EIGENVECTORS OF TENSORS

Bernd Sturmfels

University of California at Berkeley

How many eigenvectors does a $3 \times 3 \times 3$-tensor have? How many singular vector triples does a $3 \times 3 \times 3$-tensor have?

What is this？

Notices
 of the American Mathematical Society

June／July 2016
Volume 63，Number 6

Tensors and Their Eigenvectors page 604

Sir Andrew J．Wiles Awarded Abel Prize page 608

Interview with
AMS President Robert Bryant： His Early Life and His Views on Mathematics

page 614

Brunswick Meeting page 707

About the cover：Combinatorics，Geometry，and Tensors（see page 613）

Tensors and their rank

A tensor is a d-dimensional array of numbers $T=\left(t_{i_{1} i_{2} \ldots i_{d}}\right)$.
For $d=1$ this is a vector, and for $d=2$ this is a matrix.
A tensor T of format $n_{1} \times n_{2} \times \cdots \times n_{d}$ has $n_{1} n_{2} \cdots n_{d}$ entries.
T has rank 1 if it is the outer product of d vectors $\mathbf{u}, \mathbf{v}, \ldots, \mathbf{w}$:

$$
t_{i_{1} i_{2} \cdots i_{d}}=u_{i_{1}} v_{i_{2}} \cdots w_{i_{d}}
$$

The set of tensors of rank 1 is the Segre variety.
A tensor has rank r if it is the sum of r tensors of rank 1. (not fewer).
Tensor decomposition:

- Express a given tensor as a sum of rank 1 tensors.
- Use as few summands as possible.

Textbook: JM Landsberg: Tensors: Geometry and Applications, 2012.

Symmetric tensors

An $n \times n \times \cdots \times n$-tensor $T=\left(t_{1_{1} i_{2} \cdots i_{d}}\right)$ is symmetric if it is unchanged under permuting indices. Dimension is $\binom{n+d-1}{d}$.
T has rank 1 if it is the d-fold outer product of a vector \mathbf{v} :

$$
t_{i_{1} i_{2} \cdots i_{d}}=v_{i_{1}} v_{i_{2}} \cdots v_{i_{d}} .
$$

The set of symmetric tensors of rank 1 is the Veronese variety.
A symmetric tensor has rank r if it is the sum of r such tensors.

Symmetric tensors

An $n \times n \times \cdots \times n$-tensor $T=\left(t_{1_{1} i_{2} \cdots i_{d}}\right)$ is symmetric if it is unchanged under permuting indices. Dimension is $\binom{n+d-1}{d}$.
T has rank 1 if it is the d-fold outer product of a vector \mathbf{v} :

$$
t_{i_{1} i_{2} \cdots i_{d}}=v_{i_{1}} v_{i_{2}} \cdots v_{i_{d}} .
$$

The set of symmetric tensors of rank 1 is the Veronese variety.
A symmetric tensor has rank r if it is the sum of r such tensors.
Open Problem [Comon's Conjecture] Is the rank of every symmetric tensor equal to its rank as a general tensor?

True for $d=2$: every rank 1 decomposition of a symmetric matrix

$$
T=\mathbf{u}_{1}^{t} \mathbf{v}_{1}+\mathbf{u}_{2}^{t} \mathbf{v}_{2}+\cdots+\mathbf{u}_{r}^{t} \mathbf{v}_{r}
$$

transforms into a decomposition with rank 1 symmetric matrices:

$$
T=\mathbf{w}_{1}^{t} \mathbf{w}_{1}+\mathbf{w}_{2}^{t} \mathbf{w}_{2}+\cdots+\mathbf{w}_{r}^{t} \mathbf{w}_{r}
$$

Polynomials and their eigenvectors

Symmetric tensors correspond to homogeneous polynomials

$$
T=\sum_{i_{1}, \ldots, i_{d}=1}^{n} t_{i_{1} i_{2} \cdots i_{d}} \cdot x_{i_{1}} x_{i_{2}} \cdots x_{i_{d}}
$$

