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Tensors and their rank

A tensor is a d-dimensional array of numbers T = (ti1i2···id ).
For d = 1 this is a vector, and for d = 2 this is a matrix.

A tensor T of format n1 × n2 × · · · × nd has n1n2 · · · nd entries.

T has rank 1 if it is the outer product of d vectors u, v, . . . ,w:

ti1i2···id = ui1vi2 · · ·wid .

The set of tensors of rank 1 is the Segre variety.

A tensor has rank r if it is the sum of r tensors of rank 1. (not fewer).

Tensor decomposition:

I Express a given tensor as a sum of rank 1 tensors.

I Use as few summands as possible.

Textbook: JM Landsberg: Tensors: Geometry and Applications, 2012.



Symmetric tensors
An n×n× · · ·×n-tensor T = (ti1i2···id ) is symmetric if it
is unchanged under permuting indices. Dimension is

(n+d−1
d

)
.

T has rank 1 if it is the d-fold outer product of a vector v:

ti1i2···id = vi1vi2 · · · vid .
The set of symmetric tensors of rank 1 is the Veronese variety.

A symmetric tensor has rank r if it is the sum of r such tensors.

Open Problem [Comon’s Conjecture] Is the rank of every
symmetric tensor equal to its rank as a general tensor?

True for d = 2: every rank 1 decomposition of a symmetric matrix

T = ut1v1 + ut2v2 + · · ·+ utrvr .

transforms into a decomposition with rank 1 symmetric matrices:

T = wt
1w1 + wt

2w2 + · · ·+ wt
rwr



Symmetric tensors
An n×n× · · ·×n-tensor T = (ti1i2···id ) is symmetric if it
is unchanged under permuting indices. Dimension is

(n+d−1
d

)
.

T has rank 1 if it is the d-fold outer product of a vector v:

ti1i2···id = vi1vi2 · · · vid .
The set of symmetric tensors of rank 1 is the Veronese variety.

A symmetric tensor has rank r if it is the sum of r such tensors.

Open Problem [Comon’s Conjecture] Is the rank of every
symmetric tensor equal to its rank as a general tensor?

True for d = 2: every rank 1 decomposition of a symmetric matrix

T = ut1v1 + ut2v2 + · · ·+ utrvr .

transforms into a decomposition with rank 1 symmetric matrices:

T = wt
1w1 + wt

2w2 + · · ·+ wt
rwr



Polynomials and their eigenvectors
Symmetric tensors correspond to homogeneous polynomials

T =
n∑

i1,...,id=1

ti1i2···id · xi1xi2 · · · xid

The tensor has rank r if T is a sum of r powers of linear forms:

T =
r∑

j=1

λjv
⊗d
j =

r∑

j=1

λj(v1jx1 + v2jx2 + · · ·+ vnjxn)d .

The gradient of T defines a polynomial map of degree d − 1:

∇T : Rn → Rn.

A vector v ∈ Rn is an eigenvector of the tensor T if

(∇T )(v) = λ · v for some λ ∈ R.
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What is this good for?

Consider the optimization problem of maximizing a
homogeneous polynomial T over the unit sphere in Rn.

Lagrange multipliers lead to the equations

(∇T )(v) = λ · v for some λ ∈ R.

Fact: The critical points are the eigenvectors of T .

It is convenient to replace Rn with projective space Pn−1.

Eigenvectors of T are fixed points of ∇T : Pn−1 99K Pn−1.

Fact: These are nonlinear dynamical systems on Pn−1.

[Lim, Ng, Qi: The spectral theory of tensors and its applications, 2013]



Linear maps

Real symmetric n×n-matrices (tij) correspond to quadratic forms

T =
n∑

i=1

n∑

j=1

tijxixj

By the Spectral Theorem, there exists a real decomposition

T =
r∑

j=1

λj (v1jx1 + v2jx2 + · · ·+ vnjxn)2.

Here r is the rank and the λj are the eigenvalues of T .
The eigenvectors vj = (v1j , v2j , . . . , vnj) are orthonormal.

One can compute this decomposition by the Power Method:

Iterate the linear map ∇T : Pn−1 99K Pn−1

Fixed points of this dynamical system are eigenvectors of T .



Quadratic maps

Symmetric n×n×n-tensors (tijk) correspond to cubic forms

T =
n∑

i=1

n∑

j=1

n∑

k=1

tijkxixjxk

We are interested in low rank decompositions

T =
r∑

j=1

λj (v1jx1 + v2jx2 + · · ·+ vnjxn)3.

One idea to find this decomposition is the Tensor Power Method:

Iterate the quadratic map ∇T : Pn−1 99K Pn−1

Fixed points of this dynamical system are eigenvectors of T .

Bad News: The eigenvectors are usually not the vectors vi
in the low rank decomposition ... unless the tensor is odeco.



