{[\sigma] u^{-} + \sigma^{+} [u]}{\beta^{+}},$$

$$u_{\eta\eta}^{+} = u_{\eta\eta}^{-} + (u_{\xi}^{-} - u_{\xi}^{+}) \chi'' + w'',$$

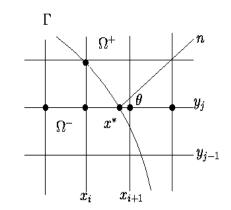
$$u_{\xi\eta}^{+} = \frac{\beta_{\eta}^{-}}{\beta^{+}} u_{\xi}^{-} - \frac{\beta_{\eta}^{+}}{\beta^{+}} u_{\xi}^{+} + (u_{\eta}^{+} - \rho u_{\eta}^{-}) \chi'' + \rho u_{\xi\eta}^{-} + \frac{v'}{\beta^{+}},$$
NOTIFICINITIES. (210)

NC STATE UNIVERSI

How to get second order jumps?

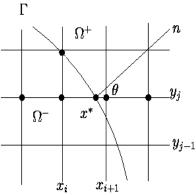
□Key: Use the transformed eqn

$\Delta u + \frac{1}{\beta} \nabla u \bullet \nabla \beta +$	$\frac{\sigma}{\beta}u =$	$=\frac{f}{\beta}$
$[u] = w, [u_n] = q,$	$[\beta u_n]$] = v



Use the local coordinates and lower order jumps and quantities

How to get jumps in x-y direction?



$$\begin{split} &[u_x] = [u_{\xi}] \cos \theta - [u_{\eta}] \sin \theta, \\ &[u_y] = [u_{\xi}] \sin \theta + [u_{\eta}] \cos \theta, \\ &[u_{xx}] = [u_{\xi\xi}] \cos^2 \theta - 2[u_{\xi\eta}] \cos \theta \sin \theta + [u_{\eta\eta}] \sin^2 \theta, \\ &[u_{yy}] = [u_{\xi\xi}] \sin^2 \theta + 2[u_{\xi\eta}] \cos \theta \sin \theta + [u_{\eta\eta}] \cos^2 \theta. \end{split}$$

How to approximate lower order terms?

□ To deal with $u_x \beta_{x, j} u_y \beta_{y, j} u_{\xi, j} u_{\eta, j}$ we use upwinding discretization so that we get an *M-matrix*, more diagonally dominant

$$x_{j} \leq \alpha < x_{j+1}$$
$$[u_{xx}] = \left[\frac{f}{\beta}\right] - \frac{\beta_{x}^{+}}{\beta^{+}} [u_{x}] - \left[\frac{\beta_{x}}{\beta}\right] u_{x}^{-}$$

FD scheme

$$[u_{xx}] \approx \begin{cases} \left[\frac{f}{\beta}\right] - \frac{\beta_{x}^{+}}{\beta^{+}}G - \left[\frac{\beta_{x}}{\beta}\right]\frac{U_{j} - U_{j-1}}{h} & \text{if } \left[\frac{\beta_{x}}{\beta}\right] \leq 0 \\ \left[\frac{f}{\beta}\right] - \frac{\beta_{x}^{+}}{\beta^{+}}[u_{x}] - \left[\frac{\beta_{x}}{\beta}\right]\left(\frac{U_{j+1} - U_{j}}{h} + C_{j}\right) & \text{otherwise} \end{cases}$$

7/17/16

Use GMRES to solve the Schur complement

Matrix-vector form: $AU + BG = F_1$

Use a second order least square interpolation to discretize $[\beta u_n] = v$

$SU+EG=F_{2}$ $A = B \\ G = \begin{bmatrix} F_{1} \\ F_{2} \end{bmatrix}$ Put together $A = B \\ G = \begin{bmatrix} F_{1} \\ F_{2} \end{bmatrix}$

Schur complement

$$(E - SA^{-1}B)G = F_2 - SA^{-1}F_1 = \overline{F}$$

A new preconditioner

Efficient one for FIIM, it does not work well for variable coef.

