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Fluid-Flexible-Structure-Interaction

Cytoskeleton

Cytosol/Cytoplasm
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T.Y. Hou, Z.L. Li, S. Osher, H.K. Zhao, J. Comp. Phys. 134, pp. 236-252 (1997).

J. Xu, Z. Li, J. Lowengrub and H. Zhao, J. Comp. Phys. 212(2), pp. 590-616 (2006).

G.H. Cottet and E. Maitre, C.R. Acad. Sci. Paris, Ser. | 338, pp.581-586 (2004).

G.H. Cottet and E. Maitre, Math. Models & Methods in App. Sci. 16, pp. 415-438 (2006).
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R. Glowinski, T. Pan, J. Periaux, Comp. Methods Appl. Mech. Eng. 111, (1994).

R. Glowinski, T. Pan, J. Periaux, Comp. Methods Appl. Mech. Eng. 112 (1994).

R. Glowinski, T. Pan, T. Hesla, D. Joseph, J. Periaux, J. Comput. Phys. 169, pp.363 (2001).
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The immersed boundary method is originated by
Charles Peskin (1992) and has become a popular
practical and effective method for FSI problems

 The boundary can be active (beating heart,
swimming sperm) or passive (flag-in-wind)

 The boundary can be neutrally buoyant (swimming
fish) or can have higher or lower density than

surrounding fluids (aggregated RBCs in flowing
blood)

 May be a body (eel, RBC) or a surface (flag, paper)

 May be open (flag) or closed (balloon)

 The boundary may be modeled by a collection of

discrete elastic springs/fibers or by continuum/solid
mechanics



Different versions of the IB method (incomplete list)
Original version (Peskin 1972,1977,Peskin & McQueen 1993,1995,1996)
Vortex-method version (McCracken & Peskin 1980)

Volume-conserved version (Peskin & Printz 1993, Rosar & Peskin 2001)

Adaptive mesh version (Roma, Peskin & Berger 1999, Griffth & Peskin
2007)

Second-order version (Lai & Peskin 2000, Griffth & Peskin 2005)
Multigrid version (Fogelson & Zhu, Zhu & Peskin 2002)

Penalty version (Kim & Peskin 2006, Huang, Shin, Sung 2007, Huang
Chang, Sung 2011)

Stochastic version (Atzberger, Kramer & Peskin 2006)
Kirchhoff rod version (Lim, Ferent, Wang & Peskin 2008)

Viscoelastic fluid version (Chrispell, Cortez, Khismatullin, Fauci 2011,
Chrispell, Fauci, Shelley 2013)

Implicit version (Tu & Peskin 1992,Mayo & Peskin 1993, Fauci & Fogelson
1993, Taira & Colonius 2006,Mori & Peskin 2008, Hao & Zhu
2010,2011)

Finite element version (B Griffith & XY Luo 2014, Hua, Zhu & Lu 2015)
Lattice Boltzmann version (Zhu, He, et al. 2010)



Non-Newtonian fluids are very common

* Natural substances: magma, lava, gums, extracts
e Slurries: cement slurry, paper pulp

* Human made: Soap solution, polymer solution, paint,
cosmetics, toothpaste ...

* Food: ketchup, jam, soup, yogurt

* Biological fluids: blood, cytoplasm, saliva, synovial
fluid

Newtonian: deviatoric stress 7=2ud, the rate

of strain D=1/2 (zdij+ul), i)



(t) [Pal

Shear

Shear rate (y) [s]

* Shear-rate-dependent viscosity
* Normal stress differences
* History-dependent (memory effect)



Power-law fluids: p=m (y) Tn—1

Shear stress Viscosity

Dilatant

Diltant /Neytonian

Newtonian

Shear-thinning

Shear-thinning

(a) Shear ate (b) Shear ate

* n<1 Shear thinning: paint, ketchup, blood, cytoplasm

* n>1 Shear thickening: oobleck (cornstarch-water
mixture)

* n=1 Newtonian



N-S equations for non-Newtonian

fluids by lattice Boltzmann method

A) Why LB method for Navier-Stokes?