Odeco tensors

A symmetric tensor T is odeco (= orthogonally decomposable) if

T =
n∑

j=1

λjvj
⊗d =

n∑

j=1

λj(v1jx1 + · · ·+ vnjxn)d ,

where {v1, v2, . . . , vn} is an orthogonal basis of Rn.

The tensor power method works well for odeco tensors:

Theorem
If λj > 0 then the vi are precisely the robust eigenvectors of T .

[Anandkumar, Ge, Hsu, Kakade, Telgarsky: Tensor decompositions for
learning latent variable models, J. Machine Learning Research, 2014]

[Kolda: Symmetric orthogonal tensor decomposition is trivial, 2015]

The set of odeco tensors is a very nice variety of dimension
(n+1

2

)
.

[Robeva: Orthogonal decomposition of symmetric tensors, 2015]



Associativity

Fact: Every n×n×n-tensor T defines an algebra structure on Rn.

Example: Fix R2 with basis {a, b}. A 2×2×2-tensor T = (tijk) defines

a ? a = t000a + t001b a ? b = t010a + t011b
b ? a = t100a + t101b b ? b = t110a + t111b

This algebra is generally not associative:

b ? (a ? a) = (t000t100 + t001t110)a + (t000t101 + t001t111)b
(b ? a) ? a = (t000t100 + t101t100)a + (t100t001 + t2101)b

Suppose that T is a symmetric tensor, corresponding to a binary cubic

t000x
3 + (t001+t010+t100)x2y + (t011+t101+t110)xy2 + t111y

3

= t000x
3 + 3t001x

2y + 3t011xy
2 + t111y

3

b ? (a ? a) = (b ? a) ? a iff t000t011 + t001t111 = t2001 + t2011 iff T odeco

Theorem (Boralevi-Draisma-Horobeţ-Robeva 2015)

The odeco equations say that T defines an associative algebra.



Associativity

Fact: Every n×n×n-tensor T defines an algebra structure on Rn.

Example: Fix R2 with basis {a, b}. A 2×2×2-tensor T = (tijk) defines

a ? a = t000a + t001b a ? b = t010a + t011b
b ? a = t100a + t101b b ? b = t110a + t111b

This algebra is generally not associative:

b ? (a ? a) = (t000t100 + t001t110)a + (t000t101 + t001t111)b
(b ? a) ? a = (t000t100 + t101t100)a + (t100t001 + t2101)b

Suppose that T is a symmetric tensor, corresponding to a binary cubic

t000x
3 + (t001+t010+t100)x2y + (t011+t101+t110)xy2 + t111y

3

= t000x
3 + 3t001x

2y + 3t011xy
2 + t111y

3

b ? (a ? a) = (b ? a) ? a iff t000t011 + t001t111 = t2001 + t2011 iff T odeco

Theorem (Boralevi-Draisma-Horobeţ-Robeva 2015)
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Our question

How many eigenvectors does a symmetric 3× 3× 3-tensor have ?

How many critical points does a cubic have on the unit 2-sphere?

Fermat: Odeco tensor : T = x3 + y3 + z3

∇T : P2 99K P2, (x : y : z) 7→ (x2 : y2 : z2)

(1 : 0 : 0) , (0 : 1 : 0) , (0 : 0 : 1) ,
(1 : 1 : 0) , (1 : 0 : 1) , (0 : 1 : 1) , (1 : 1 : 1)

Answer: Seven.
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Let’s count

Theorem
Consider a general symmetric tensor T of format n×n× · · ·×n.
The number of complex eigenvectors in Pn−1 equals

(d − 1)n − 1

d − 2
=

n−1∑

i=0

(d − 1)i .

[Cartwright, St: The number of eigenvalues of a tensor, 2013]

[Fornaess, Sibony: Complex dynamics in higher dimensions, 1994]

Q: How many eigenvectors does a 3× 3× 3× 3-tensor have?
A: Plug n = 3 and d = 4 into the formula. The answer is 13.



Discriminant

The eigendiscriminant is the irreducible polynomial in the entries
ti1i2···id which vanishes when two eigenvectors come together.

Theorem
The degree of eigendiscriminant is n(n − 1)(d − 1)n−1.

[Abo, Seigal, St: Eigenconfigurations of tensors, 2015]

Example 1 (d = 2) The discriminant of the characteristic
polynomial of an n × n-matrix is an equation of degree n(n − 1).

Example 2 (n = 3, d = 4) The eigendiscriminant for 3×3×3×3
tensors is an equation of degree 54.

Note: The eigendiscriminant divides tensor space into regions

where the number of real solutions is constant. Average number?



Get Real

Remark. For d = 1 Theorem 1.1(1) is the first equation in [8, Sec. 5] and Theorem 1.1(5) is [8, Theorem 5.1].
The case d = 1 of Theorem 1.1(3) is [8, Corollary 5.2].