The tensor has rank r if T is a sum of r powers of linear forms:

$$
T=\sum_{j=1}^{r} \lambda_{j} \mathbf{v}_{j}^{\otimes d}=\sum_{j=1}^{r} \lambda_{j}\left(v_{1 j} x_{1}+v_{2 j} x_{2}+\cdots+v_{n j} x_{n}\right)^{d}
$$

Polynomials and their eigenvectors

Symmetric tensors correspond to homogeneous polynomials

$$
T=\sum_{i_{1}, \ldots, i_{d}=1}^{n} t_{i_{1} i_{2} \cdots i_{d}} \cdot x_{i_{1}} x_{i_{2}} \cdots x_{i_{d}}
$$

The tensor has rank r if T is a sum of r powers of linear forms:

$$
T=\sum_{j=1}^{r} \lambda_{j} \mathbf{v}_{j}^{\otimes d}=\sum_{j=1}^{r} \lambda_{j}\left(v_{1 j} x_{1}+v_{2 j} x_{2}+\cdots+v_{n j} x_{n}\right)^{d}
$$

The gradient of T defines a polynomial map of degree $d-1$:

$$
\nabla T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

A vector $\mathbf{v} \in \mathbb{R}^{n}$ is an eigenvector of the tensor T if

$$
(\nabla T)(\mathbf{v})=\lambda \cdot \mathbf{v} \quad \text { for some } \lambda \in \mathbb{R}
$$

What is this good for?

Consider the optimization problem of maximizing a homogeneous polynomial T over the unit sphere in \mathbb{R}^{n}.

Lagrange multipliers lead to the equations

$$
(\nabla T)(\mathbf{v})=\lambda \cdot \mathbf{v} \quad \text { for some } \lambda \in \mathbb{R}
$$

Fact: The critical points are the eigenvectors of T.

It is convenient to replace \mathbb{R}^{n} with projective space \mathbb{P}^{n-1}.

Eigenvectors of T are fixed points of $\nabla T: \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n-1}$.
Fact: These are nonlinear dynamical systems on \mathbb{P}^{n-1}.
[Lim, Ng, Qi: The spectral theory of tensors and its applications, 2013]

Linear maps

Real symmetric $n \times n$-matrices $\left(t_{i j}\right)$ correspond to quadratic forms

$$
T=\sum_{i=1}^{n} \sum_{j=1}^{n} t_{i j} x_{i} x_{j}
$$

By the Spectral Theorem, there exists a real decomposition

$$
T=\sum_{j=1}^{r} \lambda_{j}\left(v_{1 j} x_{1}+v_{2 j} x_{2}+\cdots+v_{n j} x_{n}\right)^{2}
$$

Here r is the rank and the λ_{j} are the eigenvalues of T. The eigenvectors $v_{j}=\left(v_{1 j}, v_{2 j}, \ldots, v_{n j}\right)$ are orthonormal.
One can compute this decomposition by the Power Method:

$$
\text { Iterate the linear map } \nabla T: \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n-1}
$$

Fixed points of this dynamical system are eigenvectors of T.

Quadratic maps

Symmetric $n \times n \times n$-tensors ($t_{i j k}$) correspond to cubic forms

$$
T=\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} t_{i j k} x_{i} x_{j} x_{k}
$$

We are interested in low rank decompositions

$$
T=\sum_{j=1}^{r} \lambda_{j}\left(v_{1 j} x_{1}+v_{2 j} x_{2}+\cdots+v_{n j} x_{n}\right)^{3} .
$$

One idea to find this decomposition is the Tensor Power Method:

$$
\text { Iterate the quadratic map } \nabla T: \mathbb{P}^{n-1} \rightarrow \mathbb{P}^{n-1}
$$

Fixed points of this dynamical system are eigenvectors of T.
Bad News: The eigenvectors are usually not the vectors \mathbf{v}_{i} in the low rank decomposition ... unless the tensor is odeco.

