Privacy and Validity in the Land of Plenty

Cynthia Dwork, Microsoft Research

Helen Nissenbaum

Privacy-Preserving Data Analysis

- Census, epidemic detection based on OTC drug purchases; analysis of loan application data for evidence of discrimination....
- ▶ 50+ year old problem

"De-Identification"?

Original Database

DE-IDENTIFIED DATA ISN'T.

The Statistics Masquerade

Differencing Attack

- How many members of House of Representatives have sickle cell trait?
- How many members of House, other than the Speaker, have the trait?

The Statistics Masquerade

- Differencing Attack
 - How many members of House of Representatives have sickle cell trait?
 - How many members of House, other than the Speaker, have the trait?
- Needle in a Haystack
 - Determine presence of an individual's genomic data in GWAS case group

- The Big Bang attack
 - Reconstruct "depression" bit column

Dinur and Nissim'03 Homer+'08

Fundamental Law of Info Recovery

"Overly accurate" estimates of "too many" statistics is blatantly non-private.

Information Flows and Combines

"Computer science got us into this mess. Can computer science get us out of it?"

Latanya Sweeney, 2012

Privacy-Preserving Data Analysis?

- "Can't learn anything new about Nissenbaum"?
- Then what is the point?

Privacy-Preserving Data Analysis?

Ideally: learn same things if Nissenbaum is replaced by another random member of the population ("stability")

- The outcome of any analysis is essentially equally likely, independent of whether any individual joins, or refrains from joining, the dataset.
 - Nissenbaum goes away, Sweeney joins, Nissenbaum is replaced by Sweeney

Privacy-Preserving Data Analysis?

- Stability preserves Nissenbaum's privacy AND prevents over-fitting
- Privacy and Generalization are aligned!

Teachings vs Participation

SURGEON GENERAL'S WARNING: Smoking Causes Lung Cancer, Heart Disease, Emphysema, and May Complicate Pregnancy.

M gives ϵ -differential privacy if for all pairs of adjacent data sets x, y, and all events S

$$\Pr[M(x) \in S] \le e^{\epsilon} \Pr[M(y) \in S]$$

If a bad event is very unlikely when I'm not in dataset (y) then it is still very unlikely when I am (x)

M gives ϵ -differential privacy if for all pairs of adjacent data sets x, y, and all events S

$$\Pr[M(x) \in S] \le e^{\epsilon} \Pr[M(y) \in S]$$

If a bad event is very unlikely when I'm not in dataset (y) then it is still very unlikely when I am (x)

"Bounded Ratio"

M gives ϵ -differential privacy if for all pairs of adjacent data sets x, y, and all events S

$$\Pr[M(x) \in S] \le e^{\epsilon} \Pr[M(y) \in S]$$
"Privacy Loss"

If a bad event is very unlikely when I'm not in dataset (y) then it is still very unlikely when I am (x)

Impossible to know the actual probabilities of bad events. Can still control change in risk due to joining the database.

Properties

- Future-proof
 - Current and future(!) side information, post-processing
- Automatically yields group privacy
 - $k \in \{e\}$ for groups of size $k \in \{e\}$
- Understand behavior under composition
 - Can bound cumulative privacy loss over multiple analyses
 - "The epsilons add up"
- Programmable
 - Complicated private analyses from simple private building blocks

Did You XYZ Last Night?

Did You XYZ Last Night?

Tabs Over Spaces?

- Flip a coin.
 - Heads: Flip again and respond "Yes" if heads, "No" if otherwise
 - Tails: Answer honestly
- Analysis:
 - Pr [say "Y" given that truth = Y] / Pr [say "Y" given that truth = N] = 3
 - If truth is Y, will say "Y" if first coin is tails (probability $\frac{1}{2}$) or first coin is heads and second coin is heads (probability $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$), total probability $\frac{3}{4}$
 - If truth is N, will say "Y" only if first and second coins are heads, probability 1/4
 - Pr [say "N" given that truth = N] / Pr [say "N" given that truth = Y] = 3
 - $\epsilon \approx 1.098$

(Fractional) Estimation Error

- $* \text{ Random: } n' \sim \frac{n}{2} + c_1 \sqrt{n}$
- ▶ # Random Y's: $\sim \frac{n'}{2} + c_2 \sqrt{n'}$
- Estimate fraction true Y's:
 - $(\text{#Y answers} \frac{n}{4}) / (\frac{n}{2})$
 - Expected fractional error: $O(\frac{1}{\sqrt{n}})$
 - Comparable to sampling error

Specifically: Lap($\frac{\Delta f}{\epsilon}$) Noise

Rich Algorithmic Literature

- Counts, linear queries, histograms, contingency tables (marginals)
- Location and spread (eg, median, interquartile range)
- Dimension reduction (PCA, SVD), clustering
- Support Vector Machines
- Sparse regression/LASSO, logistic and linear regression, gradient descent
- Boosting, Multiplicative Weights
- Combinatorial optimization, mechanism design
- Privacy Under Continual Observation, Pan-Privacy
- Kalman filtering
- Statistical Queries learning model, PAC learning
- False Discovery Rate control in multiple hypothesis testing
- .
- The Algorithmic Foundations of Differential Privacy, Dwork and Roth, August 2014

Which is "Truth"?

A Surprising Application of DP

Statistical Validity in Adaptive Data Analysis

Great Efforts to Control False Discovery

- Benjamini-Hochberg's "BHq" et sequelae for controlling the false discover rate (FDR) in multiple hypothesis testing
- Sophisticated cross-validation techniques
- Holdout sets for checking conclusions drawn from training data
- Pre-registration
- (Most) theory is for the static case
 - But science is by nature an adaptive process
 - It's going to get worse
 - Validity in the Land of Plenty

Intuition

Intuition

- Fix a query, eg, "What fraction of population is over 6 feet tall?"
- Almost all large datasets will give an approximately correct reply
 - Most datasets are representative with respect to this query
- If in the process of adaptive exploration, the analyst finds a query for which the dataset is not representative, then she must have "learned something significant" about the dataset.
 - Preserving the "privacy" of the data, may prevent over-fitting.

We want to do things the way we always have!

Down with DP interference!!!

Go Ahead. Make My Day.

The Re-Usable Holdout

- Learn on the training set
- Check against holdout via a differentially private mechanism
- Future exploration does not significantly depend on H
 - H stays fresh!

Conclusion

- Problem studied for at least 50 years
- DP: General solution concept, robust to the networked world
- There is no competing theory of privacy-preserving data analysis
- There are jobs!
- The approach also tells us something fundamental about computing with stability
 - A general technique for statistical validity in adaptive data analysis

Thank you!

SIAM General Meeting, Boston, July 11, 2016