If $\beta^+ < \beta^ \begin{cases}
U_n^+ \text{ is computed from interpolation} \\
U_n^- = \frac{v - \beta^- G}{[\beta]} \text{ from the flux condition}
\end{cases}$

New one: Simple scaling

$$\frac{\beta^{+}U_{n}^{+} - \beta^{-}U_{n}^{-}}{\overline{\beta}} - \frac{\nu}{\overline{\beta}} = 0, \ \overline{\beta} = \frac{\beta^{+} + \beta^{-}}{2}$$

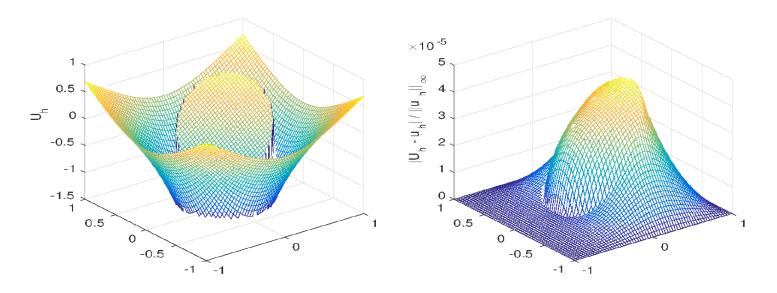
Numerical examples

$$u(x,y) = \begin{cases} \sin(x+y) & \text{if } x^2 + y^2 \le 1\\ \log(x^2 + y^2) & \text{if } x^2 + y^2 > 1 \end{cases}$$
$$\beta(x,y) = \begin{cases} e^{10x} & \text{if } x^2 + y^2 \le 1\\ \sin(x+y) + 2 & \text{if } x^2 + y^2 > 1 \end{cases}$$

7/17/16

Numerical Example I

$N_{\rm finest}$	N_b	E(U)	order	$E(U_{\mathbf{n}}^+)$	order	$E(U_{\mathbf{n}}^{-})$	order	Iter	CPU(s)
66	96	0.28805E-01		0.88682E-01		0.12769E-01		8	0.160
130	184	0.98473 E-02	1.58	0.32375 E-01	1.49	0.46012 E-02	1.51	8	0.533
258	368	0.25642 E-02	1.96	0.88674 E-02	1.89	0.13434E-02	1.80	8	2.272
514	728	0.66291 E-03	1.96	0.23339E-02	1.94	0.35159 E-03	1.94	8	11.284
1026	1452	0.16604 E-03	2.00	0.58702 E-03	2.00	0.88848E-04	1.99	8	38.851
2050	2900	0.42837E-04	1.96	0.15218E-03	1.95	0.22854E-04	1.96	8	174.056



7/17/16

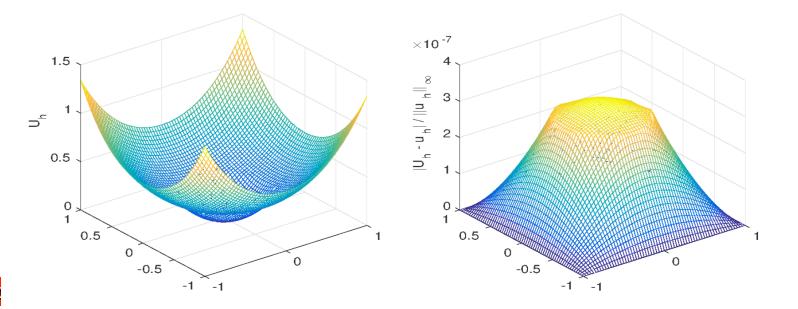
A benchmark example

$$u(x,y) = \begin{cases} x^2 + y^2 & \text{if } x^2 + y^2 \le 1\\ \frac{1}{4} \left(1 - \frac{9}{8b} \right) + \frac{r^4 / 2 + r^2}{b} + \frac{C \log(r)}{b} & \text{if } x^2 + y^2 > 1 \end{cases}$$
$$\beta(x,y) = \begin{cases} b & \text{if } x^2 + y^2 \le 1\\ x^2 + y^2 + 1 & \text{if } x^2 + y^2 > 1 \end{cases}$$
$$\sigma(x,y) = 0, \quad f(x) = 8(x^2 + y^2) + 4 \end{cases}$$

7/17/16

Results of benchmark example

$N_{\rm finest}$	N_b	E(U)	order	$E(U_{\mathbf{n}}^+)$	order	$E(U_{\mathbf{n}}^{-})$	order	Iter	CPU(s)
66	96	0.11806E-02		0.10858E-01		0.93667 E-02		6	0.103
130	188	0.29244 E-03	2.06	0.29057 E-02	1.94	0.25065 E-02	1.94	6	0.342
258	368	0.71380E-04	2.06	0.70487E-03	2.07	0.60806E-03	2.07	5	1.258
514	732	0.16640 E-04	2.11	0.17465 E-03	2.02	0.15052 E-03	2.03	5	5.540
1026	1456	0.41334 E-05	2.01	0.44847 E-04	1.97	0.38020E-04	1.99	4	20.863
2050	2908	0.10796 E-05	1.94	0.11771E-04	1.93	0.98363E-05	1.95	4	201.511



