A Goal-oriented RBM-accelerated generalized Polynomial Chaos Algorithm

Jiahua Jiang ${ }^{1}$, Yanlai Chen ${ }^{1}$, Akil Narayan ${ }^{2}$
University of Massachusetts Dartmouth ${ }^{1}$
University of Utah ${ }^{2}$

July 11, 2016

Reduced Order Methods for UQ problems

Parameterized UQ

- generalized Polynomial Chaos (gPC)
- Monte Carlo Methods
- ...

Reduced Order Methods

- Reduced Basis Methods (RBM)
- Proper Orthogonal Decomposition (POD)

Reduced Order Methods for UQ problems

Parameterized UQ

- generalized Polynomial Chaos (gPC)
- Monte Carlo Methods
- ...

Reduced Order Methods

- Reduced Basis Methods (RBM)
- Proper Orthogonal Decomposition (POD)
- ...
- Howard C. Elman and Qifeng Liao (2013) Reduced Basis Collocation Methods for Partial Differential Equations with Random Coefficients. SIAM/ASA J. UNCERTAINTY QUANTIFICATION. Vol. 1, pp. 192-217
- Peng Chen, Alfio Quarteroni (2015) A new algorithm for high-dimensional uncertainty quantification based on dimension-adaptive sparse grid approximation and reduced basis methods Journal of Computational Physics 298176 ?193

generalized Polynomial Chaos

- Parametric PDE:

$$
\begin{cases}\mathcal{L}(\boldsymbol{x}, u, \boldsymbol{\mu})=f(\boldsymbol{x}, \boldsymbol{\mu}), & \forall(\boldsymbol{x}, \boldsymbol{\mu}) \in D \times \Gamma \\ \mathcal{B}(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{\mu})=g(\boldsymbol{x}, \boldsymbol{\mu}), & \forall(\boldsymbol{x}, \boldsymbol{\mu}) \in \partial D \times \Gamma\end{cases}
$$

generalized Polynomial Chaos

- Parametric PDE:

$$
\begin{cases}\mathcal{L}(\boldsymbol{x}, u, \boldsymbol{\mu})=f(\boldsymbol{x}, \boldsymbol{\mu}), & \forall(\boldsymbol{x}, \boldsymbol{\mu}) \in D \times \Gamma \\ \mathcal{B}(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{\mu})=g(\boldsymbol{x}, \boldsymbol{\mu}), & \forall(\boldsymbol{x}, \boldsymbol{\mu}) \in \partial D \times \Gamma\end{cases}
$$

- $P^{\text {th }}$-order gPC expansion:

$$
u^{P}(\boldsymbol{x}, \boldsymbol{\mu})=\sum_{|m|=0}^{P} \widetilde{u}_{m}(\boldsymbol{x}) \Phi_{m}(\boldsymbol{\mu})
$$

generalized Polynomial Chaos

- Parametric PDE:

$$
\begin{cases}\mathcal{L}(\boldsymbol{x}, u, \boldsymbol{\mu})=f(\boldsymbol{x}, \boldsymbol{\mu}), & \forall(\boldsymbol{x}, \boldsymbol{\mu}) \in D \times \Gamma, \\ \mathcal{B}(\boldsymbol{x}, u, \boldsymbol{\mu})=g(\boldsymbol{x}, \boldsymbol{\mu}), & \forall(\boldsymbol{x}, \boldsymbol{\mu}) \in \partial D \times \Gamma\end{cases}
$$

- $P^{t h}$-order gPC expansion:

$$
u^{P}(\boldsymbol{x}, \boldsymbol{\mu})=\sum_{|m|=0}^{P} \widetilde{u}_{m}(\boldsymbol{x}) \Phi_{m}(\boldsymbol{\mu})
$$