1) Lattice Boltzmann method solves a series of scalar
differential equations

2) Relationship between pressure and density

3) Clear physical interpretation of the scheme and easy
handling of complex rigid boundary

4) Natural for parallelization

5)easier to model extra physics in a flow problem
B) A brief introduction to the LB method

C) Lattice-Boltzmann based IB method



Some References for the LBM

Books on the Lattice Boltzmann Method:

D. A. Wolf-Gladrow, "Lattice-gas cellular automata and
lattice Boltzmann Models -- an introduction", Springer, Berlin, (2000).

S. Succi, " The lattice Boltzmann equation', Oxford Univ Press, Oxford (2001)

M.C. Sukop and D.T. Thorne, Jr., ~"Lattice Boltzmann Modeling: an introduction for
geoscientists and engineers”’, Springer, Berlin, (2006).

Zhaoli Guo and Cuguang Zheng, ~Theory and applications of Lattice Boltzmann
method’’, Chinese Science Publisher, Beijing (2008).

Zhaoli Guo and Chang Shu, "Lattice Boltzmann Method and its Applications in
Engineering”, World Scientific (2013).

Haibo Huang, Michael Sukop, and Xiyun Lu, "Multiphase Lattice Boltzmann Methods:
Theory and applications”’, Wiley-Blackwell (2015)

Widely cited paper on the LBM:

L.-S. Luo. Unified Theory of the lattice Boltzmann models for nonideal gases”,
Phys. Rev. Lett. 81: 1618 (1998).

S.Y. Chen, G.D. Doolen, “"Lattice Boltzmann Method for fluid flows",
Annu Rev. Fluid Mech., 30, p329, (1998).

LBM is a fast growing area



I) Single Component LBM

Boltzmann Equation (1872), PDE for velocity

distribution f(x, &, t)

Of(x.6.t)

df(x,&,t) Fix,t) 0f(x,€,1)
ot - : * . i

o m OE =Q(f, f)

BGK model, 1954

9 £ 1 0 R O . . :
(f();f ]+£. f(g £.1) = —Z(f(x,&,8)— fUx, €&, 1)),
X T

¢ can be discretized by {£;,7=0,1,2,..n.}



Two widely used lattice Boltzmann models

(left: D2Q9 right:D3Q19)
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Discrete lattice BGK model
L)f t_)f X.1) 1/ r
) g 2 = L (fix,t) — fO(x,1))
Discretization in time
R s
=5

YD) = —1(f(x,1) = f(x,1))

The lattice Boltzmann equation (LBE)

filx+ &t +1) = fi(x,t) — 2 (fi(x.1) = f)(x,1))



fx,&t) , Of(x.&1) F(x1) If(x.&1

5 o ox m g~ h))

Simplified Boltzmann equation by BGK

Bl ¢ g UERA — - U Pk 4]~ Ple. 8 1)

Discrete lattice BGK equation

Ailet) | g B — _L(p(x, 1) — fO(x,t))

ox

The lattice Boltzmann equation (LBE)

filx+ &5t +1) = fi(x,t) — 2(fi(x,t) — £ (x,1))



Physical interpretation of lattice Boltzmann
method
1) Collision

(fi(x,1) = f(x,1))
2) Streaming

filx+ &t +1) = fi(x,1)

Wost

East

3)no-slip BC by bounce-back




Literature on using LB method in the IB method
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Y. Sui, Y.T. Chew, P. Roy and H.T. Low, "A hybrid immersed boundary and multi-block
lattice Boltzmann method for simulating fluid and moving-boundaries
interactions”’, Int. J. Numer. Meth. Fluids, 53, p.1727-1754 (2007).

Y. Peng and L.-S. Luo, “A comparative study of immersed-boundary and interpolated
bounce-back methods in LBE”, Prog. in Comput. Fluid. Dyn. 8 (1-4), pp.156-167
(2008).