Odeco tensors

A symmetric tensor T is odeco (= orthogonally decomposable) if

$$
T=\sum_{j=1}^{n} \lambda_{j} \mathbf{v}_{j}^{\otimes d}=\sum_{j=1}^{n} \lambda_{j}\left(v_{1 j} x_{1}+\cdots+v_{n j} x_{n}\right)^{d}
$$

where $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is an orthogonal basis of \mathbb{R}^{n}.
The tensor power method works well for odeco tensors:
Theorem
If $\lambda_{j}>0$ then the \mathbf{v}_{i} are precisely the robust eigenvectors of T.
[Anandkumar, Ge, Hsu, Kakade, Telgarsky: Tensor decompositions for learning latent variable models, J. Machine Learning Research, 2014]
[Kolda: Symmetric orthogonal tensor decomposition is trivial, 2015]

The set of odeco tensors is a very nice variety of dimension $\binom{n+1}{2}$.
[Robeva: Orthogonal decomposition of symmetric tensors, 2015]

Associativity

Fact: Every $n \times n \times n$-tensor T defines an algebra structure on \mathbb{R}^{n}.
Example: Fix \mathbb{R}^{2} with basis $\{a, b\}$. A $2 \times 2 \times 2$-tensor $T=\left(t_{i j k}\right)$ defines

$$
\begin{array}{ll}
a \star a=t_{000} a+t_{001} b & a \star b=t_{010} a+t_{011} b \\
b \star a=t_{100} a+t_{101} b & b \star b=t_{110} a+t_{111} b
\end{array}
$$

This algebra is generally not associative:

$$
\begin{aligned}
& b \star(a \star a)=\left(t_{000} t_{100}+t_{001} t_{110}\right) a+\left(t_{000} t_{101}+t_{001} t_{111}\right) b \\
& (b \star a) \star a=\left(t_{000} t_{100}+t_{101} t_{100}\right) a+\left(t_{100} t_{001}+t_{101}^{2}\right) b
\end{aligned}
$$

Suppose that T is a symmetric tensor, corresponding to a binary cubic

$$
\begin{gathered}
t_{000} x^{3}+\left(t_{001}+t_{010}+t_{100}\right) x^{2} y+\left(t_{011}+t_{101}+t_{110}\right) x y^{2}+t_{111} y^{3} \\
=\quad t_{000} x^{3}+3 t_{001} x^{2} y+3 t_{011} x y^{2}+t_{111} y^{3}
\end{gathered}
$$

Associativity

Fact: Every $n \times n \times n$-tensor T defines an algebra structure on \mathbb{R}^{n}.
Example: Fix \mathbb{R}^{2} with basis $\{a, b\}$. A $2 \times 2 \times 2$-tensor $T=\left(t_{i j k}\right)$ defines

$$
\begin{array}{ll}
a \star a=t_{000} a+t_{001} b & a \star b=t_{010} a+t_{011} b \\
b \star a=t_{100} a+t_{101} b & b \star b=t_{110} a+t_{111} b
\end{array}
$$

This algebra is generally not associative:

$$
\begin{aligned}
& b \star(a \star a)=\left(t_{000} t_{100}+t_{001} t_{110}\right) a+\left(t_{000} t_{101}+t_{001} t_{111}\right) b \\
& (b \star a) \star a=\left(t_{000} t_{100}+t_{101} t_{100}\right) a+\left(t_{100} t_{001}+t_{101}^{2}\right) b
\end{aligned}
$$

Suppose that T is a symmetric tensor, corresponding to a binary cubic

$$
\begin{gathered}
t_{000} x^{3}+\left(t_{001}+t_{010}+t_{100}\right) x^{2} y+\left(t_{011}+t_{101}+t_{110}\right) x y^{2}+t_{111} y^{3} \\
=\quad t_{000} x^{3}+3 t_{001} x^{2} y+3 t_{011} x y^{2}+t_{111} y^{3}
\end{gathered}
$$

$b \star(a \star a)=(b \star a) \star a$ iff $t_{000} t_{011}+t_{001} t_{111}=t_{001}^{2}+t_{011}^{2}$ iff T odeco
Theorem (Boralevi-Draisma-Horobeț-Robeva 2015)
The odeco equations say that T defines an associative algebra.