39

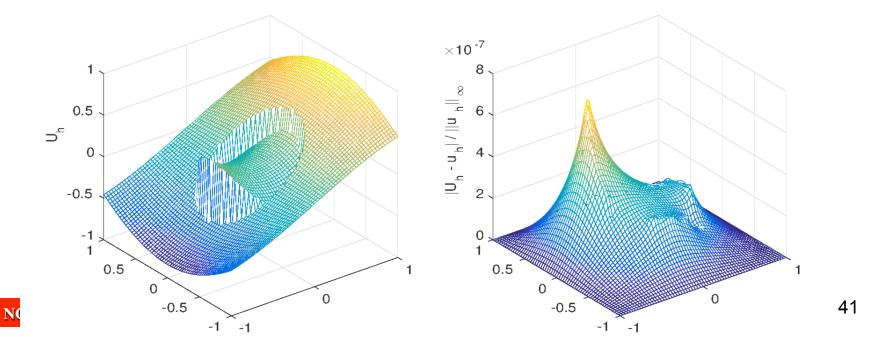
A more general example

$$u(x,y) = \begin{cases} x^2 - y^2 & \text{if } x^2 + y^2 \le 1\\ \sin x \cos y & \text{if } x^2 + y^2 > 1 \end{cases}$$
$$\beta(x,y) = \begin{cases} e^x & \text{if } x^2 + y^2 \le 1\\ x^2 + y^2 = 1 & \text{if } x^2 + y^2 > 1 \end{cases}$$
$$-\sigma(x,y) = \begin{cases} \sqrt{x^2 + 4y^2} & \text{if } x^2 + y^2 \le 1\\ \log(x^2 + y^2 + 1) & \text{if } x^2 + y^2 \ge 1 \end{cases}$$

7/17/16

Grid refinement analysis

$N_{\rm finest}$	N_b	E(U)	order	$E(U_{\mathbf{n}}^+)$	order	$E(U_{\mathbf{n}}^{-})$	order	Iter	CPU(s)
66	96	0.85969 D-03		0.95542 D-02		0.59623D-02		4	0.077
130	184	0.18786 E-03	2.24	0.25599 E-02	1.94	0.15968 E-02	1.94	4	0.318
258	368	0.55591 E-04	1.78	0.74684 E-03	1.80	0.49691 E-03	1.70	4	1.272
514	728	0.12783 E-04	2.13	0.18721E-03	2.01	0.12500 E-03	2.00	4	6.473
1026	1452	0.26051 E-05	2.30	0.46393E-04	2.02	0.31318E-04	2.00	4	23.586
2050	2900	0.74611 E-06	1.81	0.11647 E-04	2.00	0.81641 E-05	1.94	4	107.544

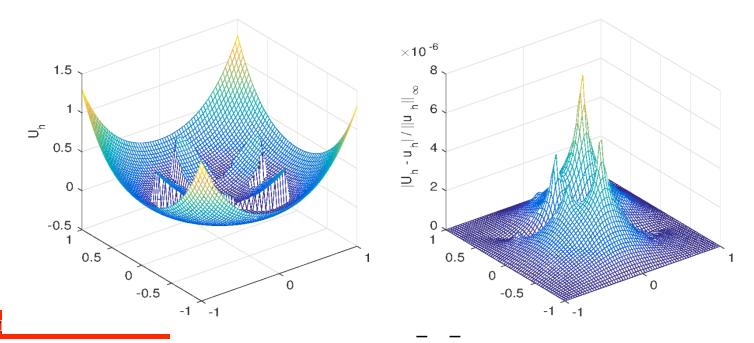


A complicated interface

$$u(x,y) = \begin{cases} x^{2} + y^{2} & \text{if } x^{2} + y^{2} \le 1 \\ \frac{r^{4}}{b} + \frac{C\log(r)}{b} & \text{if } x^{2} + y^{2} > 1 \end{cases}$$
$$\beta(x,y) = \begin{cases} b & \text{if } x^{2} + y^{2} \le 1 \\ x^{2} + y^{2} + 1 & \text{if } x^{2} + y^{2} > 1 \end{cases}$$
$$X = (r_{0} + \varepsilon \sin(k\theta))\cos(\theta), \ k = 5 \end{cases}$$
$$Y = (r_{0} + \varepsilon \sin(k\theta))\sin(\theta), \ r_{0} = 0.5, \ \varepsilon = 0.2$$