FIGURE 1.1. Using the NORMRND() function in MATLAB R2015B[14] we generated a sample of 2000

real gaussian tensors in R34

. We used BERTINI[2] to compute the number #R(A) for each tensor. The
histogram shows the relative frequencies of the #R(A). The two vertical black lines represent E3,3 ⇡ 3.56
and D(3, 3) = 13. The reason why all the #R(A) are odd numbers is that each complex eigenpair comes
in a pair of conjugates. Hence #R(A) ⌘ D(3, 3) ⌘ 1 mod 2.

1.1. Organization. The organization of the paper is as follows. In the next section we gather various defini-
tions and cite theorems that will need to prove the main theorem. In the third section we establish the geometric
framework for the problem, similar to how we did in [5, Sec. 3]. Finally, in Section 4 we prove Theorem 1.1.

1.2. Acknowledgements. The basis of this work was laid during the reunion event of the program "Algorithms
and Complexity in Algebraic Geometry" at the Simons Institute for the Theory of Computing. We are grateful for
the Simons Institute for the stimulating environment and the financial support.

In addition to that we want to thank Mike Shub for pointing out to us the question about the expected number
of real eigenvalues, which we answer in this paper.

We further want to emphasize that this work would not have been possible without the help and support of
Peter Bürgisser. The author is very thankful for all the discussions and his advice.

2. PRELIMINARIES

2.1. Differential geometry. We denote by hx, yi := xT y the standard inner product on Rn. Furthermore, we set
kxk :=

p
hx, xi and S(Rn) :=

�
x 2 Rn | kxk = 1

 
. Given some x 2 Rn\ {0} we denote by Tx :=

�
y 2 Rn |

hx, yi = 0
 

the orthogonal complement of x in Rn. If M is a differentiable manifold and x 2 M we denote by
TxM the tangent space of M at x. Observe that Tx = TxS(Rn).

3

[Breiding: The expected number of eigenvalues of a real Gaussian tensor,

2016] gives an exact formula in terms of hypergeometric integrals.



Line Arrangements

Open Problem: Can all eigenvectors be real?

Yes, if n = 3: All 1 + (d−1) + (d−1)2 fixed points can be real.

07/11/15 09:59300px-Complete-quads.svg.png 300×127 pixels

Page 1 of 1https://upload.wikimedia.org/wikipedia/commons/thumb/7/7b/Complete-quads.svg/300px-Complete-quads.svg.png

6 + 7 = 13

Proof: Let T be a product of d linear forms.

The
(d
2

)
vertices of the line arrangement are the base points.

The analytic centers of the
(d
2

)
+ 1 regions are the fixed points.
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Singular vectors

Given a rectangular matrix T , one seeks to solve the equations

Tu = σv and T tv = σu.

The scalar σ is a singular value and (u, v) is a singular vector pair.

Gradient Dynamics: Matrices correspond to bilinear forms

T =

n1∑

i=1

n2∑

j=1

tijxiyj

This defines a rational map

(∇xT, ∇yT ) : Pn1−1 × Pn2−1 99K Pn1−1 × Pn2−1

(u , v) 7→ (T tv , Tu )

The fixed points of this map are the singular vector pairs of T .
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Multilinear forms
Tensors T in Rn1×n2×···×nd correspond to multilinear forms. The
singular vector tuples of T are fixed points of the gradient map

∇T : Pn1−1× · · · × Pnd−1 99K Pn1−1× · · · × Pnd−1.

Theorem
For a general n1×n2× · · ·×nd -tensor T , the number of singular
vector tuples is the coefficient of zn1−1

1 · · · znd−1
d in the polynomial

d∏

i=1

(ẑi )
ni − znii

ẑi − zi
where ẑi = z1 + · · ·+ zi−1 + zi+1 + · · ·+ zd .

[Friedland, Ottaviani: The number of singular vector tuples...., 2014]

Example: d = 3, n1 = n2 = n3 = 3:

(ẑ1
2+ẑ1z1+z21 )(ẑ2

2+ẑ2z2+z22 )(ẑ3
2+ẑ3z3+z23 ) = · · ·+ 37z21 z

2
2 z

2
3 + · · ·
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(ẑi )
ni − znii
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Odeco Tensors
A general tensor of format 3×3×2×2 has 98 singular vector
tuples. What happens for orthogonally decomposable tensors

T = x0y0z0w0 + x1y1z1w1 ?

[Robeva, Seigal: Singular vectors of odeco tensors, 2016]

The gradient map ∇T : P2×P2×P1×P1 99K P2×P2×P1×P1 has
only 18 fixed points. In addition, there is a surface of base points:



Conclusion

Eigenvectors of square matrices are central to linear algebra.

Eigenvectors of tensors are a natural generalization. Pioneered in
numerical multilinear algebra, these now have many applications.

[Lek-Heng Lim: Singular values and eigenvalues of tensors...., 2005]

[Liqun Qi: Eigenvalues of a real supersymmetric tensor, 2005]

Fact: This lecture serves as an invitation to applied algebraic geometry.

The word variety is not scary.

The terms Segre variety and Veronese variety refer to tensors of
rank 1. Given some data, getting close to these is highly desirable.
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