A Goal-oriented RBM-accelerated generalized Polynomial Chaos Algorithm

Jiahua Jiang¹, Yanlai Chen¹, Akil Narayan²

University of Massachusetts Dartmouth¹ University of Utah²

July 11, 2016

Reduced Order Methods for UQ problems

Parameterized UQ

- generalized Polynomial Chaos (gPC)
- Monte Carlo Methods

o ...

Reduced Order Methods

- Reduced Basis Methods (RBM)
- Proper Orthogonal Decomposition (POD)
- ...

Reduced Order Methods for UQ problems

Parameterized UQ

۲

. . .

. . .

- generalized Polynomial Chaos (gPC)
- Monte Carlo Methods

Reduced Order Methods

- Reduced Basis Methods (RBM)
- Proper Orthogonal Decomposition (POD)

Howard C. Elman and Qifeng Liao (2013) Reduced Basis Collocation Methods for Partial Differential Equations with Random Coefficients. SIAM/ASA J. UNCERTAINTY QUANTIFICATION. Vol. 1, pp. 192-217

. . .

Peng Chen, Alfio Quarteroni (2015) A new algorithm for high-dimensional uncertainty quantification based on dimension-adaptive sparse grid approximation and reduced basis methods Journal of Computational Physics 298 176?193

Jiahua Jiang 1 , Yanlai Chen 1 , Akil Narayan 2 (

• Parametric PDE:

$$\begin{cases} \mathcal{L}(\boldsymbol{x}, u, \boldsymbol{\mu}) = f(\boldsymbol{x}, \boldsymbol{\mu}), & \forall (\boldsymbol{x}, \boldsymbol{\mu}) \in D \times \Gamma, \\ \mathcal{B}(\boldsymbol{x}, u, \boldsymbol{\mu}) = g(\boldsymbol{x}, \boldsymbol{\mu}), & \forall (\boldsymbol{x}, \boldsymbol{\mu}) \in \partial D \times \Gamma. \end{cases}$$

• Parametric PDE:

$$\begin{cases} \mathcal{L}(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{\mu}) = f(\boldsymbol{x}, \boldsymbol{\mu}), & \forall (\boldsymbol{x}, \boldsymbol{\mu}) \in D \times \Gamma, \\ \mathcal{B}(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{\mu}) = g(\boldsymbol{x}, \boldsymbol{\mu}), & \forall (\boldsymbol{x}, \boldsymbol{\mu}) \in \partial D \times \Gamma. \end{cases}$$

• *Pth*-order gPC expansion:

$$u^{P}(\boldsymbol{x},\boldsymbol{\mu}) = \sum_{|m|=0}^{P} \widetilde{u}_{m}(\boldsymbol{x})\Phi_{m}(\boldsymbol{\mu})$$

• Parametric PDE:

$$\begin{cases} \mathcal{L}(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{\mu}) = f(\boldsymbol{x}, \boldsymbol{\mu}), & \forall (\boldsymbol{x}, \boldsymbol{\mu}) \in D \times \Gamma, \\ \mathcal{B}(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{\mu}) = g(\boldsymbol{x}, \boldsymbol{\mu}), & \forall (\boldsymbol{x}, \boldsymbol{\mu}) \in \partial D \times \Gamma. \end{cases}$$

• *Pth*-order gPC expansion:

$$u^{P}(\boldsymbol{x},\boldsymbol{\mu}) = \sum_{|m|=0}^{P} \widetilde{u}_{m}(\boldsymbol{x})\Phi_{m}(\boldsymbol{\mu})$$

• Orthogonal Basis:

$$<\Phi_m(\mu),\Phi_n(\mu)>=\int\Phi_m(\mu)\Phi_n(\mu)
ho(\mu)d\mu=\delta_{m,n}$$

$$\Phi_m(\boldsymbol{\mu}) = \phi_{m_1}(\mu_1)...\phi_{m_K}(\mu_K)$$

• Basis function:

Distribution of μ	$\phi_{m}(\mu)$	Support
Gaussian	Hermite	$(-\infty,\infty)$
Gamma	Laguerre	$[0,\infty)$
Beta	Jacobi	[-1, 1]
Uniform	Legendre	[-1,1]

Table 1: Various probability distributions with their corresponding gPC polynomial family and support.

