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generalized Polynomial Chaos

Parametric PDE:{
L(x , u,µ) = f (x ,µ), ∀ (x ,µ) ∈ D × Γ,

B(x , u,µ) = g(x ,µ), ∀ (x ,µ) ∈ ∂D × Γ.

Pth-order gPC expansion:

uP(x ,µ) =
P∑
|m|=0

ũm(x)Φm(µ)

Orthogonal Basis:

< Φm(µ),Φn(µ) >=

∫
Φm(µ)Φn(µ)ρ(µ)dµ = δm,n
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gPC Basis

Φm(µ) = φm1(µ1)...φmK
(µK )

Basis function:

Distribution of µ φm(µ) Support

Gaussian Hermite (−∞,∞)

Gamma Laguerre [0,∞)

Beta Jacobi [−1, 1]

Uniform Legendre [−1, 1]

Table 1: Various probability distributions with their corresponding gPC polynomial
family and support.
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gPC Coefficients

Approximation by quadrature rules:

ũm(x) =

∫
u(x ,µ)Φm(µ)ρ(µ)dµ ≈

Q∑
q=1

u(x ,µq)Φm(µq)wq

Solve PDE problem Q times to get u(x ,µq)

Our goal:

ũRBm (x) =

∫
u(x ,µ)Φm(µ)ρ(µ)dµ ≈

Q∑
q=1

uRB(x ,µq)Φm(µq)wq
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Computational Challenge
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Reduced Basis Method (RBM)

Parametric problems:

{
L(x , u,µ) = f (x ,µ), ∀ (x ,µ) ∈ D × Γ,

B(x , u,µ) = g(x ,µ), ∀ (x ,µ) ∈ ∂D × Γ.
(1)

How do we solve the PDE (1) at µ = µ1,µ2, ...,µ100000?

u(x ,µ) ≈ c1(µ)u(x ,µ∗1) + c2(µ)u(x ,µ∗2) + ...+ cN(µ)u(x ,µ∗N)

How do we choose µ∗1,µ
∗
2, ...,µ

∗
N ?
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Framework of RBM

Offline stage: Choose µ∗1,µ
∗
2, ...,µ

∗
N by greedy algorithm. The full

solution {u(µ∗i )}Ni=1 are computed via classical PDE solver (finite
element method, collocation method, etc).

Online Stage: Evaluate the RB model at any parameter value in the
pre-defined parameter range (µ ∈ Ξ):

uRB(µ) = c1(µ)u(µ∗1) + c2(µ)u(µ∗2) + ..+ cN(µ)u(µ∗N)
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Greedy Algorithm

Randomly choose any parameter value in the training set Ξ and set:
RB1 = span{u(µ1)}, k = 1.

Greedy sweep:

While ∆max < δtol

for each µ ∈ Ξ, solve PDE (1) in RBk to get uk(µ);

for each µ ∈ Ξ, compute the error estimate
∆k(µ) ≥ ||uk(µ)− u(µ)||XN ;

find the parameter µk+1 that maximizes the error estimate, set
∆max = ∆k(µk+1),RBk+1 = span{u(µ1), ...u(µk+1)};
end
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Goal-oriented RBM

gPC Coefficents

ũm(x) =

∫
u(x ,µ)Φm(µ)ρ(µ)dµ ≈

Q∑
q=1

u(x ,µq)Φm(µq)wq

ũRBm (x) =

∫
u(x ,µ)Φm(µ)ρ(µ)dµ ≈

Q∑
q=1

uRB(x ,µq)Φm(µq)wq

Weighted a posteriori error estimate:

∆w (µ) = ∆(µq)
√
|wq|
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Motivation of ∆w (µ) = ∆(µq)
√
|wq|

Error:

||ũm(x)− ũRB
m (x)||l2 ≤

Q∑
q=1

||u(x ,µq)− uRB(x ,µq)||l2 |Φm(µq)wq|

≤
Q∑

q=1

∆(µq)|Φm(µq)wq|

=
Q∑

q=1

∆(µq)
√
|wq||Φm(µq)

√
|wq||

Find
∑Q

q=1(Φm(µq))2|wq|) ≤ C and define ∆w (µq) = ∆(µq)
√
|wq|

Control the error by tolerance:

||ũm(x)− ũRB
m (x)||l2 ≤

√√√√(
Q∑

q=1

(∆w (µq))2)(
Q∑

q=1

(Φm(µq))2|wq|)

≤ δtol × C
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Error Analysis

Theorem (J.-Chen-Narayan)

Given an M-term gPC projection and an N-dimensional reduced basis approximation,
the error in the quantity of interest computed from the RBM-gPC approximation uN

M ,
and that computed from the truth gPC approximation uM is∥∥∥F [uN

M

]
−F [uM ]

∥∥∥
XN
≤ CLip CQ,M δtol ,

where CLip is the Lipschitz constant, and CQ,M is a constant independent of u, defined
by

CQ,M =
M∑

m=1

BQ,m |F [Φm(µ)]| ,BQ.m =

√√√√ Q∑
q=1

(Φm(µq))2|wq |), δtol =

√√√√ 1

Q

Q∑
q=1

[
∆w

N (µq)
]2
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Numerical Results

Problem:{
−∇ · (a(x ,µ)∇u(x ,µ)) = f in D × Γ,

u(x ,µ) = 0 on ∂D × Γ.

The diffusion coefficient a(x ,µ) is defined as:

a(x ,µ) = A +
K∑

k=1

cos(30 ∗ µk − 1)

k2
cos(kx) sin(ky),

Number of Quadrature nodes:

K 2 4 6

Q(K) 1,600 22,401 367,041
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Mean Value: F = E
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L2
ρ − norm squared: F = ||.||2L2

ρ
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Conclusion and Reference

Conclusion

We designed, analyzed, and tested a unified, goal-oriented reduced
basis method to accelerate the gPC-approximation of parameterized
PDEs.
As the dimension of the parameter increases, the proposed algorithm is
more efficient for the problem we tested.

Reference

J., Chen, Narayan, A unified, goal-oriented, hybridized reduced basis
method and generalized polynomial chaos algorithm for partial
differential equations with random inputs, arXiv:1601.00137. Under
revision.
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Question?
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