Zhu, He, et al. 2010, Hao & Zhu 2010,2011 (both explicit and implicit)
X Wang, C. Shu, J. Wu & LM Yang, Computer & Fluids, 100, pp. 165-175 (2014)



Some features of our LB-IB method

1) Our math formulation is for any deformable
immersed boundary whose motion is governed by
LB equation; while in other existing works, the
math formulation is for rigid particle/object whose
motions are either prescribed or governed by the
Newton’s 2" |aw.

2) Our formulation is for both Newtonian and non-
Newtonian fluid-deformable structure interaction;
existing works are for Newtonian flows.



IB formulation by the LBM

ot Ox e

+ f(x, 1)

1 . N
= —;(g(x,ﬁ, f) = g(O)(X‘JE?t))f

px,t) = [ g(x,& t)de,

(pu)(x,t) = [ gl €, t)¢de

0E  OE, + &)

X IX
fin(x,t) = ./F(a, t)o(x — X(a, t))do

Fla,t) =

Ula,t) = /u(‘x,z‘)d(x — X(a, t))dx

0X

5 (e, 1) = Ule;t)



Incorporate power-law in LB

e v=21—1/6

* u=m(y) Tn—1

o ¥ =v25laf SiBa

o SVaf3 =-3/2t }i=0T/=18%elia el
JLIT(1)

o FUT(1) =74 - £LT(0)



Algorithm of the 3D IB method by the LBM

X" gj(xtg, tH1) = g;(x,1) - = (g;(x. 1) - gJ(xD)

1 Ej_un Ej,un
+(1-;)wj( = + v &)

| .

f'= | §(x- X" da

|

U= |t §(x-X1) dx

Xn+1




A non-Newtonian viscous flow past
an elastic sheet fixed at the midline



Some Computational Results

1)Cd versusn: pu=m (y) Tn—1
2)Cd versus Re = plUT2—n LTn /m

3)Drag Scaling (D versus 1)
D=Cd 7712 n=1/vKkib

4)Short movies



Cd versus n (top) and Shape versus
n (bottom) forRe=1, 10, 100

Averaged Cd versus n
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Cd increases with n; viscous force dominates drag.




Cd versus Re (top) and Shape versus
Re (bottom) for five values of n

Averaged Cd versus Re
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Cd decreases with Re; viscous force dominates drag



Drag Scaling (top) and sheet Shape
(bottom) for Re = 10

~ Drag D versus Flexibility 7
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Total drag scales approximately as 1.6 power of inflow speed



Movies showing sheet deformation

n=0.5 n=0.8

n=1.25 n=1.75



Summary

1) We have successfully coupled the lattice Boltzmann
D3Q19 model with power-law non-Newtonian fluids

to the IB method in three dimensions.

2) Drag coefficient Cd increases with the exponent n
and decreases with Re.

3) Viscous force dominates the drag of the sheet.

4) Total drag of the sheet scales approximately as 1.6
power of the inflow speed for Re=10, in contrast
with the approximate 1 for a Newtonian fluid, and 2
for a rigid body in a Newtonian fluid.



Ongoing and Future Work

1) Extension to non-Newtonian fluids described by the
Oldroyd-B model and more generally the FENE-P

model.

2) Spectral/hp elements to model the thin-walled

structures with large deformation, large
displacement, and large rotation, i.e. consider both

material and geometry nonlinearities. (with S Dong
and F Song)

3) Applications to blood flows during hemodialysis
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Linearization of operators F,S, U,

S" fn+1 _j Fn+18(k WMV) gg

i:

9;(x+%, t+1)=g,(x, t) ‘(g,(x t)- g%x.1)
+(1- 72 {j" g,) fn+1

n+1 n+1
Ug] = U

X — Aai)

+1 1
IXm Xn‘ | ml m-i-l,[

p(x,t +1) Eg;‘(x

fn+1 (X) .