• Approximation by quadrature rules:

$$\widetilde{u}_m(\mathbf{x}) = \int u(\mathbf{x}, \mu) \Phi_m(\mu) \rho(\mu) d\mu \approx \sum_{q=1}^Q u(\mathbf{x}, \mu^q) \Phi_m(\mu^q) w_q$$

• Solve PDE problem Q times to get $u(x, \mu^q)$

• Our goal:

$$\widetilde{u}_m^{RB}(\mathbf{x}) = \int u(\mathbf{x}, \mu) \Phi_m(\mu) \rho(\mu) d\mu \approx \sum_{q=1}^Q u^{RB}(\mathbf{x}, \mu^q) \Phi_m(\mu^q) w_q$$

Computational Challenge

Jiahua Jiang¹, Yanlai Chen¹, Akil Narayan² (

SIAM Annual Meeting 2016

• Parametric problems:

$$\begin{cases} \mathcal{L}(\mathbf{x}, u, \boldsymbol{\mu}) = f(\mathbf{x}, \boldsymbol{\mu}), & \forall (\mathbf{x}, \boldsymbol{\mu}) \in D \times \Gamma, \\ \mathcal{B}(\mathbf{x}, u, \boldsymbol{\mu}) = g(\mathbf{x}, \boldsymbol{\mu}), & \forall (\mathbf{x}, \boldsymbol{\mu}) \in \partial D \times \Gamma. \end{cases}$$
(1)

 \bullet How do we solve the PDE (1) at $\mu=\mu_1,\mu_2,...,\mu_{100000}?$

• $u(\mathbf{x}, \mu) \approx c_1(\mu)u(\mathbf{x}, \mu_1^*) + c_2(\mu)u(\mathbf{x}, \mu_2^*) + ... + c_N(\mu)u(\mathbf{x}, \mu_N^*)$

• How do we choose $\mu_1^*, \mu_2^*, ..., \mu_N^*$?

• Offline stage: Choose $\mu_1^*, \mu_2^*, ..., \mu_N^*$ by greedy algorithm. The full solution $\{u(\mu_i^*)\}_{i=1}^N$ are computed via classical PDE solver (finite element method, collocation method, etc).

 Online Stage: Evaluate the RB model at any parameter value in the pre-defined parameter range (µ ∈ Ξ):

$$u^{RB}(\mu) = c_1(\mu)u(\mu_1^*) + c_2(\mu)u(\mu_2^*) + ... + c_N(\mu)u(\mu_N^*)$$

- Randomly choose any parameter value in the training set Ξ and set: RB₁ = span{u(μ₁)}, k = 1.
- Greedy sweep:
 - While $\Delta^{max} < \delta_{tol}$
 - for each $\mu\in \Xi$, solve PDE (1) in RB_k to get $u^k(\mu)$;
 - for each $\mu \in \Xi$, compute the error estimate $\Delta^k(\mu) \ge ||u^k(\mu) u(\mu)||_{X_N};$
 - find the parameter μ^{k+1} that maximizes the error estimate, set $\Delta^{max} = \Delta^k(\mu^{k+1}), RB_{k+1} = span\{u(\mu_1), ...u(\mu_{k+1})\};$

end

• gPC Coefficents

$$\widetilde{u}_m(\mathbf{x}) = \int u(\mathbf{x}, \mu) \Phi_m(\mu) \rho(\mu) d\mu \approx \sum_{q=1}^Q u(\mathbf{x}, \mu^q) \Phi_m(\mu^q) w_q$$
$$\widetilde{u}_m^{RB}(\mathbf{x}) = \int u(\mathbf{x}, \mu) \Phi_m(\mu) \rho(\mu) d\mu \approx \sum_{q=1}^Q u^{RB}(\mathbf{x}, \mu^q) \Phi_m(\mu^q) w_q$$