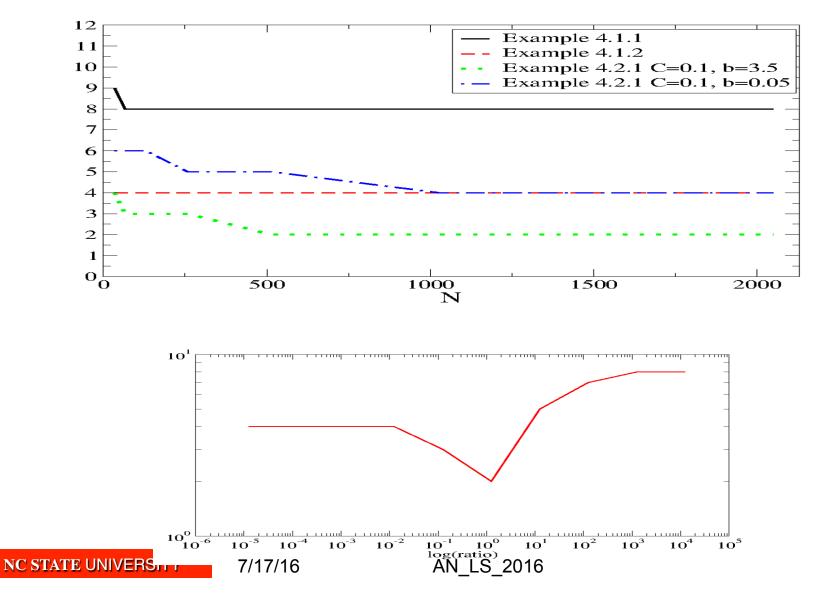
Results for Complicated

$N_{\rm finest}$	N_b	E(U)	order	$E(U_{\mathbf{n}}^+)$	order	$E(U_{\mathbf{n}}^{-})$	order	Iter	CPU(s)
130	312	0.36754 E-02		0.23305E + 00		0.26544E + 00		7	0.576
258	618	0.10946 E-02	1.77	0.55982 E-01	2.08	0.63760 E-01	2.08	7	2.175
514	1230	0.17091 E-03	2.69	0.15400 E-01	1.87	0.17541 E-01	1.87	7	13.775
1026	2452	0.30145 E-04	2.51	0.42371 E-02	1.87	0.48265 E-02	1.87	7	41.462
2050	4898	0.92522 E-05	1.71	0.10589 E-02	2.00	0.12065 E-02	2.00	7	276.882



43

Number of GMRES Iteration



44

Convergence Analysis

- Discrete Green function for 1D problem, the Schur complement is non-singular if **[β]≠0**.
- Thm: If **G** is a second order accurate $O(h^2)$, then u_h and u_h ' is also second order in Linfinity norm (from comparison theorem and Beale's proof)
- Thm: If the interpolation scheme is second order for $[\beta u_x]=v$, then computed $[u_x]$ is also second order. Thus u_h is also second order.

Discrete Green functions for piecewise constant coef

$$G(x,y) = \begin{cases} x(1-y) & \text{if } x \leq \alpha \\ y(1-x) & \text{if } x \leq \alpha \end{cases}$$

$$A_{ij}^{-1} = hG(x_i, x_j)$$

7/17/16

$$E_i^u = h \sum_{j=1}^N f_j^u G(x_i, x_j)$$

Property of Schur complement

$$(D - CA^{-1}B) = [\beta u_x]_{[u_x]=1} - [\beta u_x]_{[u_x]=0}$$
$$(D - CA^{-1}B)E^q = -\tau^q - CA^{-1}\tau^u$$
$$\tau^u = \tau^u_{reg} + \tau^u_{ireg} = O(h^2) + O(h)$$
$$A^{-1}\tau^u = O(h^2), \ CA^{-1}\tau^u = O(h^2)$$

Conclusions

- A new method for general elliptic interface problem with both 2nd order solution and the first order derivatives
 - Introduce an augmented variable
 - A second order discretization leading to an M-matrix plus a second interpolation scheme for the flux
 - > No optimization is needed
 - The number of GMRES iteration is independent of the mesh size and jump in the coefficient
 - Convergence proof
- Best method in FD using Cartesian meshes? (accept challenges!)
- Second order derivatives (curvature etc)
- Q: Why does the preconditioning work so well?

Thank you!