Our question

How many eigenvectors does a symmetric $3 \times 3 \times 3$-tensor have ?

How many critical points does a cubic have on the unit 2-sphere?

Our question

How many eigenvectors does a symmetric $3 \times 3 \times 3$-tensor have ?

How many critical points does a cubic have on the unit 2-sphere?
Fermat: Odeco tensor: $\quad T=x^{3}+y^{3}+z^{3}$

$$
\begin{aligned}
& \nabla T: \mathbb{P}^{2} \longrightarrow \mathbb{P}^{2},(x: y: z) \mapsto\left(x^{2}: y^{2}: z^{2}\right) \\
& (1: 0: 0),(0: 1: 0),(0: 0: 1) \\
& (1: 1: 0),(1: 0: 1),(0: 1: 1),(1: 1: 1)
\end{aligned}
$$

Answer: Seven.

Let's count

Theorem
Consider a general symmetric tensor T of format $n \times n \times \cdots \times n$. The number of complex eigenvectors in \mathbb{P}^{n-1} equals

$$
\frac{(d-1)^{n}-1}{d-2}=\sum_{i=0}^{n-1}(d-1)^{i}
$$

[Cartwright, St: The number of eigenvalues of a tensor, 2013]
[Fornaess, Sibony: Complex dynamics in higher dimensions, 1994]

Q: How many eigenvectors does a $3 \times 3 \times 3 \times 3$-tensor have?
A: Plug $n=3$ and $d=4$ into the formula. The answer is 13 .

Discriminant

The eigendiscriminant is the irreducible polynomial in the entries $t_{i_{1} i_{2} \ldots i_{d}}$ which vanishes when two eigenvectors come together.

Theorem
The degree of eigendiscriminant is $n(n-1)(d-1)^{n-1}$.

> [Abo, Seigal, St: Eigenconfigurations of tensors, 2015]

Example $1(d=2)$ The discriminant of the characteristic polynomial of an $n \times n$-matrix is an equation of degree $n(n-1)$.

Example $2(n=3, d=4)$ The eigendiscriminant for $3 \times 3 \times 3 \times 3$ tensors
 is an equation of degree 54 .

Note: The eigendiscriminant divides tensor space into regions where the number of real solutions is constant. Average number?

Get Real

Distribution of the number of real eigenpairs of 2000 real gaussian tensors of format $3 \times 3 \times 3 \times 3$

[Breiding: The expected number of eigenvalues of a real Gaussian tensor, 2016] gives an exact formula in terms of hypergeometric integrals.

Line Arrangements

Open Problem: Can all eigenvectors be real?
Yes, if $n=3$: All $1+(d-1)+(d-1)^{2}$ fixed points can be real.

Line Arrangements

Open Problem: Can all eigenvectors be real?
Yes, if $n=3$: All $1+(d-1)+(d-1)^{2}$ fixed points can be real.

$$
6+7=13
$$

Proof: Let T be a product of d linear forms.
The $\binom{d}{2}$ vertices of the line arrangement are the base points.
The analytic centers of the $\binom{d}{2}+1$ regions are the fixed points.

Singular vectors

Given a rectangular matrix T, one seeks to solve the equations

$$
T \mathbf{u}=\sigma \mathbf{v} \quad \text { and } \quad T^{t} \mathbf{v}=\sigma \mathbf{u}
$$

The scalar σ is a singular value and (\mathbf{u}, \mathbf{v}) is a singular vector pair.