- Orthogonal Basis:

$$
<\Phi_{m}(\boldsymbol{\mu}), \Phi_{n}(\boldsymbol{\mu})>=\int \Phi_{m}(\boldsymbol{\mu}) \Phi_{n}(\boldsymbol{\mu}) \boldsymbol{\rho}(\boldsymbol{\mu}) d \boldsymbol{\mu}=\delta_{m, n}
$$

gPC Basis

$$
\Phi_{m}(\boldsymbol{\mu})=\phi_{m_{1}}\left(\mu_{1}\right) \ldots \phi_{m_{K}}\left(\mu_{K}\right)
$$

- Basis function:

Distribution of μ	$\phi_{m}(\mu)$	Support
Gaussian	Hermite	$(-\infty, \infty)$
Gamma	Laguerre	$[0, \infty)$
Beta	Jacobi	$[-1,1]$
Uniform	Legendre	$[-1,1]$

Table 1: Various probability distributions with their corresponding gPC polynomial family and support.

gPC Coefficients

- Approximation by quadrature rules:

$$
\widetilde{u}_{m}(\boldsymbol{x})=\int u(\boldsymbol{x}, \boldsymbol{\mu}) \Phi_{m}(\boldsymbol{\mu}) \boldsymbol{\rho}(\boldsymbol{\mu}) d \boldsymbol{\mu} \approx \sum_{q=1}^{Q} u\left(\boldsymbol{x}, \boldsymbol{\mu}^{q}\right) \Phi_{m}\left(\boldsymbol{\mu}^{q}\right) w_{q}
$$

- Solve PDE problem Q times to get $u\left(x, \mu^{q}\right)$
- Our goal:

$$
\widetilde{u}_{m}^{R B}(\boldsymbol{x})=\int u(\boldsymbol{x}, \boldsymbol{\mu}) \Phi_{m}(\boldsymbol{\mu}) \boldsymbol{\rho}(\boldsymbol{\mu}) d \boldsymbol{\mu} \approx \sum_{q=1}^{Q} u^{R B}\left(\boldsymbol{x}, \boldsymbol{\mu}^{q}\right) \Phi_{m}\left(\boldsymbol{\mu}^{q}\right) w_{q}
$$

Computational Challenge

Reduced Basis Method (RBM)

- Parametric problems:

$$
\begin{cases}\mathcal{L}(\boldsymbol{x}, u, \boldsymbol{\mu})=f(\boldsymbol{x}, \boldsymbol{\mu}), & \forall(\boldsymbol{x}, \boldsymbol{\mu}) \in D \times \Gamma \tag{1}\\ \mathcal{B}(\boldsymbol{x}, u, \boldsymbol{\mu})=g(\boldsymbol{x}, \boldsymbol{\mu}), & \forall(\boldsymbol{x}, \boldsymbol{\mu}) \in \partial D \times \Gamma\end{cases}
$$

- How do we solve the PDE (1) at $\boldsymbol{\mu}=\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \ldots, \boldsymbol{\mu}_{100000}$?
- $u(\boldsymbol{x}, \boldsymbol{\mu}) \approx c_{1}(\boldsymbol{\mu}) u\left(\boldsymbol{x}, \mu_{1}^{*}\right)+c_{2}(\boldsymbol{\mu}) u\left(\boldsymbol{x}, \mu_{2}^{*}\right)+\ldots+c_{N}(\boldsymbol{\mu}) u\left(\boldsymbol{x}, \mu_{N}^{*}\right)$
- How do we choose $\mu_{1}^{*}, \mu_{2}^{*}, \ldots, \mu_{N}^{*}$?