Solving Poisson Eqn. (regular)

Regular domain (rectangular, circles,..), no interface/ singularity

 $\Delta u = f(x)$

BC (e.g. Dirichlet, Neuman, Mixed)

The FD scheme at (x_i, y_i)

$$\frac{u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j}}{h^2} = L_h u_{i,j} = f_{ij}$$

AU=F; A: Discrete Laplacian. Can be solved by a fast Poisson solver (e.g. FFT, O(N²)log(N)), e.g., Fish-pack, or structured multigrid

Flow chart to the new method

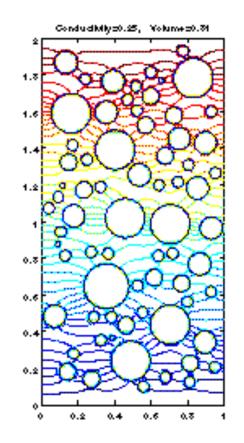
Regular Problem/Regular Method $\leftarrow \rightarrow$ Interface Problem with Singular Source (Regular Method + Correction Terms) $\leftarrow \rightarrow [\beta] \neq 0$, Augmented variable $[u_n]$ (bigger equations) and interpolation of the flux condition (smaller equation) $\leftarrow \rightarrow$ **Schur complement** (GMRES iteration + preconditioning)

Some Examples of Irregular Domain

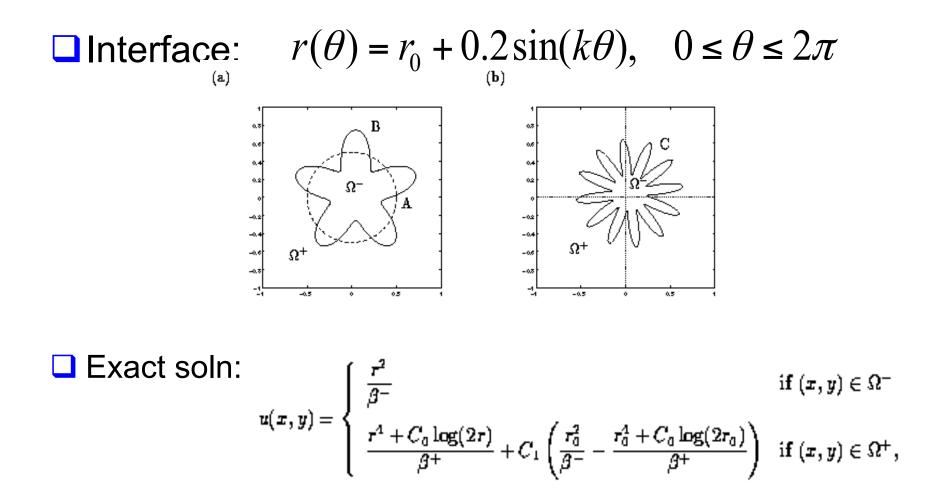
Estimate the permeability of concrete (IMSM problem): 5 minutes to solve the Laplace eqn. external to the particles! Compared with Monte Carlo estimates (168 hrs.)

$$\Delta u = 0,$$

$$u|_{R} = 0, \quad u_{n} = C, \quad u_{n} = 0 \quad \text{etc.}$$



An example of Fast IIM



An example of Fast IIM

n	β^+	β^{-}	E_1	E_2	E_3	r ₁	r_2	r3	k
40	2	1	2.285 10-3	2.23 10 ⁻³	7.434 10 ⁻⁹				7
80	2	1	5.225 10 ⁻⁴	5.956 10 ⁻³	$1.987 10^{-2}$	4.37	3.74	3.74	7
160	2	1	1.269 10 ⁻⁴	$1.827 \ 10^{-4}$	6.101 10 ⁻⁴	4.12	3.26	3.26	7
320	2	1	$2.988 \ 10^{-5}$	$5.038\ 10^{-5}$	1.678 10 ⁻⁴	4.25	3.63	3.64	7

n	β^+	β^{-}	E_1	E_2	E_3	r_1	r_2	r _S	k
40	10000	1	$6.552\ 10^{-5}$	6.331 10 ⁻⁴	2.110 10-4				8
80	10000	1	7.847 10 ⁻⁶	8.366 10 ⁻⁵	2.785 10 ⁻⁵	8.35	7.57	7.58	8
160	10000	1	$5.988 \ 10^{-7}$	9.192 10 ⁻⁷	$3.033 \ 10^{-6}$	13.1	9.10	9.18	8
320	10000	1	5.859 10 ⁻⁸	$2.058\ 10^{-7}$	6.887 10 ⁻⁷	10.2	4.47	4.40	7

Special Cases & Idea

□If **β=1**, then **IIM** has both second order solution and derivatives (Beale/Layton)

If ß is a piecewise constant (e.g. 1000:1 or 1:1000), then the augmented IIM has both second order solution & derivatives (observed before and has been proved now)

I think it is the best Cartesian method with optimal cost?

What's new: second order solution & derivative for variable coefficients with proof based on the augmented IIM