Singular vectors

Given a rectangular matrix T, one seeks to solve the equations

$$
T \mathbf{u}=\sigma \mathbf{v} \quad \text { and } \quad T^{t} \mathbf{v}=\sigma \mathbf{u}
$$

The scalar σ is a singular value and (\mathbf{u}, \mathbf{v}) is a singular vector pair.

Gradient Dynamics: Matrices correspond to bilinear forms

$$
T=\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} t_{i j} x_{i} y_{j}
$$

This defines a rational map

$$
\begin{array}{cccc}
\left(\nabla_{\mathbf{x}} T, \nabla_{\mathbf{y}} T\right): & \mathbb{P}^{n_{1}-1} \times \mathbb{P}^{n_{2}-1} & -- & \mathbb{P}^{n_{1}-1} \times \mathbb{P}^{n_{2}-1} \\
(\mathbf{u}, \mathbf{v}) & \mapsto & \left(T^{t} \mathbf{v}, T \mathbf{u}\right)
\end{array}
$$

The fixed points of this map are the singular vector pairs of T.

Multilinear forms

Tensors T in $\mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ correspond to multilinear forms. The singular vector tuples of T are fixed points of the gradient map

$$
\nabla T: \mathbb{P}^{n_{1}-1} \times \cdots \times \mathbb{P}^{n_{d}-1} \rightarrow \mathbb{P}^{n_{1}-1} \times \cdots \times \mathbb{P}^{n_{d}-1}
$$

Multilinear forms

Tensors T in $\mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ correspond to multilinear forms. The singular vector tuples of T are fixed points of the gradient map

$$
\nabla T: \mathbb{P}^{n_{1}-1} \times \cdots \times \mathbb{P}^{n_{d}-1} \rightarrow \mathbb{P}^{n_{1}-1} \times \cdots \times \mathbb{P}^{n_{d}-1}
$$

Theorem
For a general $n_{1} \times n_{2} \times \cdots \times n_{d}$-tensor T, the number of singular vector tuples is the coefficient of $z_{1}^{n_{1}-1} \cdots z_{d}^{n_{d}-1}$ in the polynomial

$$
\prod_{i=1}^{d} \frac{\left(\widehat{z}_{i}\right)^{n_{i}}-z_{i}^{n_{i}}}{\widehat{z}_{i}-z_{i}} \quad \text { where } \quad \widehat{z}_{i}=z_{1}+\cdots+z_{i-1}+z_{i+1}+\cdots+z_{d}
$$

[Friedland, Ottaviani: The number of singular vector tuples...., 2014]

Example: $d=3, n_{1}=n_{2}=n_{3}=3$:

Odeco Tensors

A general tensor of format $3 \times 3 \times 2 \times 2$ has 98 singular vector tuples. What happens for orthogonally decomposable tensors

$$
T=x_{0} y_{0} z_{0} w_{0}+x_{1} y_{1} z_{1} w_{1} \quad ?
$$

[Robeva, Seigal: Singular vectors of odeco tensors, 2016]
The gradient map $\nabla T: \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ has only 18 fixed points. In addition, there is a surface of base points:

Conclusion

Eigenvectors of square matrices are central to linear algebra.
Eigenvectors of tensors are a natural generalization. Pioneered in numerical multilinear algebra, these now have many applications.
[Lek-Heng Lim: Singular values and eigenvalues of tensors...., 2005]
[Liqun Qi: Eigenvalues of a real supersymmetric tensor, 2005]

Fact: This lecture serves as an invitation to applied algebraic geometry.

The word variety is not scary.

The terms Segre variety and Veronese variety refer to tensors of rank 1. Given some data, getting close to these is highly desirable.

Advertisement

http://www.siam.org/journals/siaga.php

SIAM Journal on

Applied Algebra and Geometry