Framework of RBM

- Offline stage: Choose $\boldsymbol{\mu}_{1}^{*}, \boldsymbol{\mu}_{2}^{*}, \ldots, \boldsymbol{\mu}_{N}^{*}$ by greedy algorithm. The full solution $\left\{u\left(\boldsymbol{\mu}_{i}^{*}\right)\right\}_{i=1}^{N}$ are computed via classical PDE solver (finite element method, collocation method, etc).
- Online Stage: Evaluate the RB model at any parameter value in the pre-defined parameter range ($\boldsymbol{\mu} \in \bar{\Xi}$):

$$
u^{R B}(\boldsymbol{\mu})=c_{1}(\boldsymbol{\mu}) u\left(\boldsymbol{\mu}_{1}^{*}\right)+c_{2}(\boldsymbol{\mu}) u\left(\boldsymbol{\mu}_{2}^{*}\right)+. .+c_{N}(\boldsymbol{\mu}) u\left(\boldsymbol{\mu}_{N}^{*}\right)
$$

Greedy Algorithm

- Randomly choose any parameter value in the training set \equiv and set: $R B_{1}=\operatorname{span}\left\{u\left(\mu_{1}\right)\right\}, k=1$.
- Greedy sweep:
- While $\Delta^{\text {max }}<\delta_{\text {tol }}$
- for each $\boldsymbol{\mu} \in$ 三, solve PDE (1) in $R B_{k}$ to get $u^{k}(\boldsymbol{\mu})$;
- for each $\boldsymbol{\mu} \in \equiv$, compute the error estimate

$$
\Delta^{k}(\boldsymbol{\mu}) \geq\left\|u^{k}(\boldsymbol{\mu})-u(\boldsymbol{\mu})\right\|_{x_{\mathcal{N}}}
$$

- find the parameter $\boldsymbol{\mu}^{k+1}$ that maximizes the error estimate, set

$$
\Delta^{\max }=\Delta^{k}\left(\boldsymbol{\mu}^{k+1}\right), R B_{k+1}=\operatorname{span}\left\{u\left(\boldsymbol{\mu}_{1}\right), \ldots u\left(\boldsymbol{\mu}_{k+1}\right)\right\} ;
$$

- end

Goal-oriented RBM

- gPC Coefficents

$$
\begin{aligned}
\widetilde{u}_{m}(\boldsymbol{x}) & =\int u(\boldsymbol{x}, \boldsymbol{\mu}) \Phi_{m}(\boldsymbol{\mu}) \boldsymbol{\rho}(\boldsymbol{\mu}) d \boldsymbol{\mu} \approx \sum_{q=1}^{Q} u\left(\boldsymbol{x}, \boldsymbol{\mu}^{q}\right) \Phi_{m}\left(\boldsymbol{\mu}^{q}\right) w_{q} \\
\widetilde{u}_{m}^{R B}(\boldsymbol{x}) & =\int u(\boldsymbol{x}, \boldsymbol{\mu}) \Phi_{m}(\boldsymbol{\mu}) \boldsymbol{\rho}(\boldsymbol{\mu}) d \boldsymbol{\mu} \approx \sum_{q=1}^{Q} u^{R B}\left(\boldsymbol{x}, \boldsymbol{\mu}^{q}\right) \Phi_{m}\left(\boldsymbol{\mu}^{q}\right) w_{q}
\end{aligned}
$$

- Weighted a posteriori error estimate:

$$
\Delta^{w}(\mu)=\Delta\left(\mu_{q}\right) \sqrt{\left|w_{q}\right|}
$$

Motivation of $\quad=\Delta\left(\mu_{q}\right) \sqrt{\left|w_{q}\right|}$

- Error:

$$
\begin{aligned}
\left\|\widetilde{u}_{m}(x)-\widetilde{u}_{m}^{R B}(x)\right\|_{12} & \leq\left.\sum_{q=1}^{Q}\left\|u\left(x, \mu^{q}\right)-\mu^{R B}\left(x, \mu^{q}\right)\right\|\right|_{2}\left|\Phi_{m}\left(\mu^{q}\right) w_{q}\right| \\
& \leq \sum_{q=1}^{Q} \Delta\left(\mu^{q}\right)\left|\Phi_{m}\left(\mu^{q}\right) w_{q}\right| \\
& =\sum_{q=1}^{Q} \Delta\left(\mu^{q}\right) \sqrt{\left|w_{q}\right| \mid \Phi_{m}}\left(\mu^{q}\right) \sqrt{\left|w_{q}\right| \mid}
\end{aligned}
$$