• Weighted a posteriori error estimate:

$$\Delta^{w}(\boldsymbol{\mu}) = \Delta(\boldsymbol{\mu}_{q}) \sqrt{|w_{q}|}$$

Motivation of $\Delta^{w}(\mu) = \Delta(\mu_q) \sqrt{|w_q|}$

• Error:

$$\begin{split} ||\widetilde{u}_m(\mathbf{x}) - \widetilde{u}_m^{RB}(\mathbf{x})||_{\ell^2} &\leq \sum_{q=1}^Q ||u(\mathbf{x}, \mu^q) - u^{RB}(\mathbf{x}, \mu^q)||_{\ell^2} |\Phi_m(\mu^q) w_q| \\ &\leq \sum_{q=1}^Q \Delta(\mu^q) |\Phi_m(\mu^q) w_q| \\ &= \sum_{q=1}^Q \Delta(\mu^q) \sqrt{|w_q|} |\Phi_m(\mu^q) \sqrt{|w_q|}| \end{split}$$

• Find $\sum_{q=1}^{Q} (\Phi_m(\mu^q))^2 |w_q|) \leq C$ and define $\Delta^w(\mu^q) = \Delta(\mu^q) \sqrt{|w_q|}$

• Control the error by tolerance:

$$egin{aligned} ||\widetilde{u}_m(\pmb{x}) - \widetilde{u}_m^{RB}(\pmb{x})||_{l^2} &\leq \sqrt{(\sum_{q=1}^Q (\Delta^w(\mu^q))^2)(\sum_{q=1}^Q (\Phi_m(\mu^q))^2|w_q|)} \ &\leq \delta_{tol} imes \mathcal{C} \end{aligned}$$

Theorem (J.-Chen-Narayan)

Given an M-term gPC projection and an N-dimensional reduced basis approximation, the error in the quantity of interest computed from the RBM-gPC approximation u_M^N , and that computed from the truth gPC approximation u_M is

$$\left|\mathcal{F}\left[u_{M}^{N}\right]-\mathcal{F}\left[u_{M}\right]\right\|_{X_{\mathcal{N}}}\leq C_{\mathrm{Lip}}\ C_{Q,M}\ \delta_{tol},$$

where C_{Lip} is the Lipschitz constant, and $C_{Q,M}$ is a constant independent of u, defined by

$$C_{Q,M} = \sum_{m=1}^{M} B_{Q,m} \left| \mathcal{F}[\Phi_m(\mu)] \right|, B_{Q,m} = \sqrt{\sum_{q=1}^{Q} (\Phi_m(\mu^q))^2 |w_q|}, \delta_{tol} = \sqrt{\frac{1}{Q} \sum_{q=1}^{Q} \left[\Delta_N^w(\mu^q) \right]^2}$$

• Problem:

$$\begin{cases} -\nabla \cdot (a(\boldsymbol{x}, \boldsymbol{\mu}) \nabla u(\boldsymbol{x}, \boldsymbol{\mu})) = f & \text{in } D \times \boldsymbol{\Gamma}, \\ u(\boldsymbol{x}, \boldsymbol{\mu}) = 0 & \text{on } \partial D \times \boldsymbol{\Gamma}. \end{cases}$$

The diffusion coefficient $a(x, \mu)$ is defined as:

$$a(x, \mu) = A + \sum_{k=1}^{K} \frac{\cos(30 * \mu_k - 1)}{k^2} \cos(kx) \sin(ky),$$

• Number of Quadrature nodes:

К	2	4	6
Q(K)	1,600	22,401	367,041

Mean Value: $\mathcal{F} = \mathbb{E}$

Conclusion

- We designed, analyzed, and tested a unified, goal-oriented reduced basis method to accelerate the gPC-approximation of parameterized PDEs.
- As the dimension of the parameter increases, the proposed algorithm is more efficient for the problem we tested.

Reference

• J., Chen, Narayan, A unified, goal-oriented, hybridized reduced basis method and generalized polynomial chaos algorithm for partial differential equations with random inputs, arXiv:1601.00137. Under revision.

Question?