(pu)(x,t+1) ESJ mt(x) + ;

i': Un+1:jun+1 S(X-Xn)g};

A linear system of algebraic equations
(At=1 in the LBM)

~

1~L§F'Xn+1 = Xn+1-xn



Summary of the implicit algorithm
TULSEX "t — xrtl_yn
j [:,rLSvaH-I—l - Xn-}-l _Xn

un—l—l (_X, f) ot (.."YL‘S‘FXH-Fl



Summary and future work

1) We have successfully coupled the lattice Boltzmann D3Q19
model to the IB method in three dimensions both explicitly
and implicitly.

2) As an application of the hybrid method, we have found that
the drag of a flexible sheet is approximately proportional to
the inflow speed which is in contrast with the square law for a
rigid body in a viscous flow.

3) Application of the hybrid method in biological flows such as
flows past vein valves and soft plate in human airway.




D3Q19 LB Model
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Compute Lagrange Force

nyg—1
~> 1 - ¢ 1 - f X-, - X 1 \ ¢
2 m 2 m=1 ACI 1
5 o 1
]\ 2 X, i X,
F, b, | [ o Pt BBy,
( : )l Aal mzl | m+1 — n| 1 |Xm+1 — Xml ( ml 1 +l.1)
1 1 > i Xm 1 + X-m.—l = 2Xm % ‘
— 5503 1D Doy X PPy = 5K, Y [ttt Tt = nl
m 2 m=2 ' 01)
F i "H(X + X,y — 2X,) (20,0 — 6 Sni)
b)l (Aa*l )4 P m+1 m—1 — m ml — 9m4+11 — Om-1.l

B e 1, f m=lI,
‘=10, i m # 1.



p(X, t) — Z gj(xv t))

R

IJ"+1 (a) - Z un+1 (X')(sh,(x s X"(Oz) ')/2,3




Physical interpretation of lattice Boltzmann
method

Fix+ &t +1) = fi(x1) — —(fi(x,1) - fi(x,1))
1) Collision

(1) = [ 0) — —(f(x.t

2) Streaming

filx + &t +1) = f(x.1

East

Wost




2) A flag flapping in wind -- simulated by the 3D implicit lattice
Boltzmann based immersed boundary method

Position of trailing edge versus time (left &middle) and drag coefficient vs time (right)
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An incomplete list of the application of the immersed boundary
method (neutrally buoyant case)

* blood flow in the human heart (Peskin, McQueen)

* design of prosthetic cardiac valves (McQueen, Peskin, Yellin)

» platelet aggregation during blood clotting (Fogelson)

* cell and tissue deformation under shear flow (Bottino,Eggleton)
* wave propagation in the cochlea (Beyer)

* flow and transport in a renal arteriole (Arthurs et al.)

* aquatic animal locomotion (Fauci and Peskin)

* flow of suspensions (Fogelson,Peskin,Sulsky,Brackbill)

* valveless pumping (Jung and Peskin)

* flow in a collapsible tube (Rosar)



Why Implicit IBM?

WA WA HITHT AREREE
) . _ -

W WAy TRy NN

* E. Givelberg, Modeling elastic shells immersed in
fluid, Comm. Pure Appl. Math. 57 (2004) 283309.



fx,&t) , Of(x.&1) F(x1) If(x.&1

5 o ox m g~ h))

Simplified Boltzmann equation by BGK

Bl ¢ g UERA — - U Pk 4]~ Ple. 8 1)

Discrete lattice BGK equation

Ailet) | g B — _L(p(x, 1) — fO(x,t))

ox

The lattice Boltzmann equation (LBE)

filx+ &5t +1) = fi(x,t) — 2(fi(x,t) — £ (x,1))



IB formulation by the LBM

0g(X, &, 1) . dg(x,&,1) . dg(x,&,t) B _l | ) =
p(x,t) = /g(x,s,f)dﬁ, | f')QX(Cl: f)

(r)(x,1) = [ glx, & t)éde Fi(a,t) = —M(a,t) Ot2

0E  OE, + &)

“oX X
fin(x,1) = ./F(a, t)o(x — X(a, t))do

Fla,t) =

Ula,t) = /u(‘x,z‘)é(x — X(a, t))dx

0X

5 (a,t) = U(ex, t)