- Find $\left.\sum_{q=1}^{Q}\left(\Phi_{m}\left(\boldsymbol{\mu}^{q}\right)\right)^{2}\left|w_{q}\right|\right) \leq C$ and define $\Delta^{w}\left(\boldsymbol{\mu}^{q}\right)=\Delta\left(\boldsymbol{\mu}^{q}\right) \sqrt{\left|w_{q}\right|}$
- Control the error by tolerance:

$$
\begin{aligned}
\left\|\widetilde{u}_{m}(x)-\widetilde{u}_{m}^{R B}(x)\right\|_{1_{2}} & \leq \sqrt{\left(\sum_{q=1}^{Q}\left(\Delta^{w}\left(\mu^{q}\right)\right)^{2}\right)\left(\sum_{q=1}^{Q}\left(\Phi_{m}\left(\mu^{q}\right)\right)^{2}\left|w_{q}\right|\right)} \\
& \leq \delta_{\text {tol }} \times C
\end{aligned}
$$

Error Analysis

Theorem (J.-Chen-Narayan)

Given an M-term gPC projection and an N-dimensional reduced basis approximation, the error in the quantity of interest computed from the $R B M-g P C$ approximation u_{M}^{N}, and that computed from the truth gPC approximation u_{M} is

$$
\left\|\mathcal{F}\left[u_{M}^{N}\right]-\mathcal{F}\left[u_{M}\right]\right\|_{X_{\mathcal{N}}} \leq C_{\text {Lip }} C_{Q, M} \delta_{\text {tol }},
$$

where $C_{\text {Lip }}$ is the Lipschitz constant, and $C_{Q, M}$ is a constant independent of u, defined by

$$
C_{Q, M}=\sum_{m=1}^{M} B_{Q, m}\left|\mathcal{F}\left[\Phi_{m}(\boldsymbol{\mu})\right]\right|, B_{Q . m}=\sqrt{\left.\sum_{q=1}^{Q}\left(\Phi_{m}\left(\boldsymbol{\mu}^{q}\right)\right)^{2}\left|w_{q}\right|\right)}, \delta_{t o l}=\sqrt{\frac{1}{Q} \sum_{q=1}^{Q}\left[\Delta_{N}^{w}\left(\boldsymbol{\mu}^{q}\right)\right]^{2}}
$$

Numerical Results

- Problem:

$$
\begin{cases}-\nabla \cdot(a(\boldsymbol{x}, \boldsymbol{\mu}) \nabla u(\boldsymbol{x}, \boldsymbol{\mu}))=f & \text { in } \quad D \times \boldsymbol{\Gamma} \\ u(\boldsymbol{x}, \boldsymbol{\mu})=0 & \text { on } \quad \partial D \times \boldsymbol{\Gamma}\end{cases}
$$

The diffusion coefficient $a(x, \mu)$ is defined as:

$$
a(x, \boldsymbol{\mu})=A+\sum_{k=1}^{k} \frac{\cos \left(30 * \mu_{k}-1\right)}{k^{2}} \cos (k x) \sin (k y),
$$

- Number of Quadrature nodes:

K	2	4	6
$\mathrm{Q}(\mathrm{K})$	1,600	22,401	367,041

Mean Value: $\mathcal{F}=\mathbb{E}$

$L_{\rho}^{2}-$ norm sQuared: $F=\|\mid\| L_{\rho}^{2}$

Conclusion and Reference

- Conclusion
- We designed, analyzed, and tested a unified, goal-oriented reduced basis method to accelerate the gPC-approximation of parameterized PDEs.
- As the dimension of the parameter increases, the proposed algorithm is more efficient for the problem we tested.
- Reference
- J., Chen, Narayan, A unified, goal-oriented, hybridized reduced basis method and generalized polynomial chaos algorithm for partial differential equations with random inputs, arXiv:1601.00137. Under revision.

Question?

